
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Hypervisor Assisted Forensics and
Incident Response in the Cloud

William M.S. Stout
Vincent E. Urias, Caleb Loverro, John W. Young

SAND2016-12078C

Overview

 Introduction

 Background

 Challenges with Cloud Forensics and IR

 Methodology and Approach

 Experiment Results

 Conclusions

2

INTRODUCTION

3

Introduction

 Cloud is becoming pervasive

 Security/Privacy still not understood

 Traditional Forensics and IR must change to fit
the paradigm

 Difficulties arise with:

 Ephemerality

 Attribution

 Geo-political

4

BACKGROUND

5

Background

 The Cloud Computing service models:

 Software, Platform, Infrastructure

6

Background

 Digital Forensics foundations:
1. Identification of an incident from its source(s) and determine its

type.

2. Acquisition of evidence from various sources.

3. Preservation of the state of evidential data.

4. Analysis of evidential data, reconstructing fragments and drawing
conclusions.

5. Reporting of results and conclusions about the evidence

 IR Lifecycle foundations:
 IR: preparation, detection/analysis, containment, eradication and

recovery.

 Incident management includes responding to an incident (cyber),
vulnerability and artifact handling, and other related services

7

FORENSICS/IR CHALLENGES

8

Cloud Forensic Challenges

 Challenges revolve around:

 Modified threat surface and response
responsibility

 Multitenancy

 Virtual/temporary infrastructure

 VM Migration / VM Location

 Elasticity (data)

 Forensically “sound” images

9

Cloud Forensic Challenges

1. Architecture: diversity, complexity, provenance, multitenancy, data
segregation.

2. Data collection: data integrity, data recovery, data location, imaging.

3. Analysis: correlation, reconstruction, time sync, logs, metadata,
timelines.

4. Anti-forensics: obfuscation, data hiding, malware.

5. Incident first responders: trustworthiness of cloud providers, response
time, reconstruction.

6. Role management: data owners, identity management, users, access
control.

7. Legal: jurisdiction, laws, SLA, contracts, subpoenas, international
cooperation, privacy, ethics.

8. Standards: operating procedures, interoperability, testing, validation.

9. Training: forensic investigators, cloud providers, qualification, certification

10

METHODOLOGY & APPROACH

11

Methodology and Approach

 Virtualized in the cloud hypervisor becomes an increasingly
appropriate place to collect: performance data, system state,
system landscape, function calls, transaction traces, and other
characteristics.

 Propose a method by which an introspection application may
be coupled with a hypervisor to “reach into” the VM with
minimal intrusiveness to collect data critical to the
reconstruction of events, files, and operations.

 Agentless Virtual Machine Introspection (VMI) coupled with
network flow/DPI information  KVMi.

12

KVMi: Existing APIs

Ring
0/3

Ring
0/3

VM

VMI

KVM SVM/
Dom0
SVM/
Dom0

VM

VMI

VMWare
Xen

VM

KVM+VMI

 Why not use existing APIs?

 APIs do exist for hypervisors like
KVM, Xen, VMWare..

 All have varying levels of usefulness

 One main reason, levels of
indirection

 Understandably, hypervisor
writers don’t want to give you that
much access

 Why? Issues in the VMI tool can
crash the whole system

KVMi: Initial Idea

 Write a Linux kernel module that hooks the VM-exit handler
of KVM, to gain complete control over guests before KVM
even knows they have exited
 VMs run until something causes them to VM-exit which passes control

to the hypervisor and allows it to view and/or modify their state

 At a low level, the most control you can possibly have is
 Getting hypervisor-level execution during every VM-exit

 Reading or writing any VM state you would like

 Modifying the hypervisor configuration/state (to enable or disable
hardware virtualization features, or force future exits with various
tricks, for example)

 Hooking the exit handler lets you *be* the hypervisor, which
gives you all of this

KVMi: Implementation

 Don’t need to patch KVM, no dependencies (other than the
Linux kernel).. Why not be loadable/unloadable on demand?

 Desired build process
 Drop code (c, assembly) on a Linux box, run make, then “insmod

kvmi.ko”

 No other setup (VMs detected at runtime, etc)

 Allows for use in the largest number of scenarios

 “Live forensics” on already running VMs

 Unknown number and/or types of VMs

 No pre-configuration done

KVMi: Implementation Decisions

 OS agnostic vs. OS specific VMI
 Chose specific, much more interest in Windows, can do a lot more

with OS specific VMI

 Need some Windows knowledge and/or RE work

 Symbols vs. No-Symbols
 Chose No-Symbols, Why?

 Fits better with our implementation model, no symbols needed means
no prior configuration steps are necessary, downloading and tracking
symbols for Windows versions, etc.

 Harder but don’t want to rely on Microsoft not removing certain symbols
in the future (they have done it before)

 If a VM has patched more recently than your last symbol update you may
be in trouble

KVMi: Focus on Speed, Efficiency

 KVMi provides interfaces for input and output to
processes or users running on the host machine

 Character devices for both input/output

 SysFs (current work)

 Important details

 Do as little as possible during VM-exits

 No ring switching, no blocking

 Copy or otherwise store the data and offload the I/O work
so VMs can resume quickly

KVMi: High-Level Abilities

 Gather process information – user, command line, PE image

 DLLs loaded in the process, (or drivers in the system process)

 Exported functions from each DLL/driver/EXE (free symbols)

 Hooks (running in-line with modification ability) on arbitrary functions (by
address or export name) and syscalls

 File access reconstruction, socket info, crypto-key dumps, etc.

