

Optimization-based computation with spiking neurons

Stephen J. Verzi, Craig M. Vineyard, Eric D. Vugrin, Meghan Galiardi
Conrad D. James and James B. Aimone

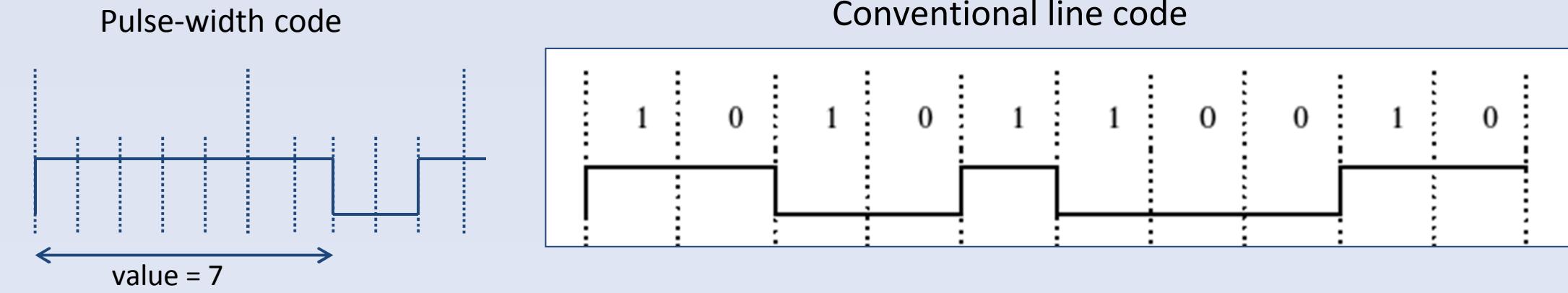
Unary Coding of Numbers

- Reducing communication cost (energy/bit) is crucial
- Unary codes
 - Fixed-length (k): for $k=4 \rightarrow 0$ is 0000 and 4 is 1111
 - Saves energy
 - Costs either more space or more time

	Binary Serial	Binary Parallel	Unary Serial	Unary Parallel
Space	$O(1)$	$O(\log k)$	$O(1)$	$O(k)$
Time	$O(\log k)$	$O(1)$	$O(k)$	$O(1)$
Energy	$O\left(\frac{\log k}{2}\right)$	$O\left(\frac{\log k}{2}\right)$	$O(1)$	$O(1)$

