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Motivation

All models are wrong in principle
Models of physical systems rely on

Presumed theoretical framework
Mathematical formulation

Practical models of complex physical systems rely on
Simplifying assumptions
Numerical discretization of governing equations
Computational software & hardware

model error is frequently non-negligible
Estimating model error is useful for

model comparison & validation
model improvement & scientific discovery
reliable computational predictions
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Challenges with Model Calibration due to Model Error
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Conventional parameter estimation context: ydata = f(x, λ) + εd

Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors
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Challenges with Model Calibration due to Model Error
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Challenges with Model Calibration due to Model Error
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Statistical modeling of model error

Error framework:

Measurements: ydata = ytruth + εd

Model predictions: ytruth = ymodel + εm

Thus: ydata = ymodel + εm + εd

Error modeling – example

Model: ymodel = f(x, λ)

Data Error: εd ∼ N(0, σ2)

Model Error: εm ∼ GP(µ(x), C(x, x′))

Model calibration:

Estimate model parameters λ along with those of εm, εd

Kennedy & O’Hagan 2001; Bayarri et al. 2002
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Challenges – Physical Models

Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

Potential violation of implicit constraints in physical models

e.g. incompressible flow: ∇ · v = 0

Difficulty in disambiguation of model & data error

Calibration of model error on measured observable does not impact
quality of other model predictions

Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
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Key idea - Targeted model error embedding

Embed model error in specific submodel phenomenology
(Berliner 2003)

a modified transport or constitutive law
a modified formulation for a material property

Pros:
Allows placement of model error term in locations where key modeling
assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

explore if it can explain discrepancy on observable
naturally preserves model structure and associated constraints

Cons:
complex likelihood p(y|λ) for general nonlinear f(x, λ, εm)
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Consider a simple no-data-noise setting

Calibration of a (simple) model against a complex model
Let the complex model be presumed to represent the truth
In this context, the data has no noise
Discrepancy between model and data is all due to model error

ydata = ytruth = ycomplex_model = ymodel + εm

εm = ydata − ymodel is a deterministic quantity
The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique εm for any x
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model-to-model calibration

Model: y = f(x, λ, φ(εm))

– Random variable φ in augmented model components carries
model error

Data: D = {(xi, ydata,i), i = 1, . . . , N}

Goal:
Establish λ, p(φ) such that the likelihood of the data is high, based on
the posterior predictive p(y|D)

This puts us in a density estimation framework for φ:
The utility of additional data is to improve the specification of λ, and
p(φ)
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Present Context

Embed εm in λ

Model: y = f(x, λ) with λ : Ω → RM

Density estimation problem for p(λ)
λ : a random field λ(x, ω), or a random variable λ(ω)

– focus on the latter
Let the random variable λ be parameterized by α

For example, define λ as a polynomial chaos expansion

λ =

P∑
k=0

αkΨk(ξ)

Parameter estimation problem for α = (α0, · · · , αP )

Bayesian setting
Prior π(α)
Likelihood L(α) = p(D|α)
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Polynomial Chaos Expansion (PCE)

Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs
– where p(ξ) is uniquely determined by its moments

Any RV in L2(Ω,S(ξ), P ) can be written as a PCE:

u(ω) = f(ξ) =

∞∑
k=0

ukΨk(ξ(ω))

– uk are mode strengths
– Ψk() are functions orthogonal w.r.t. p(ξ)

Orthogonal basis examples:
Hermite polynomials with Gaussian germ
Legendre polynomials with Uniform germ, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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Full Likelihood

L(α) = p(D|α) = πf (ydata,1, . . . , ydata,N |α)

where:
πf (·|α): N-variate density of the random variable (f1, . . . , fN )
with fi = f(xi, λ(ξ;α))

Problem: πf (·) is degenerate in general when N > M

Consider a case with M = 1, λ ∼ N(µ, σ2), and f = λ

Let N = 2, hence (f1, f2) = (λ, λ) for any λ sample

With f1 = f2 = λ, (f1, f2) are dependent and πf (·|µ, σ) is non-zero
only along the line f2 = f1

