Sandia
National
Laboratories

Exceptional

service
in the
national

interest

-\, U.S. DEPARTMENT OF ',' ,C\(}; ..A:
(o’ENERGY dNIS# #CCR

SAND2016-12156C

Recent developments
iIn Pyomo

John D. Siirola, Carl D. Laird, Bethany L. Nicholson, Jean-Paul
Watson, William E. Hart

Discrete Math & Optimization (1464) S

Center for Computing Research 7 : I :)AES
Sandia National Laboratories @ Z

Albuquerque, NM USA

2016 AIChE Annual Meeting
15 November 2016) e,

Laboratories

Carnegie Mellon

WestVirginiaUniversity

inis Center for Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Pyomo: Python Optimization Modeling Objects i

-

Q.
)" PYOMO

Sandia
National _
Laboratories

Meta-Solvers
* Generalized Benders
* Progressive Hedging
* Linear bilevel
* Linear MPEC

"

Modeling Extensions

* Disjunctive programming
Stochastic programming
Bilevel programming
Differential equations
Equilibrium constraints

\ CPLEX
Solver Interfaces Gurobi
Xpress
Core Optimization .
Objects CBC
BARON
Core Modeling OpenOpt
Objects e
AMPL Solver Library
Model | Ipopt
Transformations N KNITRO
— Bonmin
/] Couenne

)
.:'-! CCR
o
o
15
Center for Computing Research

Siirola, et al. 2

A Quick Tour of Pyomo ‘V‘PYOMO) .

Idea: a Pythonic framework for formulating optimization models
= Provides a natural syntax to describe mathematical models
= Leverages an extensible optimization object model
= Formulates large models with a concise syntax
= Separates modeling and data declarations
= Enables data import and export in commonly used formats

Highlights: from pyomo.environ import *
gniig
= Python provides a model = ConcreteModel()
clean, readable syntax model.x1 = Var()
| Python Scripts provide model.x2 = Var‘(bounds=(-1,1))
a flexible context for focel = prbonEds (1 2))
exploring the structure model.obj = Objective(
of Pvomo models expr= m.x1**2 + (m.x2*m.x3)**4 +
y m.x2*sin(m.x1+m.x3) + m.x2,
sense= minimize)

o?
.'5'-
Center for Computing Research

Siirola, et al. 3

More than just mathematical modeling @iz

Scripting
= Construct models using native Python data
= |terative analysis of models leveraging Python functionality
= Data analysis and visualization of optimization results

Model transformations (a.k.a. reformulations)
= Automate generation of one model from another
= Leverage Pyomo’s object model to apply transformations sequentially
= E.g.:relax integrality, GDP -> Big M

Meta-solvers
" |ntegrate scripting and/or transformations into optimization solver
= Leverage power of Python to build “generic” capabilities
= E.g.: progressive hedging, SP extensive form -> MIP

o?
.'i'-
Center for Computing Research

Siirola, et al. 4

IVI Ot i Va t i O n '11 IluaaEE?rE%ries

= |nstitute for the Design of Advanced Energy Systems (IDAES)

= Multi-year National Lab + University collaboration

= Develop and utilize multi-scale, simulation-based computational tools and models
to support the design, analysis, optimization, scale-up and troubleshooting of
innovative, advanced fossil energy systems with carbon capture.

= Next generation modeling and optimization platform

= Flexible and open model
= Complete provenance information -
= Supports advanced solvers and computer architecture ‘é

= Intrusive UQ

= Process Synthesis, Integration, and Intensification

= Process Control and Dynamics

= Built on Pyomo

= |IDAES has driven 2016 core Pyomo development

— i Sandia .
N=TL rm .'.}| @ Natioral Carnegie Mellon

Laboratories - WestVirginiaUniversity

Siirola, et al.)

What are the “big” developments) .