Temporal Coding

Small difference in time of signal edge conveys information



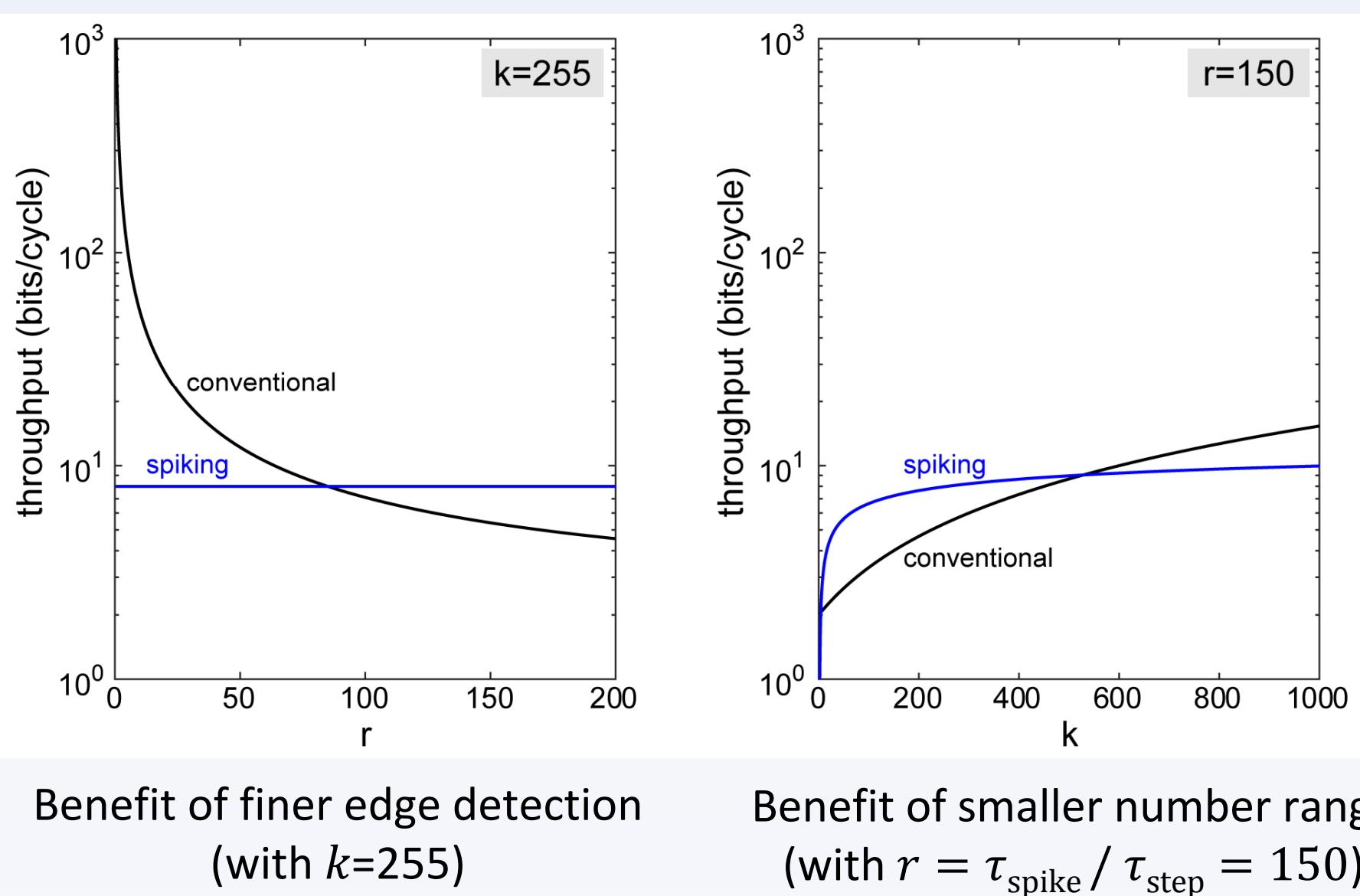
	Throughput (bits/second)	Energy (transitions/bit)
Pulse-width modulation or Phase shift (internal or global)	$O\left(\frac{P \log(k)}{w + \tau_{\text{spike}}}\right)$	$O\left(\frac{1}{\log(k)}\right)$
Winner-take-all	$O\left(\frac{\log(P)}{\tau_{\text{spike}}}\right)$	$O\left(\frac{P}{\log(P)}\right)$
Spike count	$O\left(\frac{\log(P+1)}{\tau_{\text{spike}}}\right)^+$	$O\left(\frac{P}{\log(P+1)}\right)$
Weighted spike count - binary	$O\left(\frac{P}{\tau_{\text{spike}}}\right)^+$	$O(1)$
Weighted spike count - latency	$O\left(\frac{P \log\left(\frac{\tau_{\text{spike}}}{\tau_{\text{step}}}\right)}{\tau_{\text{spike}}}\right)^+$	$O\left(\frac{1}{\log\left(\frac{\tau_{\text{spike}}}{\tau_{\text{step}}}\right)}\right)$
Rank order coding	$O\left(\frac{\log(P!)}{\tau_{\text{spike}}}\right)^+$	$O\left(\frac{P}{\log(P!)}\right)$
Synchrony group coding (g groups)	$O\left(\frac{\log(gP)}{\tau_{\text{spike}}}\right)^+$	$O\left(\frac{P}{\log(gP)}\right)$
Conventional digital	$O\left(\frac{P}{\tau_{\text{spike}}}\right)$	$O(1)$

