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— Thermodynamic + hydrodynamic treatment works fairly well susceptibility within few molecular layers of surface.

— Knowing equation of state of reactants and products is sufficient
to model detonation

Problem is that we can only really model what happens S h O C k - I n d u C ed ReaCt | O n

during steady detonation of pristine materials at their time

of manufacture and after extensive experimental M h -
characterization. eC an I S m S

Lots of challenges predicting/understanding everything Two examples of QM reaction mechanisms:
besides steady detonation:

* Thisis done spectroscopically. Schematic of transient absorption experiment. Broadband

ultrafast pulse probes change in absorption spectrum of
bulk during shock compression.

Thermal: Phonon up-pumping (Dlott, Fayer,
Tokmakoff, et al.)
— Energy transferred from phonons to molecular vibrations
— Thermal process

* Shock sensitivity

* Effects of material properties (microstructure,
heterogeneity)

* Aging characteristics — Temperature is controlling variable

e Rational design of new materials — Predicts thermal distribution of quantum states

Explosive science is underdeveloped in terms of molecular Athermal: Electronic band gap closure (Kuklja, Kunz,
and quantum-level understanding Gilman, et al.)

— Compression reduces energy difference between ground and
excited electronic states, allowing spontaneous reactions to
occur

— Non-thermal process

Ty p eS Of EX p I O S I V eS — Pressure is controlling variable

_ _ — Potentially athermal distribution with electronically excited
We are concerned with secondary explosives, products

which require significant energy input (shock
wave) to initiate
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