Updated modeling
= Improved Connector modeling component
= Explicit unit annotation and verification
= “Template” expressions
= Support for efficiently slicing / iterating over hierarchical models

New analysis
= Ties to ODE simulators

New algorithm / transformation support
= Symbolic differentiation
= Acceleration strategies for Progressive Hedging

General
= |mproved installation support (pip)
= “conda” channel for getting pyomo + solvers

21 R
o ‘ ‘

5
Center for Computing Research

Siirola, et al. 6

What are the “big” developments)

Updated modeling
= Improved Connector modeling component
= Explicit unit annotation and verification
= “Template” expressions
= Support for efficiently slicing / iterating over hierarchical models

New analysis
= Ties to ODE simulators

New algorithm / transformation support
= Symbolic differentiation
= Acceleration strategies for Progressive Hedging

General
= |mproved installation support (pip)
= “conda” channel for getting pyomo + solvers

#CCR
i

®5%

Center for Computing Research

Siirola, et al. 7

Ill

A trivial “Soda Can Example”)iz

Problem: minimize the metal used in a soda can m
minimize 2xr(r+h) # Surface Area
with nhr2=355 # Volume

sodacan.py

~ h: height

from pyomo.environ import *

from math import pi

M = ConcreteModel() Joe7
M.r = Var(bounds=(0@,None), initialize=5.0) -
M.h = Var(bounds=(0@,None), initialize=15.0) 33

M.surf area = Objective(expr= 2*pi*M.r*(M.r + M.h)) w
M.volume = Constraint(expr= pi*M.h*M.r**2 == 355)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %@.2f\nheight: %0.2f\narea: %0.2f"’
% (value(model.r), value(model.h), value(model.surf_area)))

“CCR
Center for Computing Research
Siirola, et al. 8

“Soda Can” with units =

sodacan.py

from pyomo.environ import *
from math import pi

um = UnitsManager()

M = ConcreteModel()
M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)
M.h = Var(bounds=(0@,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))
M.volume = Constraint(expr= pi*M.h*M.r**2 == 355)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %@.2f\nheight: %0.2f\narea: %0.2f'
% (value(model.r), value(model.h), value(model.surf_area)))

o?
o
®5%
Center for Computing Research

Siirola, et al. 9

Check the “Soda Can” units rh) pes

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable units_checking=True)

M = ConcreteModel()
M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)
M.h = Var(bounds=(0®,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))
M.volume = Constraint(expr= pi*M.h*M.r**2 == 355)

um.check units(model)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %@.2f\nheight: %0.2f\narea: %0.2f"’
% (value(model.r), value(model.h), value(model.surf_area)))

o?
o
®5%
Center for Computing Research

Siirola, et al. 10

Fix the “Soda Can” units) e

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable units checking=True)

M = ConcreteModel()
M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)
M.h = Var(bounds=(0®,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))
M.volume = Constraint(expr= pi*M.h*M.r**2 == 355*%um.cm**3)

um.check _units(model)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %@.2f\nheight: %0.2f\narea: %0.2f"’
% (value(model.r), value(model.h), value(model.surf_area)))

#CCR
i

®5%

Center for Computing Research

Siirola, et al. 11

We do not do automatic conversion h) i

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable units checking=True)

M = ConcreteModel()
M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)
M.h = Var(bounds=(0®,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))
M.volume = Constraint(expr= pi*M.h*M.r**2 == 12*um.fluid_ounce)

um.check _units(model)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %@.2f\nheight: %0.2f\narea: %0.2f"’
% (value(model.r), value(model.h), value(model.surf_area)))

#CCR
i

®5%

Center for Computing Research

Siirola, et al. 12

..but allow explicit conversion) ..

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable units checking=True)

M = ConcreteModel()
M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)
M.h = Var(bounds=(0®,None), initialize=15.0, units=um.cm)

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= um.convert(pi*M.h*M.r**2, um.fluid ounce)
== 12%*um.fluid ounce)

um.check _units(model)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %@.2f\nheight: %0.2f\narea: %0.2f"’
% (value(model.r), value(model.h), value(model.surf_area)))

#CCR
i

®5%

Center for Computing Research

Siirola, et al. 13

...and support custom units) e,

sodacan.py

from pyomo.environ import *

from math import pi

um = UnitsManager(enable units checking=True)
um.create_new unit(‘can_of coke', 'fluid ounces', 101)

M
M.r = Var(bounds=(0,None), initialize=5.0, units=um.cm)
M.h = Var(bounds=(@,None), initialize=15.0, units=um.cm)

ConcreteModel()

M.surf_area = Objective(expr= 2*pi*M.r*(M.r + M.h))

M.volume = Constraint(expr= um.convert(pi*M.h*M.r**2, um.can_of coke)
== 1*um.can_of coke)

um.check _units(model)

SolverFactory('ipopt').solve(model)
print('-- optimal solution --\nradius: %0.2f\nheight: %0.2f\narea: %0.2f"’
iiﬁﬂgﬁg % (value(model.r), value(model.h), value(model.surf _area)))

Siirola, et al. 14

Checking offset units is ... nuanced) ..

