
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Recent developments
in Pyomo
John D. Siirola, Carl D. Laird, Bethany L. Nicholson, Jean-Paul
Watson, William E. Hart

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

2016 AIChE Annual Meeting
15 November 2016

SAND2016-12156C

Pyomo: Python Optimization Modeling Objects

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling
Objects

NEOS

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

Siirola, et al. 2

A Quick Tour of Pyomo

Idea: a Pythonic framework for formulating optimization models

 Provides a natural syntax to describe mathematical models

 Leverages an extensible optimization object model

 Formulates large models with a concise syntax

 Separates modeling and data declarations

 Enables data import and export in commonly used formats

Highlights:

 Python provides a
clean, readable syntax

 Python scripts provide
a flexible context for
exploring the structure
of Pyomo models

from pyomo.environ import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var(bounds=(-1,1))
model.x3 = Var(bounds=(1,2))

model.obj = Objective(
expr= m.x1**2 + (m.x2*m.x3)**4 +

m.x2*sin(m.x1+m.x3) + m.x2,
sense= minimize)

Siirola, et al. 3

More than just mathematical modeling

Scripting
 Construct models using native Python data

 Iterative analysis of models leveraging Python functionality

 Data analysis and visualization of optimization results

Model transformations (a.k.a. reformulations)
 Automate generation of one model from another

 Leverage Pyomo’s object model to apply transformations sequentially

 E.g.: relax integrality, GDP -> Big M

Meta-solvers
 Integrate scripting and/or transformations into optimization solver

 Leverage power of Python to build “generic” capabilities

 E.g.: progressive hedging, SP extensive form -> MIP

4Siirola, et al.

 Institute for the Design of Advanced Energy Systems (IDAES)

 Multi-year National Lab + University collaboration

 Develop and utilize multi-scale, simulation-based computational tools and models
to support the design, analysis, optimization, scale-up and troubleshooting of
innovative, advanced fossil energy systems with carbon capture.

 Next generation modeling and optimization platform

 Flexible and open model

 Complete provenance information

 Supports advanced solvers and computer architecture

 Intrusive UQ

 Process Synthesis, Integration, and Intensification

 Process Control and Dynamics

 Built on Pyomo

 IDAES has driven 2016 core Pyomo development

Motivation

5Siirola, et al.

 Updated modeling

 Improved Connector modeling component

 Explicit unit annotation and verification

 “Template” expressions

 Support for efficiently slicing / iterating over hierarchical models

 New analysis

 Ties to ODE simulators

 New algorithm / transformation support

 Symbolic differentiation

 Acceleration strategies for Progressive Hedging

 General

 Improved installation support (pip)

 “conda” channel for getting pyomo + solvers

What are the “big” developments

Siirola, et al. 6

 Updated modeling

 Improved Connector modeling component

 Explicit unit annotation and verification

 “Template” expressions

 Support for efficiently slicing / iterating over hierarchical models

 New analysis

 Ties to ODE simulators

 New algorithm / transformation support

 Symbolic differentiation

 Acceleration strategies for Progressive Hedging

 General

 Improved installation support (pip)

 “conda” channel for getting pyomo + solvers

What are the “big” developments

Siirola, et al. 7

sodacan.py

from pyomo.environ import *

from math import pi

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0)

M.h = Var(bounds=(0,None), initialize=15.0)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= pi*M.h*M.r**2 == 355)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

A trivial “Soda Can Example”

Siirola, et al.

Problem: minimize the metal used in a soda can
minimize 2  r (r + h) # Surface Area
with  h r2 = 355 # Volume

r: radius

h: height

8

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager()

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)

M.h = Var(bounds=(0,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= pi*M.h*M.r**2 == 355)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

“Soda Can” with units

Siirola, et al. 9

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable_units_checking=True)

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)

M.h = Var(bounds=(0,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= pi*M.h*M.r**2 == 355)

um.check_units(model)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

Check the “Soda Can” units

Siirola, et al. 10

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable_units_checking=True)

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)

M.h = Var(bounds=(0,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= pi*M.h*M.r**2 == 355*um.cm**3)

um.check_units(model)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

Fix the “Soda Can” units

Siirola, et al. 11

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable_units_checking=True)

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)

