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Introduction
Motivation

All models are wrong in principle
Models of physical systems rely on

@ Presumed theoretical framework
e Mathematical formulation

Practical models of complex physical systems rely on
e Simplifying assumptions
o Numerical discretization of governing equations
e Computational software & hardware

model error is frequently non-negligible
Estimating model error is useful for

e model comparison & validation
e model improvement & scientific discovery
o reliable computational predictions
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Introduction

Challenges with Model Calibration due to Model Error

® o Data, N=5 2.0
== Truth
— Model prediction
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Conventional parameter estimation context:  ygaa = f(z, ) + €4
Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors
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Introduction

Challenges with Model Calibration due to Model Error

® o Data, N =20 2.0
== Truth
— Model prediction
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Conventional parameter estimation context:  ygaa = f(z, ) + €4
Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors

SNL Najm ModErr 5/42



Introduction

Challenges with Model Calibration due to Model Error

® o Data, N =100 2.0

== Truth

— Model prediction _..‘
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Conventional parameter estimation context:  ygata = f(x, \) + ¢4
Additional data results in reduced parameteric posterior uncertainty
One gets more confident about predictions with the wrong model
Predictive uncertainty in calibrated model has no utility for prediction
Ignoring model error leads to irrelevant predictive errors
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Introduction

Statistical modeling of model error

Error framework:

Measurements: Ydata = Ytruth + €d

Model predictions: Yiruth = Ymodel + Em

Thus: Ydata = Ymodel T €m + €4
Error modeling - example

Model: Ymodel = f (2, A)

Data Error: €a ~ N(0,02)

Model Error: em ~ GP(u(zx), C(z,z"))
Model calibration:

Estimate model parameters X along with those of ¢,,,, €4

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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Challenges - Physical Models

@ Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

o Potential violation of implicit constraints in physical models
e eg. incompressible flow: V- v = 0

o Difficulty in disambiguation of model & data error

@ Calibration of model error on measured observable does not impact
quality of other model predictions

@ Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
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Introduction

Key idea - Targeted model error embedding

@ Embed model error in specific submodel phenomenology
o o (Berliner 2003)
e a modified transport or constitutive law
o a modified formulation for a material property
@ Pros:

o Allows placement of model error term in locations where key modeling
assumptions and approximations are made

@ as a correction or high-order term
@ as apossible alternate phenomenology

o explore if it can explain discrepancy on observable
e naturally preserves model structure and associated constraints

@ Cons:
o complex likelihood p(y|\) for general nonlinear f(x, A, €)
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Introduction
Consider a simple no-data-noise setting

Calibration of a (simple) model against a complex model
Let the complex model be presumed to represent the truth
In this context, the data has no noise

Discrepancy between model and data is all due to model error

Ydata = Ytruth = Ycomplex_model = Ymodel T €m

@ €, = Ydata — Ymodel IS @ deterministic quantity

@ The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique ¢,, for any x
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model-to-model calibration

Model: y=f(z, X\ ¢(em))

- Random variable ¢ in augmented model components carries
model error

Data: D= {(xivydata,i)vi: L...,N}

@ Goal:

e Establish X, p(¢) such that the likelihood of the data is high, based on
the posterior predictive p(y|D)

@ This puts us in a density estimation framework for ¢:
o The utility of additional data is to improve the specification of A, and

p(9)
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Proposed
Present Context

Embed ¢, in A
Model: y= f(z,\) with A : Q — RM
Density estimation problem for p()\)

@ )\ :arandom field \(x,w), or a random variable \(w)
- focus on the latter
@ Let the random variable )\ be parameterized by «
o For example, define A as a polynomial chaos expansion

P
A=) anli(§)
k=0

Parameter estimation problem for o = (g, - -+ , ap)
Bayesian setting

o Prior 7(«)
e Likelihood L(«a) = p(D]a)
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Proposed

Polynomial Chaos Expansion (PCE)

o Givenagerm &(w) = {&,--- ,&,} - asetofiid RVs
- where p(&) is uniquely determined by its moments

Any RVin L?(Q, &(€), P) can be written as a PCE:

u(w) = f(&) = Y uxTx(§(w))
k=0

- wuy, are mode strengths
- WUy () are functions orthogonal w.r.t. p(&)

Orthogonal basis examples:
@ Hermite polynomials with Gaussian germ
@ Legendre polynomials with Uniform germ, ...