Comparison: Temporal vs. Conventional

Compare bits per pulse-width cycle ($w + \tau_{\text{spike}}$)

$$\text{Temporal} = \log k$$

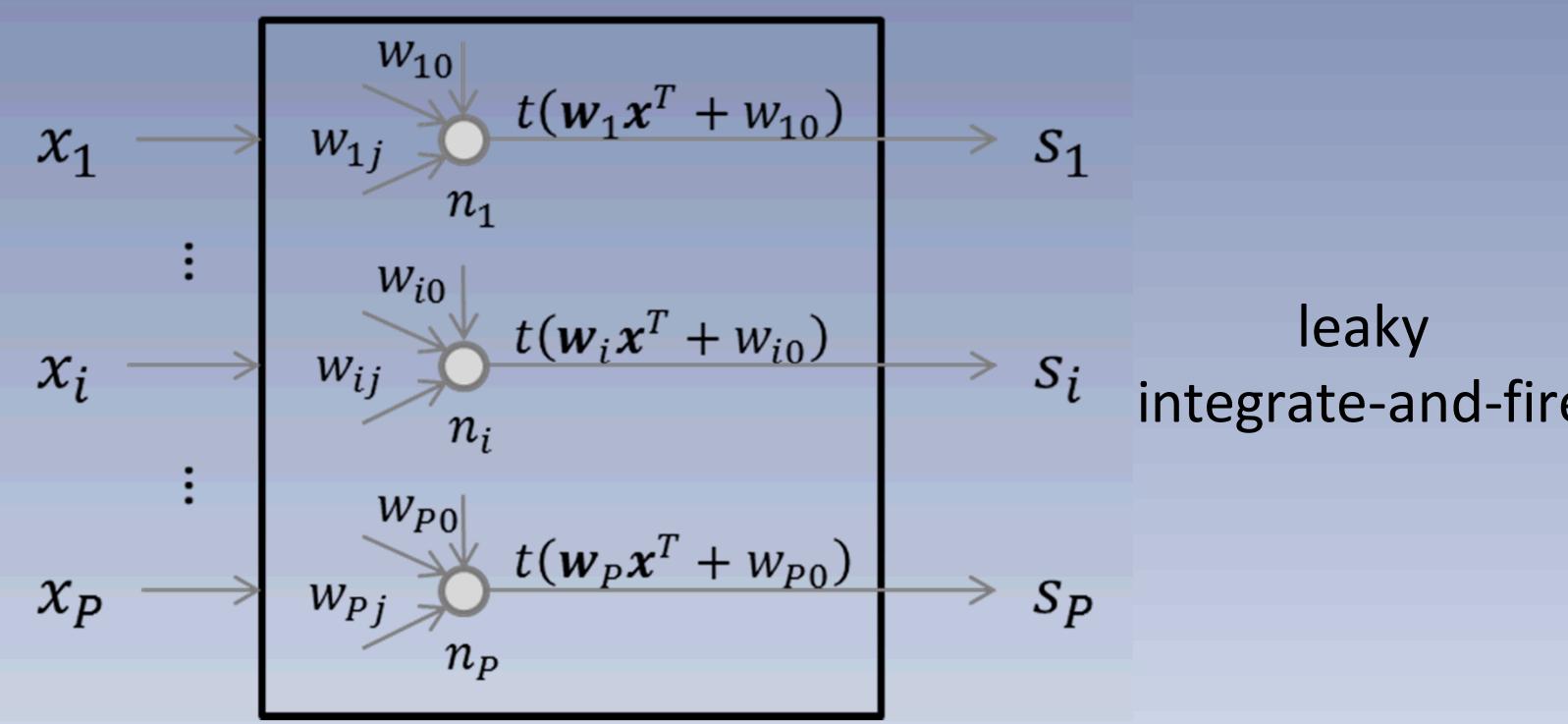
$$\text{Conventional} = 2(k/r + 1)$$



References

- S. J. Thorpe. Spike arrival times: A highly efficient coding scheme for neural networks. In G. Hartmann, R. Eckmiller, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 91–94. North-Holland Elsevier, 1990.
- J. J. Hopfield. “Pattern recognition computation using action potential timing for stimulus representation”. *Nature*, 376:33–36. 1995.
- W. Maass. Networks of spiking neurons: The third generation of neural network models. *Neural Networks*, 10(9):1659–1671, 1997.
- S. J. Thorpe, A. Delorme, and R. Van Rullen. Spike-based strategies for rapid processing. *Neural Networks*, 14(6–7):715–725, 2001.
- Verzi, SJ., Rothganger, F., Parekh, OD., Quach, T. Miner, NE., James, CD., and Aimone, JB. (2016). “Computing with spikes: The advantage of fine-grained timing”. *Neural Networks*, submitted.

