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Motivations

e Plenty of pores at sub-micron scale (nano-pores) in shales and carbonate rocks
have become increasingly important for emerging problems such as unconventional
gas and oil resources, geologic storage of CO, and nuclear waste disposal

e Advances in analytical capabilities with laser, X-ray, electron, and ion beams
offer emerging tools for characterizing pore structures, mineralogy, and reactions
at the sub-micron scale

e Multiscale Imaging capabilities — integration of experimental and numerical tools
to probe the structure and properties of materials across scales (e.g., core to

nanometer scale) are rapidly advanced

e Digital rock physics — data interrogation about how to take nanometer scale
Information and apply It to the thin-section or larger scale for accurate prediction of
coupled geophysical, mechanical, and chemical processes

Objectives

e Reconstruct 3-D stochastic pore structures based on multiscale images and reduce
the number of ensemble members through dimension reduction methods

e Develop a workflow for digital rock physics to upscale petrophysical and elastic
properties for multiphase flow and reactive transport

Multiscale Imaging and Analysis

eCharacterization of pore structures, compositional distribution, and surface
properties using multiscale imaging techniques (optical and confocal microscopy, x-
ray microprobe, QEMSCAN, microCT, FIB-SEM, BIB-SEM, TEM, EDS)

e Fluorescence mapping and feature classification

* Fluorescence detection of fluorochromes impregnated in pores
* Spectral segmentation algorithm [e.g., Kim et al. 2013]
» Used as a basis for FIB/SEM sampling

* Fast route to upscaling? FIB-SEM segmentation
3D Solid material

(3’ long) Thin section
‘ Rhodamine-B scan of thin section & FIB-SEM Locations ‘
e Principal Component Analysis e Graph-based Spectral Segmentation
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Reconstructed image with first 5 principal components
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Image Analysis and Multiscale Sampling Workflow for Digital Rock Physics

Generated image with 2-point correlation
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e Image segmentation
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Raw image: Small pores captured Large fractures captured  Connectivity recovered
= Uneven background | gackground correction = Background correction = Combine two binary
= Uneven illumination & - g bandpass filter = Median filter Images

horizontal scan lines - \adian filter = Higher threshold value = Dilate & Erode (twice) Traditional two-point statistics is not enough to characterize the long-range connectivity

. V%Eﬁlggég%gfed (bright ' Thresholding A prior geological interpretation is required and it is NOT multi-Gaussian

Generated image with multi-point geostatistics
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Micro-fractured pores (locations 1,3, 4)
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Research Directions
e Testing of training iImages

s For pore-scale data, 2D thin-sections can provide training images for multiple-
point statistics to describe features, connectivity, and hard data

= Recent advances Iin multiscale imaging capabilities currently provide rich 3D
Imaging data (e.g., microCT and FIB-SEM) to reconstruct 3D stochastic members

= At the field scale, outcrops (2D images) can be used as training data sets for
petroleum geostatistics

= Nonlinear dimension reduction will be applied to reduce the number of ensemble
members to represent flow and elastic properties of chalk

= Pore scale single- and multi-phase flow modeling and reactive transport modeling
will be performed to assess the accuracy and efficiency of MPS methods
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