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The electrocardiograph (ECG) is an invaluable tool for

detecting and diagnosing cardiac irregularities. ECG

data are collected using a number of leads, typically 12,

attached externally to the chest of the subject or patient.

Interpretation of the electrocardiogram (also, ECG) is

accomplished predominantly by a detailed examination

of the sinus rhythm. In this work, we take a different

approach to analyzing ECGs, employing multivariate

analysis. Using data from the PhysioNet online

database1, we conducted trilinear analysis of 15-lead

ECG data. We will present our methods of data

preprocessing, method of trilinear analysis and results of

data from patients as well as control subjects.
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• Explore algorithms that can facilitate interpretation of ECGs

• Eliminate bias in ECG data interpretation

• Use machine learning approach to speed data analysis

• Develop methods to classify groups using frequentist statistics

• Impose rigorous statistical approach to avoid misclassification

• Use one-class classifier rather than Bayesian methods

• Employ factor analysis techniques on challenging datasets

• Expand the realm of data prospects open to multivariate analysis

• Combine multivariate and multiway analysis with new 

classification algorithms

• Database

– 549 records from 290 subjects

• Aged 17 to 87, mean 57.2

• 209 men, mean age 55.5

• 81 women, mean age 61.6

• Ages not recorded for 1 female and 14 male 

subjects

– Each record includes 15 simultaneously 

measured signals

• Conventional 12 leads 

• 3 Frank leads
http://www.physionet.org/physiobank/database/ptbdb/

ECG DATA

• Physikalisch-Technische Bundesanstalt (PTB)

• National Metrology Institute of Germany

• Compilation of digitized ECGs

• The ECG data have low-frequency trends

• Through the use of meta data and some experimenting, 

it appears that low-frequency trends are below ~0.5 Hz

• Signal processing methods are used to remove the low-

frequency trends and stabilize the ECG data

• The proposed method seems to be robust and reliable 

and has little impact on the ECG signal 

ECG Baseline Correction and Noise Filtering

• The low-frequency 

components are removed 

by zeroing-out FFT bins

• Note that the signal is 

highly oversampled

Filtering in Fourier Domain

Before Filtering After Filtering

Two-Way Analysis Methods1
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• Principal Component Analysis (PCA)
• Given a matrix containing data, D, as a first step in 

many analyses we want principal components

D @ TPT

• Such that T and P are an orthogonal basis sets, that 

is a reduced dimensional representation of D, with 

ordered maximized variance.
• T is orthogonal (scores); P is orthonormal (loadings).

• Multivariate Curve Resolution (MCR)
• Impose constraints on solution space

Tensor Factorization-PARAFAC2
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• Tensor factorizations of multi-way data
• Parallel factor analysis (PARAFAC)

• Nonnegative tensor factorization (NTF)

• Similar in idea to least squares matrix techniques: 

principal component analysis (PCA), singular value 

decomposition (SVD),  multivariate curve resolution 

(MCR)

• When applied to a data array, data are modeled 

as a mixture of factors, each with its own triad of 

signature factors
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Tensor Factorization-PARAFAC23

• PARAFAC2 permits factorization of unaligned 

or different length signals

• This data appears to not follow a model 

suitable for PARAFAC
• Temporal alignment of sinus rhythms not trivial

• Lack of alignment may prevent use of standard 

PARAFAC algorithm

Image source: Created by Agateller (Anthony Atkielski), converted to 

svg by atom. - en:Image:SinusRhythmLabels.png, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=1560893

Normal Sinus Rhythm

Image source: Blausen Medical Communications, Inc. - Donated via 

OTRS, see ticket for details, CC BY 3.0, 

https://commons.wikimedia.org/w/index.php?curid=26986380

• ECG Data Utilized for PARAFAC2

– 494 records from 244 subjects

• Records with minimum 90 seconds (0.001 

sec increments)

• Used 80 seconds of each record after first 

4 seconds

• Array size 15 x 80,000 x 494

1.  M. R. Keenan, [Multivariate Analysis of Spectral Images Composed of Count Data] John Wiley & Sons, Ltd, Chichester, West Sussex, England(2007).

2.  T. Kolda, and B. Bader, “Tensor Decompositions and Applications,” SIAM Review, 51(3), 455-500 (2009).

3.   H. A. L. Kiers, J. M. F. TenBerge, and R. Bro, “PARAFAC2 - Part I. A direct fitting algorithm for the PARAFAC2 model,” J. Chemom., 13(3-4), 275-294 (1999).

– 80 records from 52 Controls

• Construct PARAFAC2 model using Controls

• Model array size 15 x 80,000 x 80

– 414 records from 192 Patients

• Predict patient factors from Control-based 

model

PARAFAC2 analysis conducted with a SNL-developed algorithm

The Human Heart

PARAFAC2 Model Factors (modes a and c) Corrupted ECGsClean ECG

• Note: The signal is being 

filtered, too. However, 

the features seem to be 

high frequency, thus they 

are preserved.

• Factor 3 appears to strongly 

correlate with an electrical artifact 

with leads or ECG electronic 

“ringing”.
• Both ECGs with high values in Factor 

3 show artifact, others do not exhibit 

this behavior

• PARAFAC2 model-derived 

factors in black
• PARAFAC2 model built with control 

subjects

• Note that re-estimated values have 

some ambiguity

• Most values are identical to model

• Colored asterisks are the 

estimated values using 

PARAFAC2 projection
• Samples with index higher than 80 are 

patients with some heart disease 

• Identification of any specific 

disease condition is not readily 

identifiable

• General “healthy” versus 

“disease” classification is not 

clear

Data above and below 

illustrates ringing artifact 

identified by factor 3

Controls used to build PARAFAC2 Model

• Processed and performed multivariate analysis on 

multi-lead ECG data

• Developed Matlab®-based pseudo-code to import 

PhysioBank ECG data

• Imports data significantly faster than available Java-

based tools

• Developed FFT-based approach to baseline correction 

and noise removal

• Eliminates irregular baseline and low-frequency noise

• Developed fast algorithm for performing PARAFAC2 for 

large datasets

• Employs core-PARAFAC tactic - speeds up calculations

• Performed PARAFAC2 modeling of 15-lead ECG data

• Readily identified data artifacts in ECGs

• Attempts to combine multivariate and multiway analysis 

with one-class classifier algorithms not successful

• No clear delineation between control subjects and 

subjects with heart disease revealed in analysis.
[MATLAB] The MathWorks, Inc., Natick, MA(2015).
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