Neural Spiking Module



- Convert from input space to spiking
- Strength of input signal relates to timing of spike

Parallel Random Access Machine (PRAM)

- Shared memory abstract computation architecture
- Metrics
 - Time (T_P) – time required using P processors
 - T_1 – time required by serial processing of algorithm
 - Processors (P) – number of processors needed
 - Work (W) – total effort of algorithm ($W = T_1$)
 - cost – product of time & # processors (cost = $T_P \times P$)
 - Speedup (S_P) – improvement achieved using P processors and parallel processing ($S_P = T_1/T_P$)

SpikingSort PRAM Algorithm

Input : set of integers, $\{x_1, x_2, \dots, x_N\}$
Output : sparse bit matrix of sorted sequence of spikes, S
 $S = 0$
for $\tau \leftarrow k$ **to** 0
do for $i \leftarrow 1$ **to** N , **in parallel**
if $x_i == \tau$ **then**
 $S(\tau, i) = 1$

Comparison of Sorting Algorithms

	T_P	P	cost
Parallel merge sort	$O(\log N)$	$O(N)$	$O(N \log N)$
Reif	$O(\log N)$	$O\left(\frac{N}{\log N}\right)$	$O(N)$
SpikingSort, two-layer network	$O(k)$	$O(N)$	$O(kN)$
SpikingSort, c-layer network	$O(2k)$	$O((k+1)N)$	$O(2k(k+1)N)$
SpikingSort, constant k	$O(ck)$	$O\left(\sum_{i=0}^{c-1} k^i N\right)$	$O\left(ck \sum_{i=0}^{c-1} k^i N\right)$
SpikingSort, constant k	$O(1)$	$O(N)$	$O(N)$

SpikeMax PRAM Algorithm

```

Input : set of integers,  $\{x_1, x_2, \dots, x_N\}$ 
Output : the maximum,  $m = \max_i x_i$ 
done = False
for  $\tau \leftarrow k$  to 0
if  $\text{done} == \text{False}$  then
  do for  $i \leftarrow 1$  to  $N$ , in parallel
    if  $x_i == \tau$  then
       $m = x_i$ 
    done = True

```

Comparison of Algorithms for Finding the Max

	T_P	P	cost
Shiloach and Vishkin	$O(1)$	$O(N^2)$	$O(N^2)$
Valiant	$O(\log N)$	$O\left(\frac{N}{\log N}\right)$	$O(N)$
SpikeMax	$O(k)$	$O(N)$	$O(kN)$
SpikeMax, when $k - d \leq \max_i x_i \leq k$	$O(d)$	$O(N)$	$O(dN)$
SpikeMax, when $N \gg k$ for constant k	$O(1)$	$O(N)$	$O(N)$

