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Optimization-based computation with spiking neurons
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Unary Coding of Numbers

Unary codes
» Fixed-length (k): for k=4 -0 is 0000 and 4 is 1111
» Saves energy

» Costs either more space or more time

Binary |[Binary |Unary |Unary
Serial Parallel | Serial Parallel

Space 0(1) O(logk) 0(1) 0(k)

Time O(ogk) 0(1) o0(k) 0(Q)
Energy E (log k)[) (log k) o) o)

2 2

Temporal Coding

Small difference in time of signal edge conveys information

Pulse-width code Conventional line code
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or ( Plog(k) ) 0 ( 1 )
Phase shift (internal or global) Wt Tspike log(k)
0 log(P) 0 ( P )
Tspike log(P)
Tspike log(P + 1)
P
Weighted spike count — binary 0 (T : ) t 0(1)
spike
'spike 1
Weighted spike count — latency i 10g< 'step ) 0 Tepik
0 ¢ log [ —Pike
Tspike Tstep
Rank order coding 0 (108(”!)) 4 0 ( P )
‘spike log(P!)
Synchrony group coding (g groups) 0 <M> 4 0 ( P )
Tspike log(g")
Conventional digital 0(1)
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Comparison: Temporal vs.

Conventional
Compare bits per pulse-width cycle (w + Tspike)
Temporal =logk
Conventional = 2(k/r + 1)
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Benefit of finer edge detection
(with k=255)

Benefit of smaller number range
(With 7 = T ke / Tstep = 150)
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Neural Spiking Module
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* Convert from input space to spiking
e Strength of input signal relates to timing of spike

Parallel Random Access
Machine (PRAM)

 Shared memory abstract computation architecture

* Metrics

» Time (Tp) — time required using P processors

» T, —time required by serial processing of algorithm

Processors (P) — number of processors needed
Work (W) — total effort of algorithm (W = T;)
cost — product of time & # processors (cost = Tp X
P)
Speedup (Sp) —improvement achieved using P
processors and parallel processing (Sp = T1/Tp)

SpikingSort PRAM
Algorithm
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Input : set of integers, {x1, X5, ..., Xy}
Output : sparse bit matrix of sorted sequence of spikes, $
S=0
fort <« ktoO
dofori < 1to N, in parallel
if x; == 1 then
S(t,i) =1

Comparison of Sorting
Algorithms

T P cost____

Parallel merge sort O(logN) O(N) O(N logN)
Reif 0(log N) ol Y 0(N)
log N

SpikingSort 0(k) O(N) O(kN)

SpikingSort, two-layer network 0(2k) 0((k + 1)N) 0(2k(k + 1)N)
c—1 c—1

SpikingSort, c-layer network 0(ck) 0 Z ki N ol ck Z ki N
i=0 i=0

SpikingSort, constant k 0(1) O(N) O(N)

SpikeMax PRAM Algorithm

Output : the maximum, m = max x;
l

done = False
fort <« ktoO
if done == False then
dofori < 1to N, in parallel
if x; == 7 then
m = X;
done = True

Comparison of Algorithms
for Finding the Max

T P | cost

Shiloach and Vishkin 0(1) O(N?) 0(N?)
Valiant O(ogN) o i O(N)
log N
SpikeMax 0(k) O(N) O(kN)
SpikeMax, when k —d < maxx; < k 0(d) O(N) O(dN)
l
SpikeMax, when N > k for constant k 0(1) O(N) O(N)

SpikeOpt PRAM Algorithm

Input : set of integers, {xq, X5, ..., Xy}, where N is odd
Output : median integer, m = median x;

l
typedef enum {INITIAL, SPIKING, DONE} is State
state = SPIKING

dofori < 1to N, in parallel

u; = Y, sign(x; — x;)

while state # DONE
if u; == 0 then

m = X;
state == DONE
else

u; = u; — sign(u;)

Comparison of Algorithms
for Finding the Median

T, P | cost |

Akl for 0 < x < 1 O(N1—%) 0(N%) O(N)

Cole and Yap 0((loglogN)?) O(N) O(N(loglogN)?)
Tishkin O(loglog N) O(N) O(N loglogN)
Beliakov 0(1) O(N) O(N)
SpikingMedian 0(k) O(N) O(kN)
SpikeOpt (median), worst case O(N/2) O(N) 0(N?)
SpikeOpt (median), symmetric distribution 0(1) O(N) O(N)
SpikeOpt (median), | X| = d, constant d 0(1) O(N) O(N)

Optimization-based Computation of Median Using SpikeOpt

SpikeOpt Neural Module
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Median-filtering with SpikeOpt
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