
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-2429C

Using LASSO to infer a high-order eddy viscosity model for k-
RANS simulation of transonic flows

S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant

(jairay@sandia.gov)

SAND2016-abcd

SAND2016-4661C

The problem

 Aim: Develop a predictive k- RANS model for transonic jet-
in-crossflow (JinC) simulations

 Drawback: RANS simulations are simply not predictive
 They have “model-form” error i.e., missing physics

 The numerical constants/parameters in the k- model are usually
derived from canonical flows

 Hypothesis
 One can calibrate RANS to jet-in-crossflow experiments; thereafter

the residual error is mostly model-form error

 Due to model-form error and limited experimental measurements,
the parameter estimates will be approximate

 We will estimate parameters as probability density functions (PDF)

 We then address the model-form error with an enriched eddy
viscosity model for the missing physics

2

The equations

 The model
 Devising a method to calibrate k- parameters from expt. data

 Sources of errors
 Parameters {C2, C1 are obtained from canonical flows

 C is deemed constant throughout the flowfield

 Linear stress-strain rate relationship ij = -2/3k ij + T Sij

 Called a linear eddy viscosity model (LEVM)
3

k

t



xi

uik   
T

 k










k

xi









 Pk    Sk



t




xi

ui   
T

 












xi













k
C1 f1Pk C2 f2  S

T C f
k2



Target problem - jet-in-crossflow

 A canonical problem for spin-
rocket maneuvering, fuel-air
mixing etc.

 We have experimental data (PIV
measurements) on the cross- and
mid-plane

 Will calibrate to vorticity on the
crossplane and test against mid-
plane

4
−0.06−0.04−0.0200.020.040.06

0

0.05

0.1

Z (m)

Y
(m

)

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

RANS (k-) simulations - crossplane results

 Crossplane results for stream

 Computational results (SST) are too round; Kw98 doesn’t have
the mushroom shape; non-symmetric!

 Less intense regions; boundary layer too weak
5

RANS (k-) simulations – midplane
results

 Experimental results in black

 All models are pretty inaccurate (blue and red lines are the non-
symmetric results)

U-defect V - velocity

Reducing errors
 Model-form errors

 The linear turbulent stress – strain rate relationship (LEVM) can be
enriched with quadratic and cubic terms (QEVM / CEVM)
 Includes terms with vorticity and cross terms with vorticity and strain rate

 However the high-order models have parameters in them
 What are the appropriate values for those parameters?

 Parametric uncertainty
 (C2, C1) can be estimated (somewhat) from experimental data

 But because of model-form errors and limited experimental data, these
cannot be estimated with much certainty

 We’ll use Bayesian inversion and estimate them as PDFs
 Quantifies uncertainty in the estimate of the parameters

 Calibration process
 Identify which of the CEVM parameters can actually be estimated

from experimental data

 Then calibrate those along with (C2, C1); call the full set C = (:, C2, C1)
7

Calibration details

 Aims of the calibration
 Calibrate to a M = 0.8, J = 10.2 interaction

 Learn the form of the high-order eddy viscosity model by fitting to
turbulent stresses measurements on the mid-plane

 Calibrate to crossplane data; check by matching the midplane velocity
profiles

 Technical challenges
 Computational cost of 3D JinC RANS simulation

 Replace 3D RANS with a surrogate model i.e., model crossplane
streamwise vorticity RANS

x(y) = f(y; C), f(:; C) is a curve-fit

 Surrogate model = emulators

 Arbitrary combinations of C may be nonphysical

 How to build emulators when C are nonsensical?

 What functional form to use for f(:; C)?

High-order eddy-viscosity model

 Craft 95 describes a cubic eddy viscosity (CEVM) model
 ij = -2/3k ij + CF(Sij, ) + c1f1(Sij, ij, ) + c2f2(Sij, ij,) ….. c7f7(Sij, ij, )

 F(Sij) is linear in Sij, f1(:, :, :) - f3(:, :, :) are quadratic in Sij & ij

 f4(:, :, :) – f7(:, :, :) are cubic in Sij & ij

 Our experimental data, on the midplane, consists of:
 Sij & ij obtained from the measured velocity field

 ij and k, also measured

  (dissipation rate of turbulent KE) cannot be measured

 It is approximated by assuming equilibrium of production and dissipation
of turbulent KE.

