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The problem ) s,

= Aim: Develop a predictive k- RANS model for transonic jet-
in-crossflow (JinC) simulations

= Drawback: RANS simulations are simply not predictive
= They have “model-form” error i.e., missing physics

= The numerical constants/parameters in the k-€¢ model are usually
derived from canonical flows

= Hypothesis

= One can calibrate RANS to jet-in-crossflow experiments; thereafter
the residual error is mostly model-form error

= Due to model-form error and limited experimental measurements,
the parameter estimates will be approximate

= We will estimate parameters as probability density functions (PDF)

= We then address the model-form error with an enriched eddy

viscosity model for the missing physics
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The equations ) i,

= The model

= Devising a method to calibrate k-€ parameters from expt. data
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= Sources of errors

= Parameters {C,, C,} are obtained from canonical flows

= C,is deemed constant throughout the flowfield

= Linear stress-strain rate relationship t; =-2/3k §; + p; S;
= Called a linear eddy viscosity model (LEVM)



Target problem - jet-in-crossflow @

= A canonical problem for spin- ///\s 2ﬂ270 5
rocket maneuvering, fuel-air a A streamuiss e
mixing etc. PR | N

= We have experimental data (PIV \\» -
measurements) on the cross- and
mid-plane \ E

= Will calibrate to vorticity on the uls
crossplane and test against mid- e
plane o
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RANS (k-m) simulations - crossplane results

= Crossplane results for stream

Sandia
National _
Laboratories

= Computational results (SST) are too round; Kw98 doesn’t have

the mushroom shape; non-symmetric!
= Less intense regions; boundary layer too weak
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RANS (k-m) simulations — midplane @&,
results

i | I LI il il L

U-defect | V - velocity
= Experimental results in black

= All models are pretty inaccurate (blue and red lines are the non-
symmetric results)
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Reducing errors ) e,

" Model-form errors

= The linear turbulent stress — strain rate relationship (LEVM) can be
enriched with quadratic and cubic terms (QEVM / CEVM)

" Includes terms with vorticity and cross terms with vorticity and strain rate
= However the high-order models have parameters in them
= What are the appropriate values for those parameters?

= Parametric uncertainty

= (C,, C;) can be estimated (somewhat) from experimental data

= But because of model-form errors and limited experimental data, these
cannot be estimated with much certainty

= We'll use Bayesian inversion and estimate them as PDFs
= Quantifies uncertainty in the estimate of the parameters

= Calibration process

= |dentify which of the CEVM parameters can actually be estimated
from experimental data

= Then calibrate those along with (C,, C,); call the fullset C={(:, C,, C,)
7




Calibration details )

=  Aims of the calibration
= Calibratetoa M =0.8, J=10.2 interaction

= Learn the form of the high-order eddy viscosity model by fitting to
turbulent stresses measurements on the mid-plane

= Calibrate to crossplane data; check by matching the midplane velocity
profiles

= Technical challenges

= Computational cost of 3D JinC RANS simulation
= Replace 3D RANS with a surrogate model i.e., model crossplane
streamwise vorticity ®®ANS) (y) = f(y; C), f(:; C) is a curve-fit
= Surrogate model = emulators
= Arbitrary combinations of C may be nonphysical
" How to build emulators when C are nonsensical?

= What functional form to use for f(:; C)?




High-order eddy-viscosity model @

= Craft 95 describes a cubic eddy viscosity (CEVM) model
" 1;=-2/3k &; + C F(Sy, €) + ¢, (S, €y, €) + ¢,F5(Sy, €2y,€) e C5F4(Syyr €y
" F(S;) islinearin S, f,(:, 3, :) - f5(:, 1, ) are quadratic in S; & Q.
= f,(:,::)—1f(: :, 1) are cubicin S; & €;

= QOur experimental data, on the midplane, consists of:

= §; & );obtained from the measured velocity field

g)

" T1;and k, also measured

= ¢ (dissipation rate of turbulent KE) cannot be measured

= |t is approximated by assuming equilibrium of production and dissipation
of turbulent KE.

= Craft’s model prescribes {c, ... c;}
= Parameter value obtained from a simple, incompressible turning flow

= May not be valid for transonic JinC interaction
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Estimation of CEVM parameters ) .