M.h = Var(bounds=(0,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= pi*M.h*M.r**2 == 12*um.fluid_ounce)

um.check_units(model)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

We do not do automatic conversion

Siirola, et al. 12

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable_units_checking=True)

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)

M.h = Var(bounds=(0,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= um.convert(pi*M.h*M.r**2, um.fluid_ounce)

== 12*um.fluid_ounce)

um.check_units(model)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

…but allow explicit conversion

Siirola, et al. 13

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable_units_checking=True)

um.create_new_unit(‘can_of_coke', 'fluid_ounces', 101)

M = ConcreteModel()

M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)

M.h = Var(bounds=(0,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= um.convert(pi*M.h*M.r**2, um.can_of_coke)

== 1*um.can_of_coke)

um.check_units(model)

SolverFactory('ipopt').solve(model)

print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f'

% (value(model.r), value(model.h), value(model.surf_area)))

…and support custom units

Siirola, et al. 14

 Offset units (units without a common origin) are challenging:
 27°C + 27°C	 = 54°C	

Checking offset units is … nuanced

Siirola, et al. 15

 Offset units (units without a common origin) are challenging:
 27°C + 27°C	 = 54°C	

 Addition of two offset units does not make sense!
 “Proof”: converting terms to other units shouldn’t change truth

 300K + 300K = 600K, 600K ≠ 54°C

 Corrected: “delta units”

 27°C + 27Δ°C	 = 54°C	

 Subtraction of offset units yields delta units
 50°� − 30°� = 20Δ°C

 This does not “play well” with non-units aware model
manipulation.
 For the time being, offset units are not allowed in expressions

 But explicit conversion is OK.

Checking offset units is … nuanced

Siirola, et al. 16

 Interface to ODE integrators in Scipy for:

 Simulating systems of ODEs

 Initializing discretized dynamic optimization problems

 Verifying dynamic optimization solutions

 Demonstrated compatibility with other Pyomo
extensions like PySP for stochastic programming

 Dynamic systems under uncertainty
 Parameter estimation

 Optimal control

pyomo.dae recent developments

17

 ODE model simulation

 Model initialization

Interfacing with Scipy integrators

18

from pyomo.environ import *
from pyomo.dae import *

model = ConcreteModel()

model.t = ContinuousSet(bounds=(0.0, 10.0))

model.b = Param(initialize=0.25)
model.c = Param(initialize=5.0)

model.omega = Var(model.t)
model.theta = Var(model.t)

model.domegadt = DerivativeVar(model.omega, wrt=model.t)
model.dthetadt = DerivativeVar(model.theta, wrt=model.t)

model.omega[0] = 0.0
model.theta[0] = 3.14 – 0.1

def _diffeq1(m,t):
return m.dthetadt[t] == m.omega[t]

model.diffeq1 = Constraint(model.t, rule=_diffeq1)

def _diffeq2(m,t):
return m.domegadt[t] == -m.b*m.omega[t] \

- m.c*sin(m.theta[t])
model.diffeq2 = Constraint(model.t, rule=_diffeq2)

mysim = Simulator(model, package=‘scipy’)
mysim.simulate()

discretizer = TransformationFactory('dae.collocation')
discretizer.apply_to(model, nfe=8, ncp=5)

mysim.initialize_model()

��

��
= �

��

��
= −� ∗ � − � ∗ sin �

� 0 = � − 0.1, � 0 = 0

Interface with Scipy integrators

19

System of ODEs Pyomo Model Simulate and/or initialize optimization model

Omega initialized at
discretization points

Omega simulated
Theta simulated

Theta initialized at
discretization points

Use the same Pyomo model for
simulation and optimization!

 PySP provides a convenient framework for describing and
generating stochastic programming problems in Pyomo

 Our workhorse algorithm is Progressive Hedging
 Scenario-based decomposition

 “No” master problem

 One subproblem per scenario

 Relax nonanticipativity constraints

 Iteratively converge the stage nonanticipativity constraints

 Penalize decision variable value by weight ���

 Penalize deviation from average, �	 � − �̅ �

 Update � using �

Stochastic programming in PySP

Siirola, et al. 20

 PH avoids many of the challenges experienced by Benders
 No restriction on stage variable domains (discrete 2nd stage OK)

 “Trivially” extends to multistage problems

 No master problem, no cuts generated: no problem “bloat”

 BUT…
 Not provably convergent for the discrete case

 …although bounds exist on the quality of solution you get

 “Infeasible path” algorithm

 Discrete variable cycling

 Slow convergence due to “holdout” scenarios

 How to choose �???