πf (ydata,1, ydata,2|µ, σ) is non-zero only along the line ydata,2 = ydata,1

⇒ potentially can ameliorate singularity with a smoothing nugget
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Marginalized Likelihood

L(α) = p(D|α) =
N∏
i=1

πfi(ydata,i|α)

where
πfi(·, α) is the univariate density of the RV fi = f(xi, λ(α))

Problem: the likelihood has multiple singularities corresponding to α
values leading to vanishing marginal variances at each xi

Gaussian example: Let fi ∼ N(µi(α), σi(α)
2), then

L(α) =
1

(2π)N/2

N∏
i=1

1

σi(α)
exp

(
(µi(α)− ydata,i)

2

2σi(α)2

)
Multiple singularities, σi(α) = 0, i = 1, . . . , N

Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

⇒ can potentially be controlled via priors on α
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Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data

With µi(α) = Eξ[f(xi, λ(ξ;α))]:

minimize ‖ µi(α)− ydata,i ‖

The width of the distribution p(y|D) is consistent with the spread of the
data around the nominal model prediction

With σ2
i (α) = Vξ[f(xi, λ(ξ, α))]:

minimize ‖ σi(α)− γ|µi(α)− ydata,i| ‖

γ is a factor that specifies the desired match between σi and the
discrepancy |µi(α)− ydata,i|, on average
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ABC Likelihood

With ρ(S) being a metric of the statistic S , use the kernel function as an
ABC likelihood:

LABC(α) =
1

ε
K

(
ρ(S)
ε

)
where ε controls the severity of the consistency control

Propose the Gaussian kernel density:

Lε(α) =
1

ε
√
2π

N∏
i=1

exp
(
−
(µi(α)− yd,i)

2 + (σi(α)− γ|µi(α)− yd,i|)2

2ε2

)
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Likelihood construction – variants/approxmiations

Full Likelihood
L(α) = p(D|α) = p(ydata,1, . . . , ydata,N |α)

Marginalized Likelihood

L(α) = p(D|α) =
N∏
i=1

p(ydata,i|α)

Approximate Bayesian Computation:
Seek to satisfy the constraints:

p(y|D) is “centered” on the data

The width of the distribution p(y|D) is “consistent” with the spread of
the data around the nominal model prediction
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Prediction

p(α|D) = p(α0, . . . , αP |D)

λ(ξ;α) =

P∑
k=0

αkΨk(ξ)

Z(x, ξ;α) = f(x, λ(ξ;α))

MAP predictive RV

MAP predictive mean

MAP predictive variance

ZMP(x) = Z(x;αMAP)

ZMP
mean(x) = Eξ[Z|αMAP]

ZMP
var (x) = Vξ[Z|αMAP]
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Test problem – Cubic data fit by a line – ABC

N = 11
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MAP predictive (MP) mean centered on data
MP standard deviation captures range of discrepancy
Increasing number of data points has a small effect on both MP
mean and stdev
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Test problem – Posterior density on α

Cubic data, line-fit
Joint posterior on two
elements of α

Uncertainty in α is
decreased by

Increasing N
Decreasing ε
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Test problem – Cubic data fit by a quadratic – ABC

N = 11
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Quadratic has better fit to the data
Smaller MP stdev consistent with smaller discrepancy
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Test problem – Cubic data fit by a cubic – ABC

N = 11
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Cubic has perfect fit to the data
Negligible MP stdev consistent with negligible discrepancy
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Chemistry problem – ABC

Homogeneous ignition, methane-air
mixture
Single-step global reaction model
calibrated against a detailed chemical
kinetic model – ODE system
Data: ignition time; range of initial T &
equivalence ratio
Single-step model:

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]k

k = A exp(−E/RoT )

λ =

[
lnA
E

]
=

P∑
k=0

αkΨk(ξ)
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Constant Pressure Ignition – Problem Structure

N species, M reactions, rate parameter vector λ
State vector u = (X1, . . . , XN , T ) – mole fractions, temperature
ODE system

dui(t;λ)

dt
= wi(u;λ), i = 1, . . . , N

u(0) = u0

Observable: ignition time τign(u0, λ) = t |T (t;u0,λ)=Tign

Challenge, for any proposed λ, computing τign(u0, λ) is expensive
– Large stiff ODE system for complex fuels