= The 180 measurements that we have may not have info that
informs ¢, ... ¢,

= Cast the estimation problem as

| min [ - Ac], +2|c], |

= The first half estimates x = {c;} that provide CEVM predictions near Y
= The second half — the A penalty — tries to set as many ¢, to zero
= Called Shrinkage Regression
= The penalty A is the lynchpin
= |fitis too small, we get over-fitting (too many c; survive)
= The best way to get A is via k-fold cross-validation

= The method for solving the optimization problem is LASSO 10




k-fold cross-validation ) i,

= Divide the 180 measurements into 8 “folds” (equal subsets)

= Pick a value of AL
= Pick fold # 1 as the testing set, folds 2-8 as the learning set

= Solve the optimization problem (solve for c¢) using Y constructed from
the learning set

= Predict the data in the testing set
= Repeat with folds #2, #3 ... as the testing sets
= QObtain the mean error and error bars for A’

= Ultimately you get error as a function of A

= Pick the A with min error

= For higher values of A, expect to see lots of ¢, becoming zero

= And predictive errors becoming large

= Nomenclature: The norm of difference (Y(°bs)— Ac) is called
the ‘deviance’ 1




LASSO results )
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Looking for a good A
= Craft explains around 28% of deviance
= Aslog(A) increases and # of terms retained decreases, CEVM worsens
= Onegets A ,and A

1se
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Tabulate coefficients and MSE

Craft -0.1 01 | 026 | -10 0 5 5 | 0.662
Dernin -0.065 | -0.103 | 1.68 | -4.02 | 5.7 54 | -3.64 | 0.386
Mereo 0.0 0.0 |0455| 0.0 0 0 0 | 0483
LM -0.0789 | -0.149 | 2.02 | -5.88 0 6.68 | -11.87 | 0.382
" In(A,) =-5.11, In(h.,) = -1.75

= Craft’s default parameters are changed when we regress it to data
= Results called ‘LM’

= When we LASSO the model using A, we're left with just 1 quadratic
term

= But the model loses much accuracy

= Let’s choose A,.
= Provides a simple model, and keeps the Q? term




Calibration of {c,, C,, C,} ) 5.

= We will calibrate C = (c;, C,, C,)
= QOur model really has a quadratic eddy viscosity model (QEVM)
= Approach:

= Data: Use vorticity measurements on crossplane to estimate C
= Useful measurements available at 225 locations (“probes”)

= Estimation procedure: Bayesian calibration using MCMC

= Model: Use surrogate models (emulators) of the RANS simulator
= Set of 1275 runs in the parameter space C to make the training data
= |dentify a physically realistic space R, use SVMs to model R
= Make emulators ®(C) = f(c,, C,, C,) with polynomials; valid in R
= Use MCMC to create the posterior PDF of C

= Checking results
= Draw 100 samples from the posterior PDF

= Develop an ensemble of predictions of vorticity and velocity; compare
against measurements
14




The Bayesian calibration problem @

« Model experimental values at probe j as wl),, = @W)(C) + £0), g0) ~

N(0, ?)
D — D)
A<wg>c>ocnem[_<°°ex - <C>>}

2
je? 26

 Given prior beliefs = on C, the posterior density (‘the PDF’) is

P(C,o |o)x A |Co)n(C,C,C)m ()

ex €.

* P(C|w,,) is a complicated distribution that has to be
described/visualized by drawing samples from it
* This is done by MCMC

— MCMC describes a random walk in the parameter space to identify
good parameter combination

— Each step of the walk requires a model run to check out the new
parameter combination




Making emulators - 1 ) e,

" Training data
= Sample the parameter space C = {c;, C,, C;}; bounds are known
= Run RANS models at ~1500 samples; save vorticity on cross-plane

= Select the top 25% of the training runs
= Call this subspace of R
= Keeps us out of non-physical parts of the parameter space C

= Making emulators in R

= Model vorticity at probe j ol as a polynomial in C
o =a,+a,c,+a,C,+a,C +a,c,C,+a,c,C+a,C,C +...

= Simplify using AIC; cross validated using repeated random sub-
sampling (100 rounds)

= RMSE in Learning & Testing sets should be equal

= Accept all surrogate models that have < 10% error y




Making emulators - 2

= Emulators with 10%
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accuracy could only be

made for 55 / 224 E
probes )
= 90 with large vorticity ©
(circles) S
= 55 with emulators (+) E -
= Also, the emulators § :
are only applicable in |
the 'R section of the 3 i
parameter space C S
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Making the informative prior ).