= Offset units (units without a common origin) are challenging:
= 27°C+ 27°C = 54°C

o?
o
*3%
Center for Computing Research

Siirola, et al. 15

Checking offset units is ... nuanced) e,

= Offset units (units without a common origin) are challenging:
= 27°C+ 27°C = 54°C
= Addition of two offset units does not make sense!

= “Proof”: converting terms to other units shouldn’t change truth
= 300K+ 300K = 600K, 600K # 54°C

= Corrected: “delta units”
= 27°C 4 27A°C = 54°C
= Subtraction of offset units yields delta units
= 50°C — 30°C = 20A°C

= This does not “play well” with non-units aware model
manipulation.

= For the time being, offset units are not allowed in expressions
° [| 11 1 1
"‘CCR But explicit conversion is OK.

Siirola, et al. 16

Sandia

pyomo . dae recent developments) o,

" |nterface to ODE integrators in Scipy for:
= Simulating systems of ODEs
= |nitializing discretized dynamic optimization problems
= Verifying dynamic optimization solutions

= Demonstrated compatibility with other Pyomo
extensions like PySP for stochastic programming

= Dynamic systems under uncertainty
= Parameter estimation

= Optimal control

o?
o
®5%
Center for Computing Research

Interfacing with Scipy integrators

do
dt

Frie b*w—cx*sinf

0(0) =m—0.1, w(0)=0

= ODE model simul

mysim = Simulator', package=‘scipy”’)

mysim.simulate()

= Model initialization

Sandia
|I1 National

Laboratories

from pyomo.environ import *
from pyomo.dae import *

model = ConcreteModel()

model.t = ContinuousSet(bounds=(0.0, 10.0))

model.b
model.c

Param(initialize=0.25)
Param(initialize=5.0)

model.omega
model.theta

Var(model.t)
Var(model.t)

model.domegadt
model.dthetadt

DerivativeVar(model.omega, wrt=model.t)
DerivativeVar(model.theta, wrt=model.t)

0.0
3.14 - 0.1

model.omega[0]
model.theta[9]

def _diffeql(m,t):
return m.dthetadt[t] == m.omega[t]
model.diffeql = Constraint(model.t, rule=_diffeql)

def _diffeq2(m,t):
return m.domegadt[t] == -m.b*m.omega[t] \
- m.c*sin(m.theta[t])
model.diffeq2 = Constraint(model.t, rule=_diffeq2)

discretizer = TransformationFactory('dae.collocation')

discretizer.apply to(model, nfe=8, ncp=5)

mysim.initialize model()

#CCR

Center for Computing Research

National

Interface with Scipy integrators) .

System of ODEs Pyomo Model Simulate and/or initialize optimization model
R * ODE model simulation
ﬁz @ n.t = Continaousset(bounde=(9.9, 10.0)) mysim = Simulator(m, package=‘scipy’)

dt = = oara :; :t: 1z T:;:;J mysim. simulate()
dw n.or)
—=-bh+w—cx*sinf it Varo.8)

dt " z:x**zﬂ ey = Model initialization
megal]

rt=m.t)
6(0)=m—01, w(0)=0 discretizer = TransformationFactory('dae.collocation')

e J— discretizer.apply_to(m, nfe=8, ncp=5)

[
o thets a[e

d:i‘g:“ P '%‘ t:'ilm) :‘;:}:l ! mysim.initialize model()
3- — Omega simulated
, | — Theta simulated
] o Omega initialized at
0 discretization points
-1 4
° Theta initialized at
=27 discretization points
_3 ~
N Use the same Pyomo model for

' - - - . Simulation and optimization!

0 2 4 6 8

Stochastic programming in PySP)

= PySP provides a convenient framework for describing and
generating stochastic programming problems in Pyomo

= Qur workhorse algorithm is Progressive Hedging

= Scenario-based decomposition
= “No” master problem
= One subproblem per scenario
= Relax nonanticipativity constraints

= |teratively converge the stage nonanticipativity constraints
= Penalize decision variable value by weight w’ x
= Penalize deviation from average, p ||x — x||?
" Update w using p

o?
o
®5%
Center for Computing Research

Siirola, et al. 20

PH: Benefits and open challenges) .

= PH avoids many of the challenges experienced by Benders
= No restriction on stage variable domains (discrete 2" stage OK)
= “Trivially” extends to multistage problems
= No master problem, no cuts generated: no problem “bloat”

= BUT..