SpikeOpt PRAM Algorithm

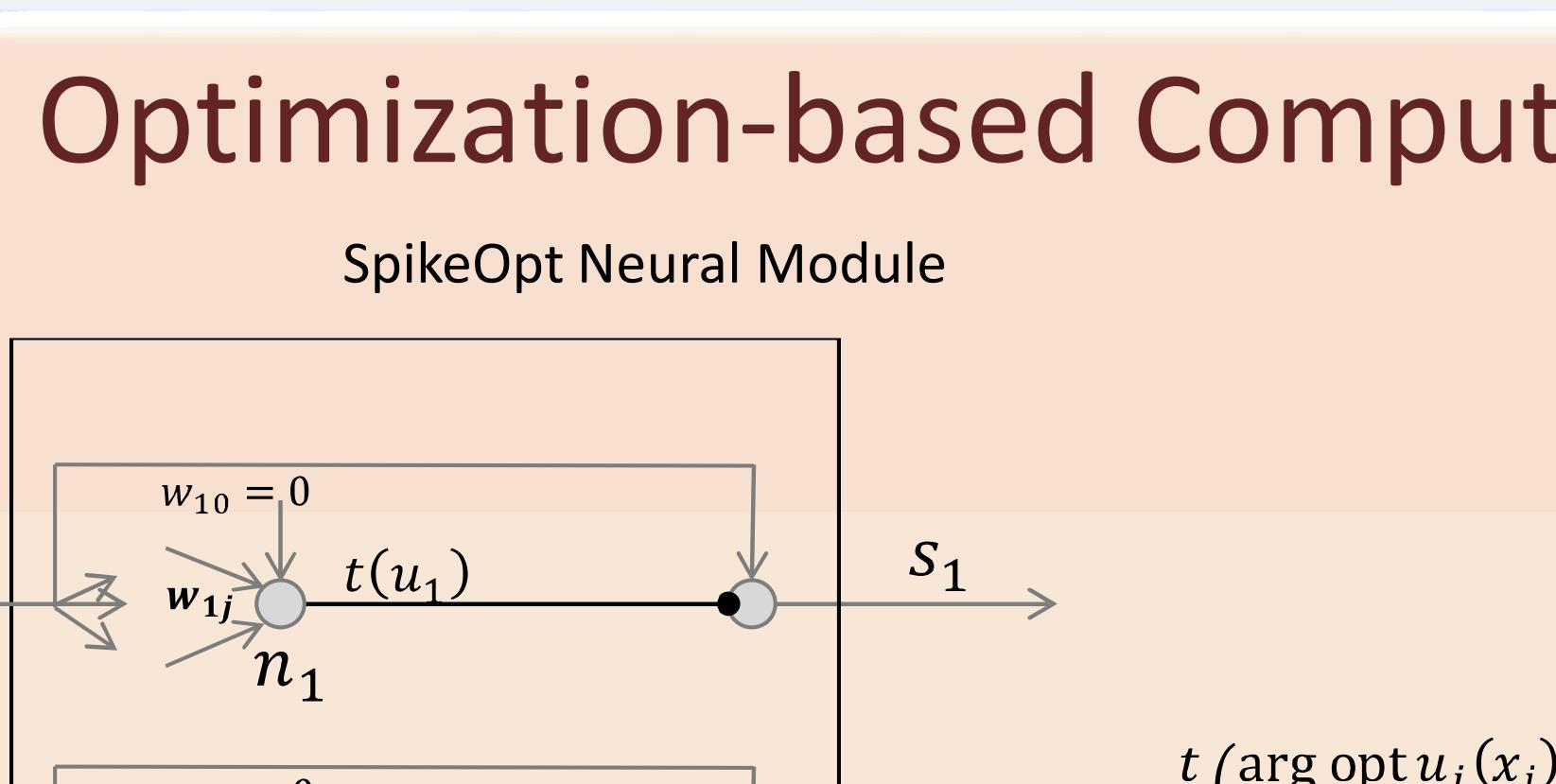
```

Input : set of integers,  $\{x_1, x_2, \dots, x_N\}$ , where  $N$  is odd
Output : median integer,  $m = \text{median } x_i$ 
typedef enum {INITIAL, SPIKING, DONE} is State
state == SPIKING
do for  $i \leftarrow 1$  to  $N$ , in parallel
   $u_i = \sum_{j=1}^N \text{sign}(x_i - x_j)$ 
while state != DONE
  if  $u_i == 0$  then
     $m = x_i$ 
    state == DONE
  else
     $u_i = u_i - \text{sign}(u_i)$ 

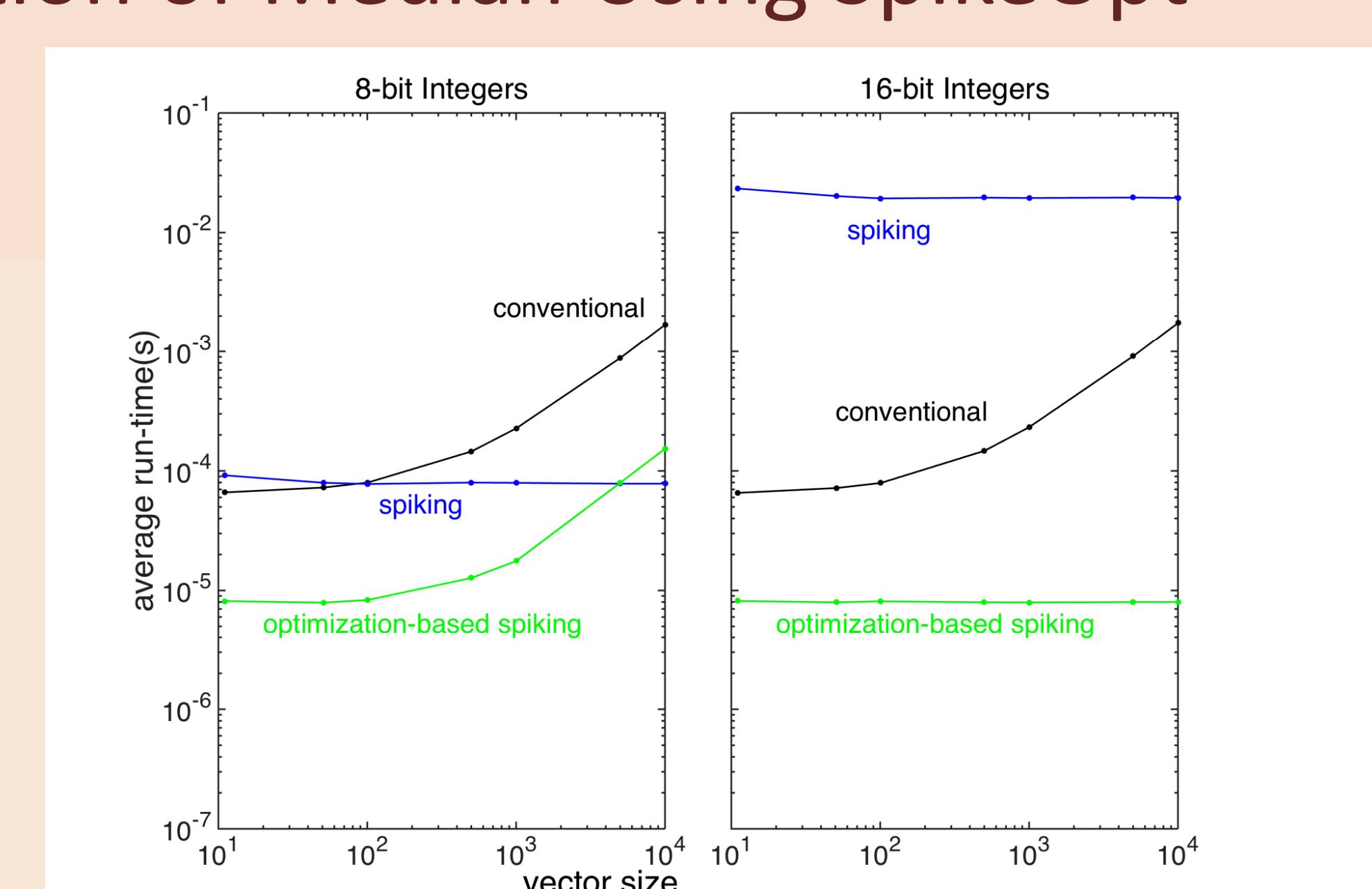
```

Comparison of Algorithms for Finding the Median

	T_P	P	cost
Akl, for $0 < x < 1$	$O(N^{1-x})$	$O(N^x)$	$O(N)$
Cole and Yap	$O((\log \log N)^2)$	$O(N)$	$O(N \log \log N)^2$
Tishkin	$O(\log \log N)$	$O(N)$	$O(N \log \log N)$
Beliakov	$O(1)$	$O(N)$	$O(N)$
SpikingMedian	$O(k)$	$O(N)$	$O(kN)$
SpikeOpt (median), worst case	$O(N/2)$	$O(N)$	$O(N^2)$
SpikeOpt (median), symmetric distribution	$O(1)$	$O(N)$	$O(N)$
SpikeOpt (median), $ X = d$, constant d	$O(1)$	$O(N)$	$O(N)$



Optimization-based Computation of Median Using SpikeOpt



Median-filtering with SpikeOpt