 Single stepping

 Several methods, most not possible without the ability to modify hypervisor
configuration

 Run arbitrary functions in VMs

 Save VM state, redirect execution, collect results, restore state

 Age guests

 Locate system-wide timestamps of interest, change them

18

Guest and Network Data Fusion

KVMi coupled with
Network Level DPI: L7
Classification and metadata
extraction for HTTP
(request, servers, URIs,
MIME types), DNS (hosts,
queries, servers), SMTP
(mailfrom, header),
Kerberos (login, server),
LDAP (hostname).

19

EXPERIMENT RESULTS

20

Experiment Set Up

 Experiments based on three use-cases:

1. VM as a Platform for Attackers

2. VM as an Exploited Endpoint

3. Using Cloud as a Relay

21

Experiment 1

 VM as a Platform for Attackers
 Method: Download files to the guest through a web interface, and

then saved them to disk. Time ticks were counted during each of the
downloads for differences between baseline (that is, without KVMi
extracting the file) and with the KVMi sysfs functionality enabled.

 Results: KVMi kernel module is attached to the KVM hypervisor; its
existence is not visible from inside the guest. The only indicator of
visibility from inside the guest might be through timing analysis. For
the experiment of concurrently downloading a pdf file with 1, 10 and
25 VMs on a host, the time in millions of CPU ticks for the download
are show in the box plots below. Each download was run 30 times on
each VM instance.

22

Experiment 1

23

Experiment 2

 VM as an Exploited Endpoint
 A user on a VM would visit a ``malicious'' website, that would then exploit a

browser vulnerability, providing the attacker privileged control of the virtual
machine. At this time, the attack would then pivot to other machines in the
network, using metasploit to gain passwords.

 This particular experiment makes use of KVMi to introspect on guest VMs, and
network forensic tools (as described above) to correlate guest data to
network data. The results of the experiment largely focus on log data to
navigate the attack in realtime and identify the actions done on the target
VM. By logging the cloud compute host, virtual machine name/ID, and IP
addresses, the VM in multitenancy can be quickly identified. KVMi includes
data pulled form Windows APIs, with parameters. The collection of guess and
network data address the semantic-gap problem of pulling context from the
guest to the host.

24

Experiment 2

25

 To start the chain of events, an
administrator logs into the Vulnerable
Workstation and adds an
Administrative share using his Domain
Administrator credentials. He then
visits a phishing website hosted on the
attackers machine (“attack.com”).

 The Attacker compromises the
machine using a Silverlight Exploit
through a XAP file and runs a bind
meterpreter on port 2222

 The Attacker then starts a new process
notepad.exe and migrates to the
process so when the user closes
iexplore.exe they don't close the
meterpreter session.

Experiment 2

26

 The Attacker then uploads a binary and
executes it. The binary is seen here, and also
dumped to from the guest for further
inspection.

 The Attacker then downloads a file located on
the compromised machine’s desktop to the
attacker machine, we see this process started
by a walk of the directory tree

Experiment 2

27

• The Attacker runs hashdump and loads
mimikatz to collect passwords. As
information is transferred back to the
attacker machine, high entropy URIs are
seen in the DPI log over a meterpreter
bound port 2222.

• Using the credentials and pivot, the
attacker uses psexec to login to the domain
controller; collects passwords and hashes.
Exfiltration communication from the AD to
the Attacker over port 3333.

Experiment 3

 Using Cloud as a Relay
 Several connections from the VM are made, combining

both normal applications and malicious applications (as
denoted by the experimenters).

 Using the KVMi sockets monitoring feature, the VM
making connections and the endpoints (IPs) to which
connections are made can be identified. What's novel is
the binding of the network connection to the requesting
application. The VM (host process id 0xC27) can be seen
making connections to IP .33 over port 80, with the
process iexplorer.exe (Internet Explorer).

28

Experiment 3

29

CONCLUSIONS

30

Conclusions

 Several challenges arise when conducting
digital forensics and incident response in the
Cloud.

 Discussed: challenges, current shortcomings,
and proposed a unique approach and tools to
meet those challenges.

 VMI and Network Layer Data Fusion

31

Future Work

 Extending KVMi for other platforms and various operating
systems;

 Furthering KVMi's capability to make on-the-fly modifications
to guest execution, such targeted encryption key extraction,
or making certain suspicious actions trigger enhanced
introspection;

 Further decouple KVMi from KVM, in both its memory
accessing ability, and general execution. We are also in
discussion with commercial hypervisor companies to extend
the KVMi capability to their hypervisors.

 Extending KVMi for general cloud security requirements.

32

Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Questions/Comments

Hypervisor Assisted Forensics and

Incident Response in the Cloud

William M.S. Stout

33