@ Global versus Local PC methods
o Adaptive domain decomposition of the support of &
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Full Likelihood

L(OZ) = p(D|O[) = ﬂ—f (ydata,lv ceey ydata,N|a)

where:
77 (-|a): N-variate density of the random variable (fi, ..., fn)

with fi = f(zi, A& @)

Problem: 74 (-) is degenerate in general when N > M
@ Consider a case with M = 1, A ~ N(u,0?),and f = A
@ Let N = 2, hence (f1, f2) = (\, \) for any A sample

o With f1 = fa = A, (f1, f2) are dependent and 7 (+|x, o) is non-zero
only along the line fo = f;

@ Ty (ydata,la Ydata,2 |/,(,’ 0) is non-zero only along the line Ydata,2 = Ydata,1

= potentially can ameliorate singularity with a smoothing nugget
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Marginalized Likelihood

L( D|a Hﬂf ydataz|a

where
75, (-, ) is the univariate density of the RV f; = f(z;, AM())

Problem: the likelihood has multiple singularities corresponding to «

values leading to vanishing marginal variances at each z;

@ Gaussian example: Let f; ~ N(u;(c), o;(0)?), then

1 ol 1 i\&Y) — Ydata,i §
L(Oé) = (27T)N/2 H oi(a) exp (W)

=1

@ Multiple singularities, 0;(a) = 0,7 = 1,..., N
@ Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

= can potentially be controlled via priors on «
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Proposed

Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data
© With pi(r) = Eg[f (2, A(§ ))):

minimize || 1 (@) — Ydata; |

The width of the distribution p(y| D) is consistent with the spread of the

data around the nominal model prediction
o With o7 (er) = Ve[f(xi, (€, )]

minimize || o () — |1 (@) — Ydata,il |

@ ~ is a factor that specifies the desired match between o; and the
discrepancy |1 (@) — Ydata,i|. ON average
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as an
ABC likelihood:
p(S) )

€

1
LABC(Oé) = EK <
where e controls the severity of the consistency control

Propose the Gaussian kernel density:

L(a)=

(pil@) = ya,0)* + (0i(a) = ylpila) - yd,i|)2>

| N
ex
V2 };[1 P ( 2¢2
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Proposed

Likelihood construction - variants/approxmiations

@ Full Likelihood
L(Oé) = p(D|O[) = p(ydata,la cee 7ydata,N|a)

@ Marginalized Likelihood
N

L(a) = p(D]a) = Hp(ydata,i|a)

=1

@ Approximate Bayesian Computation:
Seek to satisfy the constraints:

e p(y|D) is “centered” on the data

o The width of the distribution p(y| D) is “consistent” with the spread of
the data around the nominal model prediction
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Proposed
Prediction

p(e|lD) = plao,...,ap|D)
P
e = Y ant(©
k=0
Z(m,f;a) = f(x,)\(f,oz))

MAP predictive RV Z"(x) = Z(x;amap)
MAP predictive mean ZMe (@) = EelZ|amap]
MAP predictive variance ZW(x) = V¢[Z|amap]
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no-noise

Test problem - Cubic data fit by a line - ABC

e ¢ Complex model, g(z) e ¢ Complex model, g(z)

; —  MAP predictive mean, Z" (z) 4 — MAP predictive mean, Z).\, (x)
e mm MAP predictive stdev, V23l () || ° B MAP predictive stdev,  Z)/ (x)
32 3
55 EE
o o
34 34
o o
=4 = 4