 Craft’s model prescribes {c1 … c7}
 Parameter value obtained from a simple, incompressible turning flow

 May not be valid for transonic JinC interaction

9

Estimation of CEVM parameters

 The 180 measurements that we have may not have info that
informs c1 … c7

 Cast the estimation problem as

 The first half estimates x = {ci} that provide CEVM predictions near Y

 The second half – the  penalty – tries to set as many ci to zero

 Called Shrinkage Regression

 The penalty  is the lynchpin
 If it is too small, we get over-fitting (too many ci survive)

 The best way to get  is via k-fold cross-validation

 The method for solving the optimization problem is LASSO 10

min
x

Y  Ac
2

2
 c

1

k-fold cross-validation

 Divide the 180 measurements into 8 “folds” (equal subsets)

 Pick a value of �
 Pick fold # 1 as the testing set, folds 2-8 as the learning set

 Solve the optimization problem (solve for c) using Y constructed from
the learning set

 Predict the data in the testing set

 Repeat with folds #2, #3 … as the testing sets

 Obtain the mean error and error bars for ’

 Ultimately you get error as a function of 
 Pick the with min error

 For higher values of , expect to see lots of ci becoming zero
 And predictive errors becoming large

 Nomenclature: The norm of difference (Y(obs) – Ac) is called
the ‘deviance’ 11

LASSO results

 Craft explains around 28% of deviance
 As log() increases and # of terms retained decreases, CEVM worsens
 One gets min and 1se

Looking for a good 

log() log()

R
e

la
ti

v
e

 D
e

v
ia

n
c

e

N
o

.
o

f
c

o
e

ff
ic

ie
n

ts

log()
M

e
a

n
-S

q
u

a
re

d
 E

rr
o

r

Tabulate coefficients and MSE

Method c1 c2 c3 c4 c5 c6 c7 MSE

Craft -0.1 0.1 0.26 -10 0 -5 5 0.662

min -0.065 -0.103 1.68 -4.02 5.7 5.4 -3.64 0.386

1se 0.0 0.0 0.455 0.0 0 0 0 0.483

LM -0.0789 -0.149 2.02 -5.88 0 6.68 -11.87 0.382

 ln(min) = -5.11, ln(1se) = -1.75

 Craft’s default parameters are changed when we regress it to data

 Results called ‘LM’

 When we LASSO the model using 1se, we’re left with just 1 quadratic
term

 But the model loses much accuracy

 Let’s choose 1se.
 Provides a simple model, and keeps the 2 term

Calibration of {c3, C2, C1}

 We will calibrate C = (c3, C2, C1)
 Our model really has a quadratic eddy viscosity model (QEVM)

 Approach:
 Data: Use vorticity measurements on crossplane to estimate C

 Useful measurements available at 225 locations (“probes”)

 Estimation procedure: Bayesian calibration using MCMC

 Model: Use surrogate models (emulators) of the RANS simulator

 Set of 1275 runs in the parameter space C to make the training data

 Identify a physically realistic space R, use SVMs to model R

 Make emulators (C) = f(c3, C2, C1) with polynomials; valid in R

 Use MCMC to create the posterior PDF of C

 Checking results

 Draw 100 samples from the posterior PDF

 Develop an ensemble of predictions of vorticity and velocity; compare
against measurements

14

The Bayesian calibration problem

• Model experimental values at probe j as (j)
ex = (j)(C) + (j), (j) ~

N(0, 2)

• Given prior beliefs  on C, the posterior density (‘the PDF’) is

• P(C|ex) is a complicated distribution that has to be

described/visualized by drawing samples from it

• This is done by MCMC

– MCMC describes a random walk in the parameter space to identify

good parameter combination

– Each step of the walk requires a model run to check out the new

parameter combination

 ex
(j) | C  exp 

ex
(j)  (j)(C) 

2

2 2















jP



P(C, |ex
(j))(ex

(j) | C,)  (C,C2,C1)  ()

Making emulators - 1

 Training data
 Sample the parameter space C = {c3, C2, C1}; bounds are known

 Run RANS models at ~1500 samples; save vorticity on cross-plane

 Select the top 25% of the training runs

 Call this subspace of R

 Keeps us out of non-physical parts of the parameter space C

 Making emulators in R

 Model vorticity at probe j (j) as a polynomial in C

 Simplify using AIC; cross validated using repeated random sub-
sampling (100 rounds)

 RMSE in Learning & Testing sets should be equal

 Accept all surrogate models that have < 10% error
16

 (j)  a0  a1c3  a2C2  a3C1  a4c3C2  a5c3C1  a6C2C1 .....