=  Qur emulators are valid only inside R
in the parameter space C

Runs in the top 25th percentile

= During the optimization (MCMC) we

have to reject parameter -
combinations outside ‘R (this is our 5 c
prior belief ;. (C)) 7 I RS
= We define (C) =1, for Cin R and {(C) gl .o *f+:++*‘*+}+;*¢++f .
= -1 for C outside R g oo Lo e[ e
. 5 ..+ ¢+ﬁ++++*}+:t++#:£$$:+#i
= Then the level set {(C) =0 is the ° g T #i e e e
boundary of R i A f,%t AT aia
2 ': ++¢*+ o4 +++¢3'++“"“'t R +++++ 21
. . LA R :+ ";+"+1?+ :.:.++ ©
= The training set of RANS runs is used of AR T
to populate C(C) . | | :+++ ¥ :+++ :++++ ¥ 4 +17 1.8
“ »” . .. . T006 007 008 009 010 011 012
= We have to “learn” the discriminating ..
function {(C) =0
= We do that using support vector
machine (SVM) classifiers
18




What is a SVM classifier? ) i

= Given a binary functiony =f(x) as a
set of points (y, x;), y,= (0, 1)

= Find the hyperplane y + Ax = 0 that
separates the x-spaceintoy=0andy =
1 parts

= Posed as an optimization problem
that maximizes the margin ,

A
/ X
28 1

7/

= |n case of a curved
discriminator, need a
transformation first

= Achieved using kernels

= \We use a cubic kernel
19




PDFs

About 60,000 MCMC steps
to convergence

Calibrated values of C
quite different from the
ones from
(incompressible) literature

(C,, C,) are also present in
linear eddy viscosity
models (LEVM)
= C, differs significantly
between LEVM / QEVM
= QEVM is more accurate
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QEVM point vortex metrics ) .

Jet-in-crossflow predictions for M = 0.8 and J = 10.2 Jet-in-crossflow predictions for M = 0.8 and J = 10.2
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= QEVM worse than LEVM, for sure
= Circles are LEVM nominal predictions
= CAUTION: Preliminary results from 1/8/2016




QEVM PPT predictions on midplane

QEVM about
as good as
LEVM

CAUTION:
Prelim

results from
1/8/2016
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Conclusions

=  We are beginning to “fix-up” engineering models with observational data
= Includes both estimating model parameters and enriching closure models
(inferring missing physics in models)
= Methods are Bayesian; fully probabilistic inference (of parameters, at least)

= Accommodates uncertainty in estimates due to limited data and shortcomings of
the RANS model (model-form error)

= We can tackle rather complicated problems using Bayesian inference
= Computational costs are immense, but only for generating training data
= Brittle — we depend on emulators, which can’t always be made
= (Can tackle peculiarities of non-physical parameter spaces using informative
priors (classifiers)
=  Tools and theories: A mixture of statistics and machine learning
= Bayesian inference, emulators, shrinkage are conventionally statistical
= (Classifiers etc. are purely ML
= As we scale up and confront large data (simulated flowfields etc.) to infer

model-form error, expect MapReduce implementations of these tools
23
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24




What is MCMC? ) i

= A way of sampling from an arbitrary distribution

= The samples, if histogrammed, recover the distribution

= Efficient and adaptive

= Given a starting point (1 sample), the MCMC chain will sequentially
find the peaks and valleys in the distribution and sample
proportionally

= Ergodic

= Guaranteed that samples will be taken from the entire range of the
distribution

= Drawback

= Generating each sample requires one to evaluate the expression for
the density &

= Not a good idea if winvolves evaluating a computationally expensive
model



An example, using MCMC ) S

= Given: (Y°bs, X), a bunch of n observations

= Believed:y=ax+b
= Model: y°b=ax + b, +¢, £~ N0, )

=  We also know a range where a, b and ¢ might lie

i.e. we will use uniform distributions as prior beliefs for a, b, o

= For a given value of (a, b, ), compute “error” g =y.°* — (ax. + b.)

Probability of the set (a, b, o) = T exp( - &2/c?)

= Solution: w(a, b, o | Y, X) =11 exp( - &2/c?) * (bunch of uniform priors)

= Solution method:

Sample from t (a, b, o | Y°P, X ) using MCMC; save them

Generate a “3D histogram” from the samples to determine which region in
the (a, b, o) space gives best fit

Histogram values of a, b and o, to get individual PDFs for them
Estimation of model parameters, with confidence intervals!



MCMC, pictorially ) .

" Choose a starting point, P" =

(acurri I:)curr) “
“good” values of (a, b)
= Propose a new a, Qprop \ : j
May,, o) N
curr’ ~a b %( '

\ 4

urr

with probability min(1, m) /XK i
= Repeat with b , X

= Evaluatemt (a,.p beyr | -+) / s == -
Y
T (Acyer Beyer | ) =m I
. < ...............................
| Accept aprop (l.e' ac <- aprop) Proposal distribution

. : . o
Loop over till you have >
enough samples X