PH: Benefits and open challenges

Siirola, Watson, and Woodruff 21

We will attempt to
address these
challenges

 Can we leverage ideas from each to accelerate the other?
 Related: Cross Decomposition (Lagrangean Decomposition + Benders)

 [Van Roy 1983; Holmberg, 1990; Mitra,et al. 2016]

PH + Benders: orthogonal decompositions

Siirola, Watson, and Woodruff 22

…

t = 0 t = 1 t = 0 t = 1
… …

… …

… …

… ……+ z +

t = 0 ; t = 1

LD Master problem

LD Subproblems

Benders Master problem

Benders Subproblems

�̅, ��
���,�

�
��,�

Duals,
cuts

 Challenges with naïve Cross Decomposition for PH
 No LD Master problem

 Discrete second stage variables

 PH subproblems do not provide proper Lagrangean bounds

 Except at iteration 0

Cross Decomposition for PH?

Siirola, Watson, and Woodruff 23

LD Master problem

LD Subproblems

Benders Master problem

Benders Subproblems

�̅, ��
���,�

�
��,�

Duals,
cuts

Progressive Hedging: the algorithm

Siirola, Watson, and Woodruff 24

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 Consider the Benders “feasibility” cut:
 Given �∗ computed by the RMP, if (dual) subproblem is unbounded,

add a cut determined by an extreme ray in the dual space to the RMP

 In PH, a similar operation would be fix the values of � in
subproblem �� to the values computed by subproblem ��:

min
�

��(�
�∗, �)

 If the problem is infeasible, then we can solve a separation problem
(in the primal space) to determine a valid cut in the 1st-stage variables:

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

 Notes:

 ��� is the continuous relaxation of ��  not guaranteed to generate a cut

 The resulting cut is valid for all scenario subproblems

 ∑����(�
�∗, ��∗) for initial scenario solves (� = 0) gives Lagrangian bound

Improving PH: borrowing from Benders

Siirola, Watson, and Woodruff 25

For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

PH + feasibility

Siirola, Watson, and Woodruff 26

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 2-stage stochastic network flow from [Watson & Woodruff, 2011]:
 1st stage variables:

 ��	∀		� ∈ ����;		 ��| 	�� ∈ �, 0 ≤ �� ≤ ��
�� 		 Capacity of Arc �

 ��
�	∀		� ∈ ����;			b�

� ∈ {0,1} Arc � is available

 2nd stage variables:

 ��
�	∀		� ∈ ����, � ∈ ���������;		 ��

� 	|	��
� ∈ �, 0 ≤ ��

� ≤ ��
Flow across Arc � in scenario �

 ��
� 	∀		� ∈ ����, � ∈ ���������; 			b�

� ∈ {0, ��
�} Arc � is in use for scenario �

 PH (� = 100, with “Watson-Woodruff” extensions)
 Significant cycling (no convergence after 1000 iterations)

 PH (� = 100, with WW extensions, with feasibility cuts)
 Converges in 42 iterations (objective: 164426, 2726 seconds)

 6 preliminary cut passes: raises Lagrangian LB 135085  148656

Case study: stochastic network flow

Siirola, Watson, and Woodruff 27

 2-stage unit commitment model for the electric power grid
 24-hour horizon, 1-hour commitment intervals

 Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)

 Each contingency modeled as a no-cost recourse scenario

 Line switching (opening /closing a line) in 1st and 2nd stages

 Case 1: 5 busses, 7 generators (13 scenarios):
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangean bound from 19.7 to 19.88

 12 iterations, objective = 20.11, total time 568 seconds

Case study: UC + N-1 + switching

Siirola, Watson, and Woodruff 28

 What happens if the subproblem min
�

��(�
�∗, �) is feasible?