Making emulators - 2

 Emulators with 10%
accuracy could only be
made for 55 / 224
probes
 90 with large vorticity

(circles)

 55 with emulators (+)

 Also, the emulators
are only applicable in
the R section of the
parameter space C

Making the informative prior

 Our emulators are valid only inside R
in the parameter space C

 During the optimization (MCMC) we
have to reject parameter
combinations outside R (this is our

prior belief prior(C))

 We define (C) = 1, for C in R and (C)
= -1 for C outside R

 Then the level set (C) = 0 is the
boundary of R

 The training set of RANS runs is used
to populate (C)

 We have to “learn” the discriminating
function (C) = 0

 We do that using support vector
machine (SVM) classifiers

18

Runs in the top 25th percentile

0.06 0.07 0.08 0.09 0.10 0.11 0.12

1
.2

0
1
.2

5
1
.3

0
1
.3

5
1
.4

0
1
.4

5
1
.5

0
1
.5

5

1.7

1.8

1.9

2.0

2.1

C

C
2

C
1

What is a SVM classifier?

 Given a binary function y = f(x) as a
set of points (yi, xi), yi = (0, 1)
 Find the hyperplane y + Ax = 0 that

separates the x-space into y = 0 and y =
1 parts

 Posed as an optimization problem
that maximizes the margin

19

 In case of a curved
discriminator, need a
transformation first
 Achieved using kernels

 We use a cubic kernel

PDFs

 About 60,000 MCMC steps
to convergence

 Calibrated values of C
quite different from the
ones from
(incompressible) literature

 (C2, C1) are also present in
linear eddy viscosity
models (LEVM)

 C2 differs significantly
between LEVM / QEVM

 QEVM is more accurate
()

QEVM point vortex metrics

 QEVM worse than LEVM, for sure

 Circles are LEVM nominal predictions

 CAUTION: Preliminary results from 1/8/2016

LEVM QEVM

QEVM PPT predictions on midplane

 QEVM about
as good as
LEVM

 CAUTION:
Prelim
results from
1/8/2016

Conclusions
 We are beginning to “fix-up” engineering models with observational data

 Includes both estimating model parameters and enriching closure models
(inferring missing physics in models)

 Methods are Bayesian; fully probabilistic inference (of parameters, at least)

 Accommodates uncertainty in estimates due to limited data and shortcomings of
the RANS model (model-form error)

 We can tackle rather complicated problems using Bayesian inference

 Computational costs are immense, but only for generating training data

 Brittle – we depend on emulators, which can’t always be made

 Can tackle peculiarities of non-physical parameter spaces using informative
priors (classifiers)

 Tools and theories: A mixture of statistics and machine learning

 Bayesian inference, emulators, shrinkage are conventionally statistical

 Classifiers etc. are purely ML

 As we scale up and confront large data (simulated flowfields etc.) to infer
model-form error, expect MapReduce implementations of these tools

23

BONEYARD

24

What is MCMC?

 A way of sampling from an arbitrary distribution
 The samples, if histogrammed, recover the distribution

 Efficient and adaptive
 Given a starting point (1 sample), the MCMC chain will sequentially

find the peaks and valleys in the distribution and sample
proportionally

 Ergodic
 Guaranteed that samples will be taken from the entire range of the

distribution

 Drawback
 Generating each sample requires one to evaluate the expression for

the density 

 Not a good idea if  involves evaluating a computationally expensive
model

An example, using MCMC
 Given: (Yobs, X), a bunch of n observations

 Believed: y = ax + b

 Model: yi
obs = axi + bi + i,  ~ N(0, )

 We also know a range where a, b and  might lie

 i.e. we will use uniform distributions as prior beliefs for a, b, 

 For a given value of (a, b, ), compute “error” i = yi
obs – (axi + bi)

 Probability of the set (a, b, ) =  exp(- i
2/2)

 Solution:  (a, b,  | Yobs, X) =  exp(- i
2/2) * (bunch of uniform priors)

 Solution method:

 Sample from  (a, b,  | Yobs, X) using MCMC; save them

 Generate a “3D histogram” from the samples to determine which region in
the (a, b, ) space gives best fit

 Histogram values of a, b and , to get individual PDFs for them

 Estimation of model parameters, with confidence intervals!

MCMC, pictorially

 Choose a starting point, Pn =
(acurr, bcurr)

 Propose a new a, aprop ~
N(acurr, a)

 Evaluate  (aprop, bcurr | ...) /
 (acurr, bcurr | …) = m

 Accept aprop (i.e. acurr <- aprop)
with probability min(1, m)

 Repeat with b

 Loop over till you have
enough samples

a

a

b

b

a

Proposal distribution

“good” values of (a, b)