= Not provably convergent for the discrete case
= ...although bounds exist on the quality of solution you get
\

= “Infeasible path” algorithm

= Discrete variable cycling We will attempt to
> address these

. n “hol o nari
Slow convergence due to “holdout” scenarios challenges

" How to choose p???

o?
o
®5%
Center for Computing Research

Siirola, Watson, and Woodruff pA |

PH + Benders: orthogonal decompositions & &z

o

©+z + ©

o

t=0 ; t

1 > >

= Can we leverage ideas from each to accelerate the other?

= Related: Cross Decomposition (Lagrangean Decomposition + Benders)
= [Van Roy 1983; Holmberg, 1990; Mitra,et al. 2016]

Benders Master problem < LD Master problem -1
7 N I O > A I
Duals, e beo 1y
Cuts : ——_—2 ~~~~~~~~~~~ : x’ y 1
A A B,s ZLD,s TT===o_ 1 i
1
Benders Subproblems > LD Subproblems <=
#CCR

Siirola, Watson, and Woodruff 22

Cross Decomposition for PH?)

= Challenges with naive Cross Decomposition for PH
= No LD Master problem
= Discrete second stage variables

= PH subproblems do not provide proper Lagrangean bounds
= Except at iteration O

A
]
J

A l T A

1 I A~ A7

i 1 X,y
cuts 1 ZB,s ZiD,s I

Benders Subproblems > LD Subproblems

e ——
N

A

#CCR
i

®5%

Center for Computing Research

Siirola, Watson, and Woodruff 23

Progressive Hedging: the algorithm

Start

21 R
o ‘ ‘

5
Center for Computing Research

Solve individual
scenario subproblems

x™,y* = argmin f;(x, y)
X,y

Initialize w

Siirola, Watson, and Woodruff

Wy = p(x — X)

x converged?

No

Fix x that have converged
lx — x| <e?

v

Sandia
National
Laboratories

Solve individual
weighted scenario subproblems

x¥, y* = argmin f;(x,y) + wTx + g lx — x||?

Xy

|

Update w

w=w+p(x —X)

24

Improving PH: borrowing from Benders @ E:.

= Consider the Benders “feasibility” cut:

= Given x* computed by the RMP, if (dual) subproblem is unbounded,
add a cut determined by an extreme ray in the dual space to the RMP

= |n PH, a similar operation would be fix the values of x in
subproblem f; to the values computed by subproblem f;:
min f;(x"*, y)
Yy
= |f the problem is infeasible, then we can solve a separation problem

(in the primal space) to determine a valid cut in the 15t-stage variables:
2

min||x — x*

X,y

s.t. fi(x,y)
= Notes:

m f] is the continuous relaxation of f; = not guaranteed to generate a cut
= The resulting cut is valid for all scenario subproblems
"CCR = Yp;fi(x", y**) for initial scenario solves (w = 0) gives Lagrangian bound

Siirola, Watson, and Woodruff 25

PH + feasibility

Solve individual
Start 5| scenario subproblems

x™,y* = argmin f;(x, y)
X,y

For each x!*:
For each subproblem f;: <

Solve o;; = myinfj(xi*,y)

If not feasible:
Solve separation problem

min||x — x%* 2
x’y

s.t. f] (x,y)
Generate feasibility cut

Initialize w
Wy = p(X — X)

x converged?

Fix x that have converged

lx — x| <€e?

v

Sandia
National
Laboratories

Solve individual
weighted scenario subproblems

x¥, y* = argmin f;(x,y) + wTx +

p
2

lx — %I

Xy

o?
.'i'-
Center for Computing Research

w=w+p(x —X)

Update w

Siirola, Watson, and Woodruff

26

Case study: stochastic network flow) e,

= 2-stage stochastic network flow from [Watson & Woodruff, 2011]:

= 1ststage variables:
“ x,V a € Arcs; {x;| x4€ R,0 <x, <xYB} capacityofArca
= bV a € Arcs; bl € {0,1} Arc a is available
= 2ndstage variables:
= Y5V a € Arcs, s € Scenarios; {y5 |y €R,0<y5 <x,}

Flow across Arc a in scenario s

= b3V a€ Arcs,s € Scenarios; bj € {0,b;} Arcaisin use for scenario s

= PH(p = 100, with “Watson-Woodruff” extensions)

= Significant cycling (no convergence after 1000 iterations)

= PH(p = 100, with WW extensions, with feasibility cuts)
= Converges in 42 iterations (objective: 164426, 2726 seconds)