 The 1st stage decisions are valid in this scenario

 If ��∗ is valid in ALL scenarios, then ��∗ satisfies nonanticipativity and
the expectation of the subproblems forms a valid upper bound

� � �∗, � ≤ � � ��∗, �

 If the first stage variables are all discrete

 Repeating this process for all ��∗ and identify additional
nonanticipative solutions, then the upper bound can be used to
generate optimality cuts to exclude sub-optimal solutions

 These cuts are also valid on all scenario subproblems

Improving PH: borrowing from Benders

Siirola, Watson, and Woodruff 29

For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

If ��(�
�∗, �) feasible ∀	� ∈ �:

If ∑����,� < �∗:

�∗ ≔ ∑����,�
��∗ ≔ ��∗

Generate optimality cut

Record � = ��∗ dual values

PH + feasibility + optimality cuts

Siirola, Watson, and Woodruff 30

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1): 297 iterations, 21.55 seconds: objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 31

 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1): 297 iterations, 21.55 seconds: objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

 Very sensitive to the solver!
 Gurobi 6.0.4

 PH (� = 1): 39 iterations, 1.09 seconds: objective = -108390

 PH + optimality: 154 iterations, 16.4 seconds: objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 32

 3-scenario farmer problem [Birge & Louveaux]
 Integer acreage allocations

 Cplex 12.5

 PH (� = 1): 297 iterations, 21.55 seconds: objective = -108390

 PH + optimality: 47 iterations, 8.75 seconds: objective = -108390

 Very sensitive to the strategy!

Case Studies: farmer

Siirola, Watson, and Woodruff 33

 Unit commitment under demand uncertainty
 24 hour horizon, 1-hour intervals

 Case 1: 5 busses, 7 generators, 3 load scenarios
 Optimal solution (extensive form): 348.98

 Default PH (� = 10):

 Significant cycling (no convergence after 100 iterations)

 PH (� = 10) + Optimality cuts:

 20 iterations, objective = 348.9835

Case study: Stochastic Unit Commitment

Siirola, Watson, and Woodruff 34

 How do we get “good” values of �?
 Currently: experimentation

 Challenge: � is problem dependent

 Too low and PH never converges

 Too high and PH rapidly converges to suboptimal solution

 Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]

�� ∝
��

��
��� − ��

��� + 1

 We can get good cost estimates from the subproblem duals

 When we evaluate ��(�
�∗, �), record the duals for � = ��∗

 Compute average duals weighted relative to scenario probability

Improving PH: setting �

Siirola, Watson, and Woodruff 35

 3-scenario farmer problem [Birge & Louveaux]
 Continuous acreage allocations

 PH (� = 1):

– 33 iterations, 1.06 seconds: objective = -108388.7726

 PH + � setter:

– 34 iterations, 1.34 seconds: objective = -108389.7811

 Discrete acreage allocations

 PH (� = 1):

– 39 iterations, 1.09 seconds: objective = -108390

 PH + optimality cuts:

– 154 iterations, 16.4 seconds: objective = -108390

 PH + optimality cuts + � setter:

– 40 iterations, 4.42 seconds: objective = -108390

Case Studies: farmer

Siirola, Watson, and Woodruff 36

 Recall:
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangian bound from 19.7 to 19.88

 12 iterations, objective = 20.11, total time 568 seconds

 Now:
 PH + Feasibility cuts + � setter

 20 iterations, objective = 19.9808, total time 494 seconds

Case studies: UC + N-1 analysis

Siirola, Watson, and Woodruff 37

For each ��∗:
For each subproblem ��:

Solve 	o�,� = min
�

��(�
�∗, �)

If not feasible:
Solve separation problem

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

Generate feasibility cut

If ��(�
�∗, �) feasible ∀	� ∈ �:

If ∑����,� < �∗:

�∗ ≔ ∑����,�
��∗ ≔ ��∗

Generate optimality cut

Record � = ��∗ dual values
Update �

PH + feasibility + optimality cuts+ �

Siirola, Watson, and Woodruff 38

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

 Project homepage
 http://www.pyomo.org

 https://github.com/Pyomo/pyomo

 Mailing lists

 “pyomo-forum” Google Group

 “pyomo-developers” Google Group

 “The Book”
 Second edition going to press in O(days)

 Mathematical Programming Computation paper:
 Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

For more information…

Siirola, et al. 39

 Portions of this work were supported by
 The Institute for the Design of Advanced Energy Systems (IDAES) with

funding from the Office of Fossil Energy, Cross-Cutting Research, U.S.
Department of Energy

 The U.S. Department of Energy Office of Science Advanced Scientific
Computing Research program

 The Sandia National Laboratories’ Laboratory Directed Research &
Development (LDRD) Program

Acknowledgements

Siirola, et al. 40