Polynomial chaos formulation allows construction of a surrogate

τign(u0, λ(ξ;α)) = f(u0, ξ;α) =

P∑
k=0

fk(u0;α)Ψk(ξ)

Surrogate replaces the forward model in the Likelihood function
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Posterior on α – Posterior Predictive on (lnA,E)
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Posterior predictive distribution on ln k

Eα[p(ln k|D)]
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T 0,Φ):
MAP predictive mean
ignition-time is centered
on the data
MAP predictive stdv
is consistent with the
scatter of the data

K. Sargsyan, HNN, and R. Ghanem
”On the Statistical Calibration of Physical Models”

Int. J. Chem. Kin., 47(4): 246-276, 2015
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n-dodecane ignition – 1
with L. Hakim, M. Khalil, J. Oefelein, and G. Lacaze, SNL

Homogeneous ignition, n-dodecane/air mixture
Two-step global reaction model calibrated against a “detailed” model

Reference chemical kinetic model: 255 species, 2289 reactions
Narayanaswamy et al. 2014

Data: ignition time; range of initial T & equivalence ratio Φ

Two-step model:

C12H26 +
25
2 O2 −→ 12CO + 13H2O

CO + 1
2O2 = CO2

R1 = Ae
−E
RT [C12H26]

0.25[O2]
1.25

R2f = 3.98 · 1014e
−4·104
RT [CO][H2O]0.5[O2]

0.25

R2b = 5 · 108e
−4·104
RT [CO2]

E = λ0, lnA = λ1 + λ2e
λ3Φ + λ4 tanh((λ5 + λ6Φ)T0 + λ7
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n-dodecane ignition – 2

(E, lnA) = (λ0, λ1 + λ2e
λ3Φ + λ4 tanh((λ5 + λ6Φ)T0 + λ7)

Original parameter vector λ = (λ0, . . . , λ7)

Embed model error in (λ0, λ1)

PCE model:

λ0 = a00 + a01ξ1

λ1 = a10 + a11ξ1 + a12ξ2

λ2 = a20
...

λ7 = a70

ABC targets parameters (a00, a01, a10, a11, a12, a20, . . . , a70)
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n-dodecane ignition – 3
pd

f

0

10

20

a
0
1

0.45 0.5 0.55

0

0.02

0.04

0.06

a
1
0

0.45 0.5 0.55

0.65

0.7

0.75

0 0.02 0.04 0.06

0.65

0.7

0.75

a
1
1

0.45 0.5 0.55

0.02

0.04

0.06

0 0.02 0.04 0.06

0.02

0.04

0.06

0.65 0.7 0.75

0.02

0.04

0.06

a
1
2

0.45 0.5 0.55

5

10

15

x 10
−3

0 0.02 0.04 0.06

5

10

15

x 10
−3

0.65 0.7 0.75

5

10

15

x 10
−3

0.02 0.04 0.06

5

10

15

x 10
−3

5 10 15

x 10
−3

0

50

100

150

200

0

10

20

30

40

0

5

10

15

20

0

10

20

30

40

a00 a01 a10 a11 a12
×10−3

E
a

ln
A

3.2 3.4

x 10
4

26.5

27

27.5

28

28.5

SNL Najm ModErr 30 / 42



Introduction Proposed no-noise Chem noise Closure

n-dodecane ignition – 4
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Consider a noisy-data setting

Calibration of a model ym = f(x, λ) against noisy data
Synthetic noisy data is generated from a “truth” model + Gaussian
noise
Discrepancy between fit model prediction and data is due to both
model error & data noise

y = ydata = ytruth + ε = f(x, λ) + ε

Modeling strategy:
Model λ as a random vector, represented with PC
Represent the noise similarly using PC
Estimate all PC coefficients using Bayesian inference
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Model Error formulation – noisy data

y = f(x, λ) + ε

Let ε ∼ N(0, σ2). With N i.i.d. data points we have

yi = f(xi, λ) + εi, i = 1, . . . , N

For Hermite-Gaussian PC:

λ =

P∑
k=0

αkΨk(ξ1, · · · , ξd), α ≡ (α0, · · · , αP )

f(x, λ) =

P∑
k=0

fk(x, α)Ψk(ξ1, · · · , ξd)

yi =

P∑
k=0

fk(xi, α)Ψk(ξ1, · · · , ξd) + σξd+i

Augmented PC germ ξ = (ξ1, · · · , ξd︸ ︷︷ ︸
εm

, ξd+1, · · · , ξd+N︸ ︷︷ ︸
εd

)
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Model Error Estimation – noisy data

Inverse problem:
Given:

data:
D = {(xi, yi)}Ni=1

data model:

yi =
∑
k

fk(xi, α)Ψk(ξ1, · · · , ξd)︸ ︷︷ ︸
ymodel(εm)

+σ ξd+i︸ ︷︷ ︸
εd

, i = 1, . . . , N

Estimate parameters (α, σ)

Bayesian context:
posterior: p(α, σ|D)

options: Full Bayesian likelihood; Marginalized; ABC
All are viable here in principle, as the data noise introduces regularity
We illustrate the case with a Marginalized Gaussian approximation
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Calibrated Uncertain Model Posterior Predictive

Calibrated data model : yi = f(xi;λ(ξ;α)) + σξd+i

Full posterior on α, σ : α, σ ∼ p(α, σ|D)

Marginal posteriors: α ∼ p(α|D), σ ∼ p(σ|D)

Posterior Predictive (PP):

p(y|D) =

∫
p(y|α, σ)p(α, σ|D)dαdσ = Eα,σ[p(y|α, σ)]

PP Mean :
EPP[y] = Eα[Eξ[f ]]

PP Variance:

VPP[y] = Eα[ Vξ[ f ] ]︸ ︷︷ ︸
model error

+Eσ[ σ
2 ] + Vα[ Eξ[ f ] ]︸ ︷︷ ︸

data noise
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Calibrated Uncertain Model Predictions

Calibrated model : y = f(x;λ(ξ;α))

Marginal posterior on α : α ∼ p(α|D)

Pushed forward posterior (PFP):

p(f |D) =

∫
p(f |α)p(α|D)dα = Eα[p(f |α)]

PFP Mean :
EPFP[f ] = Eα[Eξ[f ]]

PFP Variance:

VPFP[f ] = Eα[ Vξ[ f ] ]︸ ︷︷ ︸
model error

+ Vα[ Eξ[ f ] ]︸ ︷︷ ︸
data noise
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Quadratic-fit – Classical Bayesian likelihood
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With additional data, predictive
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model is indefinitely reducible
Predictive uncertainty not
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Quadratic-fit – ModErr – MargGauss
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1σ pushed-forward posterior: model error term Eα[Vξ[f ]]

N = 20

With additional data, predictive
uncertainty due to data noise is
reducible
Predictive uncertainty due to
model error is not reducible
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Quadratic-fit – ModErr – MargGauss

-1.0 -0.5 0.0 0.5 1.0
x

1

2

3

4

5

6

7

8

y

Truth function g(x)

Observations {yi} with noise
Mean pushed-forward posterior EPF[f ]

1σ pushed-forward posterior VPF[f ]

1σ pushed-forward posterior: model error term Eα[Vξ[f ]]

σ = 1.0

Predictive uncertainty
composed of both model-error
and data-noise components
The data-noise component is
reducible with lower-noise in
the data
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σ = 0.5
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Quadratic-fit – ModErr – MargGauss
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Calibrating a quadratic f(x) w.r.t. g(x) = 6 + x2 + 0.5(x+ 1)3.5
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Model Error – Fit with Different Models
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Closure

Presented a strategy for dealing with model error
targeted at physical models

Density estimation framework – y = f(x;λ(ξ;α))

Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

Results suggest disambiguation of the two components

Uncertainty due to data-noise:
Manifested in Vα[Eξ[f ]] – Reducible with more/cleaner data

Uncertainty due to model-error:
Manifested in Eα[Vξ[f ]] – Not reducible
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