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

MAP predictive (MP) mean centered on data

MP standard deviation captures range of discrepancy

Increasing number of data points has a small effect on both MP
mean and stdev
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no-noise

Test problem - Posterior density on «

@ Cubic data, line-fit

@ Joint posterior on two
elements of «

=/

@ Uncertainty in «is
decreased by
@ Increasing N
o Decreasing e

A
(@

€=0.5, N=11
€=0.1, N=11
€=0.5, N=51
e€=0.1, N=51

2.8 3.0 3.2 3.4 3.6
Qoo
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no-noise

Test problem - Cubic data fit by a quadratic - ABC

e ¢ Complex model, g(z) e ¢ Complex model, g(z)

7 — MAP predictive mean, z)" (z) 1.0 — MAP predictive mean, zM" (z)
6 B MAP predictive stdev, 727 (x) 6 B MAP predictive stdev, \/ Z)" (x)
3 3
EE EE
o o
g4 34
o o
= s R

'. ...
... .
®ee.
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

@ Quadratic has better fit to the data
@ Smaller MP stdev consistent with smaller discrepancy
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no-noise

Test problem - Cubic data fit by a cubic - ABC

e ¢ Complex model, g(z) e ¢ Complex model, g(z)
5 — MAP predictive mean, z)" (z) 7 — MAP predictive mean, zM" (z)
\ B MAP predictive stdev, 727 (x) \ B MAP predictive stdev, \/ Z)" (x)
o o
g gl 0\
3 p=3
31\ 31\
g4 34
o o \
= ——__ = \ P ttas Y9N
bW
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

@ Cubic has perfect fit to the data
@ Negligible MP stdev consistent with negligible discrepancy
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Chemistry problem - ABC

@ Homogeneous ignition, methane-air
mixture e

@ Single-step global reaction model F
calibrated against a detailed chemical
kinetic model - ODE system

o Data: ignition time; range of initial 7" &
equivalence ratio

@ Single-step model:

Log (Ignition time), Inr

CH, + 205 — CO, + 2H,0 O
14 8

R = [CH4] [Oz]k 1090 1050 1100
k = A eXp(*E/ROT) Temp_’ 7;200 1250 1300 06 <(,°“

{ln A] Z (€
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Chem

Constant Pressure Ignition - Problem Structure

@ N species, M reactions, rate parameter vector A
@ State vector u = (X1,..., Xn,T) - mole fractions, temperature
@ ODE system

dui(t; )\) - ) . -
o = wi(u;A), i1=1,...,N
u(0) = wg

@ Observable: ignition time  Tign (10, ) =  |7(t;u0,\)=Tipn

@ Challenge, for any proposed )\, computing 7ign(uo, A) is expensive
- Large stiff ODE system for complex fuels

@ Polynomial chaos formulation allows construction of a surrogate

P

Tign (0, A(§; ) = f(uo, & a) = ka(uo;a)‘llk(g)

k=0
@ Surrogate replaces the forward model in the Likelihood function
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Posterior on « Posterior Predictiveon (In A, £
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Chem

Posterior predictive distribution on ln &

Log forward rate, Ink

Ealp(Ink|D)]

20]

— MAP predictive mean
I MAP predictive stdev

172

000

1/1750 1/1500

1/1250 1/10

Inverse temperature, 1/T
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

o

Log (Ignition time), Inr

Over the range of (T°, ®): ]
-2

@ MAP predictive mean
ignition-time is centered
on the data

@ MAP predictive stdv
is consistent with the
scatter of the data

K. Sargsyan, HNN, and R. Ghanem

"On the Statistical Calibration of Physical Models”
Int. J. Chem. Kin., 47(4): 246-276, 2015
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Chem

n-dodecane ignition - 1
with L. Hakim, M. Khalil, ). Oefelein, and G. Lacaze, SNL