= 6 preliminary cut passes: raises Lagrangian LB 135085 - 148656
#CCR

Siirola, Watson, and Woodruff 27

Case study: UC + N-1 + switching) S

= 2-stage unit commitment model for the electric power grid
= 24-hour horizon, 1-hour commitment intervals

= Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)
= Each contingency modeled as a no-cost recourse scenario
= Line switching (opening /closing a line) in 15t and 2" stages

= Case 1: 5 busses, 7 generators (13 scenarios):

= Optimal solution (extensive form): 19.9756
= Default PH (p = 1):
= 17 iterations, objective = 22.9997, total time 123 seconds
"= PH (p = 1) + Feasibility cuts:
= 3 feasibility cut iterations at PH iteration O
— Improved Lagrangean bound from 19.7 to 19.88

= 12 iterations, objective = 20.11, total time 568 seconds

o?
.'i'-
Center for Computing Research

Siirola, Watson, and Woodruff 28

Improving PH: borrowing from Benders @ E:.

= What happens if the subproblem min f; (x/*, y) is feasible?
y

= The 15t stage decisions are valid in this scenario

= |f xJ* is valid in ALL scenarios, then x’* satisfies nonanticipativity and
the expectation of the subproblems forms a valid upper bound

E[f (", »] < E[f(x%,y)]

= |f the first stage variables are all discrete

= Repeating this process for all x'* and identify additional
nonanticipative solutions, then the upper bound can be used to
generate optimality cuts to exclude sub-optimal solutions

= These cuts are also valid on all scenario subproblems

o?
.'i'-
Center for Computing Research

Siirola, Watson, and Woodruff 29

PH + feasibility + optimality cuts

Solve individual
Start 5| scenario subproblems

xi*’yi* = argminfi(x; y)
X,y

Initialize w

v ¢

For each x'*:
For each subproblem f;:

Solve o;; = myin fi(x™, y)

If not feasible:
Solve separation problem

min||x — x%* 2
Xy

s.t. f] (x,y)
Generate feasibility cut

Wy = p(x — X)

x converged?

Fix x that have converged
lx — x| <€e?

v

Sandia
National _
Laboratories

If ;(x"*,y) feasible V j € S:
If ijoj,i <o*:
0" = Yp;0;;

%

X = x"

Solve individual
weighted scenario subproblems

x™,y™* = argmin f;(x,y) + wlx + P

X,y 2

lx — %I

Generate optimality cut
Record x = x'* dual values

o,

(]
KXy
L) Y Y) {
Center for Computing Research

.
.
7

v

Update w

w=w+p(x —X)

Siirola, Watson, and Woodruff

30

Case Studies: farmer) e,

= 3-scenario farmer problem [Birge & Louveaux]

= |nteger acreage allocations

= Cplex12.5
= PH(p = 1): 297 iterations, 21.55 seconds: objective =-108390
" PH + optimality: 47 iterations, 8.75 seconds: objective =-108390

o?
o
®5%
Center for Computing Research

Siirola, Watson, and Woodruff 31

Case Studies: farmer) e,

= 3-scenario farmer problem [Birge & Louveaux]

= |nteger acreage allocations

= Cplex12.5
= PH(p =1): 297 iterations, 21.55 seconds: objective =-108390
" PH + optimality: 47 iterations, 8.75 seconds: objective =-108390

= Very sensitive to the solver!

= Gurobi 6.0.4
= PH(p = 1): 39 iterations, 1.09 seconds: objective =-108390
" PH + optimality: 154 iterations, 16.4 seconds: objective =-108390

21 R
o ‘ ‘

5
Center for Computing Research

Siirola, Watson, and Woodruff 32

Sandia
m National
Laboratories

Case Studies: farmer

= 3-scenario farmer problem [Birge & Louveaux]
= |nteger acreage allocations

= Cplex12.5
= PH(p = 1): 297 iterations, 21.55 seconds: objective =-108390

" PH + optimality: 47 iterations, 8.75 seconds: objective =-108390

= Very sensitive to the strategy!
35 180

—e—Run time (s) —=—PH Iterations 160
140
120
100
80
60
40
20

Number of PH Iterations

0 2 4 6 8 10 12 14 16 18 20
"“CCR Optimality cut frequency

Siirola, Watson, and Woodruff 33

Case study: Stochastic Unit Commitment

= Unit commitment under demand uncertainty

= 24 hour horizon, 1-hour intervals

= Case 1: 5 busses, 7 generators, 3 load scenarios

= Optimal solution (extensive form): 348.98

= Default PH (p = 10):
= Significant cycling (no convergence after 100 iterations)

= PH(p = 10) + Optimality cuts:
= 20 iterations, objective = 348.9835

21 R
o ‘ ‘

5
Center for Computing Research

Sandia
National _
Laboratories

Siirola, Watson, and Woodruff

34

Improving PH: setting p) .

= How do we get “good” values of p?
= Currently: experimentation

= Challenge: p is problem dependent
" Too low and PH never converges
* Too high and PH rapidly converges to suboptimal solution
= Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]
C;

x[M — xM + 1|

pl-OC|

= We can get good cost estimates from the subproblem duals

= When we evaluate fj(xi*,y), record the duals for x = x**

= Compute average duals weighted relative to scenario probability

o?
o
®5%
Center for Computing Research

Siirola, Watson, and Woodruff 35

Case Studies: farmer

= 3-scenario farmer problem [Birge & Louveaux]

= Continuous acreage allocations
= PH(p = 1):
— 33 iterations, 1.06 seconds: objective =-108388.7726

" PH + p setter:
— 34 iterations, 1.34 seconds: objective =-108389.7811

= Discrete acreage allocations
= PH(p = 1):
— 39 iterations, 1.09 seconds: objective =-108390
" PH + optimality cuts:
— 154 iterations, 16.4 seconds: objective =-108390
" PH + optimality cuts + p setter:
— 40 iterations, 4.42 seconds: objective =-108390

21 R
o ‘ ‘

5
Center for Computing Research

Sandia
National _
Laboratories

Siirola, Watson, and Woodruff

36

Case studies: UC + N-1 analysis) .

= Recall:

= Optimal solution (extensive form): 19.9756
= Default PH (p = 1):
= 17 iterations, objective = 22.9997, total time 123 seconds
= PH (p = 1) + Feasibility cuts:
= 3 feasibility cut iterations at PH iteration O
— Improved Lagrangian bound from 19.7 to 19.88

= 12 iterations, objective = 20.11, total time 568 seconds

= Now:

" PH + Feasibility cuts + p setter
= 20 iterations, objective = 19.9808, total time 494 seconds

21 R
o ‘ ‘

5
Center for Computing Research

Siirola, Watson, and Woodruff 37

PH + feasibility + optimality cuts+ p

Solve individual
Start 5| scenario subproblems

xi*’yi* = argminfi(x; y)
X,y

v ¢

For each x'*:
For each subproblem f;:

Solve o;; = myin fi(x™, y)

If not feasible:
Solve separation problem

min||x — x%* 2
Xy

s.t. f] (x,y)

Initialize w
Wy = p(x — X)

x converged?

Fix x that have converged

lx — x| <€e?

v

Sandia
National _
Laboratories

Generate feasibility cut

If ;(x"*,y) feasible V j € S:
If ijoj,i <o*:
0" = Yp;0;;

%

X = x"

Solve individual
weighted scenario subproblems

x¥, y* = argmin f;(x,y) + wTx +

X,y

p
2

lx — %I

Generate optimality cut
Record x = x'* dual values
Update p

o,

(]
KXy
L) Y Y) {
Center for Computing Research

.
.
7

v

w=w+p(x —X)

Update w

Siirola, Watson, and Woodruff

38

For more information...

" Project homepage
= http://www.pyomo.org
= https://github.com/Pyomo/pyomo

= Mailing lists

= “pyomo-forum” Google Group

11

= “pyomo-developers’ Google Group

* “The Book” I)

= Second edition going to press in O(days)

= Mathematical Programming Computation paper:

William E. Hart
Carl Laird

Jean-Paul Watson
David L. Woodruff

Pyomo —
Optimization
Modeling
in Python

_@ Springer

= Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

o?
o
*3%
Center for Computing Research

Sandia
National
Laboratories

Siirola, et al.

39

Acknowledgements) i,

= Portions of this work were supported by

= The Institute for the Design of Advanced Energy Systems (IDAES) with
funding from the Office of Fossil Energy, Cross-Cutting Research, U.S.
Department of Energy

= The U.S. Department of Energy Office of Science Advanced Scientific
Computing Research program

= The Sandia National Laboratories’ Laboratory Directed Research &
Development (LDRD) Program

21 R
o ‘ ‘

5
Center for Computing Research

Siirola, et al. 40