@ Homogeneous ignition, n-dodecane/air mixture
@ Two-step global reaction model calibrated against a “detailed” model

o Reference chemical kinetic model: 255 species, 2289 reactions
Narayanaswamy et al. 2014

@ Data: ignition time; range of initial 7' & equivalence ratio ®
@ Two-step model:

CioHgs + 20, — 12CO + 13H,0

coO+1i0, = CO,
-E
N o= ABW[CHH%]O'%[OQ]L%
Moy = 3.98-10"e RT ool [COJ[H,0]%5[0,]

3
I

5. 108 R [coz}

e F = )\0, InA = )\1 + /\26A3<I> + )\4 tanh((/\5 + )\6<I))To + )\7
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n-dodecane ignition - 2

(4] (E‘7 In A) = ()\0, A+ )\26)‘3@ + A4 tanh(()\5 + )\G(b)TO + )\7)

@ Original parameter vector A = (Ao, ..., A7)
@ Embed model errorin (A, A1)
@ PCE model:
Ao = ago + aoié1
A1 = a1+ anés + aée
A2 = ag
A7 = aqo
@ ABC targets parameters (CLO(), api, @10, @11, @12, @20, - - - ,a70)
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Chem

n-dodecane ignition - 3
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n-dodecane ignition - 4

—2F Symbols: Narayanaswamy et al., 2014
Lines: Present model

Model uncertainty (+ 30)

12

InT.
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Consider a noisy-data setting

o Calibration of a model y,,, = f(z, \) against noisy data

@ Synthetic noisy data is generated from a “truth” model + Gaussian
noise

@ Discrepancy between fit model prediction and data is due to both
model error & data noise

Y = Ydata = Ytruth T+ € = f(:c,)\) +e

@ Modeling strategy:

@ Model A as a random vector, represented with PC
o Represent the noise similarly using PC
o Estimate all PC coefficients using Bayesian inference
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Model Error formulation - noisy data

y=flz,A) +e
Let e ~ N(0,02). With N iid. data points we have

yi = flxi,\) +e, i=1,...,N

For Hermite-Gaussian PC:
P
A= Y a6, &), a=(ag, e ap)
k=0

P
f@,N) = > fulw, ) s, &)

k=0

P
vi = > fr(@i, )&y, &) + 0bay
k=0
Augmented PC germ 5 = (gla T 7£d7 £d+17 e afd-‘rN)
—_— — — (—

€m €4
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Model Error Estimation - noisy data

Inverse problem:
e Given:
o data:
D = {(zi,yi) }iva
o data model:

yi:ka(xi,Oé)\I/k(gl,"',fd)‘i’O’fdJ,.i, 7':177N
k

——
Yrmodel (€m) €d

@ Estimate parameters (o, o)

Bayesian context:
@ posterior: p(«a, o|D)
@ options: Full Bayesian likelihood; Marginalized; ABC
@ All are viable here in principle, as the data noise introduces regularity
@ Weillustrate the case with a Marginalized Gaussian approximation
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Calibrated Uncertain Model Posterior Predictive

@ Calibrated data model : y; = f(z:; A& @) + 0€a+4

@ Full posteriorona,o: «a,0 ~ p(a,o|D)

Marginal posteriors:  « ~ p(a|D), o ~ p(c|D)

Posterior Predictive (PP):

p(y|D) = /p(ylava)p(a,alD)dadU = Ea,0[p(yla, 0)]

PP Mean:
Epply] = E,, [E€ [f1]

PP Variance:

Veply] = Eq| Vé[f] ]+EJ[U2]+VQ[ Eﬁ[f] ]

model error data noise
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Calibrated Uncertain Model Predictions

o Calibrated model: y = f(z; A(§; @)
@ Marginal posterioron a:  « ~ p(a|D)

@ Pushed forward posterior (PFP):

p(f1D) = / p(flo)p(alD)da = Eqlp(f|a)]

@ PFP Mean:
Eprp[f] = Eq [EEUH

@ PFP Variance:

Verp[f] = Ea Ve[ f] ] + Vol E¢[f] ]

model error data noise
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noise

Quadratic-fit - Classical Bayesian likelihood

8 } with noise 8 e Coeavatins foy van noss
, i e L e s ara s ol
soveror Vel = s
6 6 - & —
.
5 5 i
. o,
4 4 °
3 3
2 2
N =50 \

1 1

10 05 0.0 05 i) 10 05 0.0 05 1.0

@ With additional data, predictive  ° e

uncertainty around the wrong ’ =
delis indefinitely reducible

model is indefinitely reducible N

@ Predictive uncertainty not 4 e N
indicative of discrepancy from s :
truth T N = 200 N

1.0 0.5 0.0 0.5 1.0
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noise

Quadratic-fit - ModErr - MargGauss

— Truth function g(x) — Truth function g(x)
@ @ Observations {) with noise @ @ Observations {y} with noise

—  Mean pushed-forward posterior Epe /| —  Mean pushed-fonward posterior o]
= 10 pushed-forward posterior = 17 pushed-forward posterior Ve

1 1 pushed-forward posterior: model error term Eq[Ve /]| 1 1 pushed-forward posterior: model error term Eq[Ve(f]]
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
xT xT
@ With additional data, predictive ®| . N =200
uncertainty due to data noiseis | &
. 6
reducible -
. . . 5 !
@ Predictive uncertainty dueto N
model error is not reducible 3 N
N A \\
—  Mean pushed-forward posterior E¢ /]
1 || 12 porbmwnr potrr: ot et o}
-1.0 -0.5 0.0 0.5 1.0

T
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noise

Quadratic-fit - ModErr - MargGauss

~

Now oA O o

D 8
oc=1.0 oc=0.5
7
. 5 >~
. o 6 P
/ * : 4 T S & o
3
4 .
R ara. IR RE=—
= Mean pushed-forward posterior Eps (/| = Mean pushed-forward posterior
17 pushec-forward posterior \ = 17 pushed-forward posterior Ve
1 pushed-forward posterior: model error term E, ¢ /]| A 1 1 pushed-forward posterior: model error term Eq Ve[
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
x x
@ Predictive uncertainty 8 =02
7| T
composed of both model-error .
. 6
and data-noise components
5
@ The data-noise componentis
reducible with lower-noise in NS
the data i =~ N
— Mean pushed-forward posterior Epe|f] A
- pu;\ed—mrwam posterior Vel :
1 1r pushed-forward posterior: model error term £, Ve[
-1.0 -0.5 0.0 0.5 1.0
xT
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Quadratic-fit - ModErr - MargGauss

10°
x--4 Pushed-forward variance Vpr|f]
102 o--e Model error E,[V¢[f]]
1 s-a Data error V,[E[f]]
10
0 hh, T
§ 10 ﬁ\\ bt TERY S S S Sy
-1 B
,g 10 \““‘i
= 10-2 \\' T
10° T
-
“H.
10
T
10° 5
10’ 102 103 10* 10 10°
N

Calibrating a quadratic f(z) w.rt. g(z) = 6 + 22 + 0.5(x + 1)3°
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Model Error - Fit with Different Models

1 ()
10 ..;.’:'Qt-.- N line
100 ’ “a “"“*N..,'_____._ quad
. '-.,._'::---o-----o--o---o-----o
g 10 B s
g - *re..., cube
.g n
< 107 A
-,
10° a2
e--+ Model error .
104 | L2 Data noise e
10! 10° 10° 10* 10° 10°

Number of Samples
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Closure
Closure

@ Presented a strategy for dealing with model error
o targeted at physical models

@ Density estimation framework - y = f(z; A(§; a))

@ Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

@ Results suggest disambiguation of the two components

@ Uncertainty due to data-noise:
@ Manifested in V,[E¢[f]] - Reducible with more/cleaner data

@ Uncertainty due to model-error:
o Manifested in E,[V¢[f]] - Not reducible
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