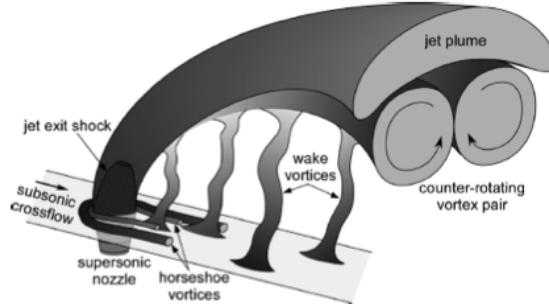
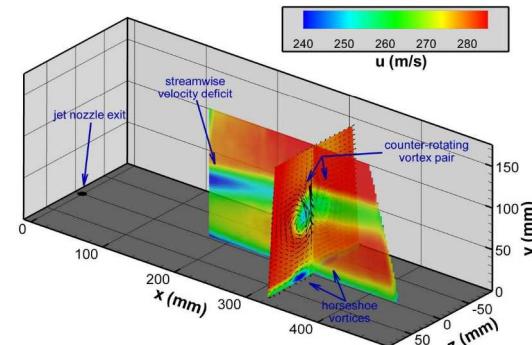


Exceptional service in the national interest



Using LASSO to infer a high-order eddy viscosity model for $k-\varepsilon$ RANS simulation of transonic flows

S. Lefantzi, **J. Ray**, S. Arunajatesan and L. Dechant

[\(jairay@sandia.gov\)](mailto:(jairay@sandia.gov))

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-2429C

The problem

- **Aim:** Develop a predictive $k-\varepsilon$ RANS model for transonic jet-in-crossflow (JinC) simulations
- **Drawback:** RANS simulations are simply not predictive
 - They have “model-form” error i.e., missing physics
 - The numerical constants/parameters in the $k-\varepsilon$ model are usually derived from canonical flows
- **Hypothesis**
 - One can calibrate RANS to jet-in-crossflow experiments; thereafter the residual error is mostly model-form error
 - Due to model-form error and limited experimental measurements, the parameter estimates will be approximate
 - We will estimate parameters as probability density functions (PDF)
 - We then address the model-form error with an enriched eddy viscosity model for the missing physics

The equations

- The model
 - Devising a method to calibrate k - ε parameters from expt. data

$$\frac{\partial \rho k}{\partial t} + \frac{\partial}{\partial x_i} \left[\rho u_i k - \left(\mu + \frac{\mu_T}{\sigma_k} \right) \frac{\partial k}{\partial x_i} \right] = P_k - \rho \varepsilon + S_k$$

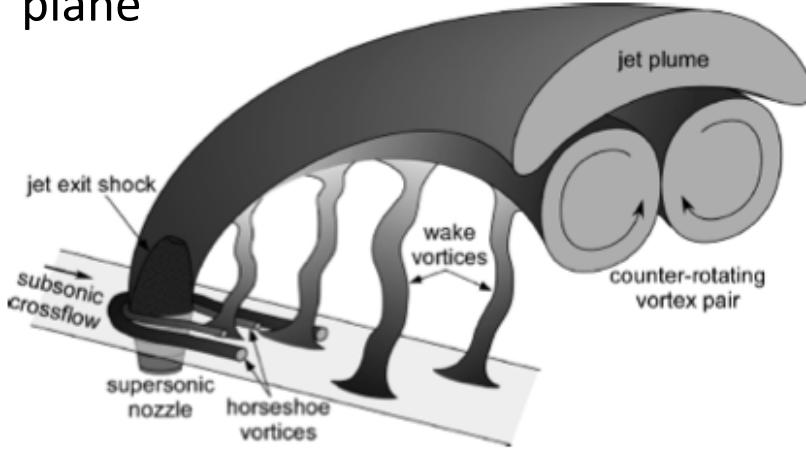
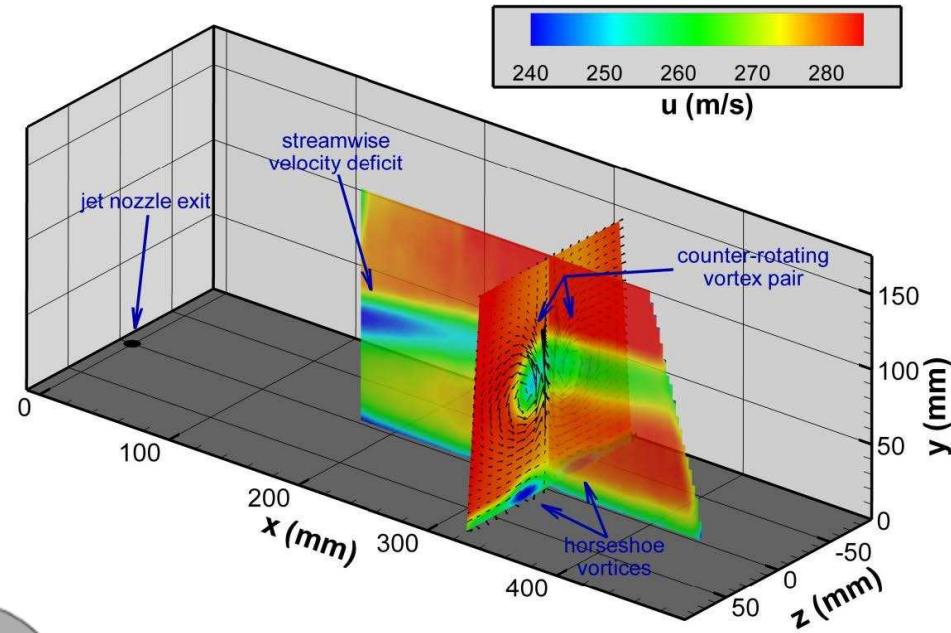
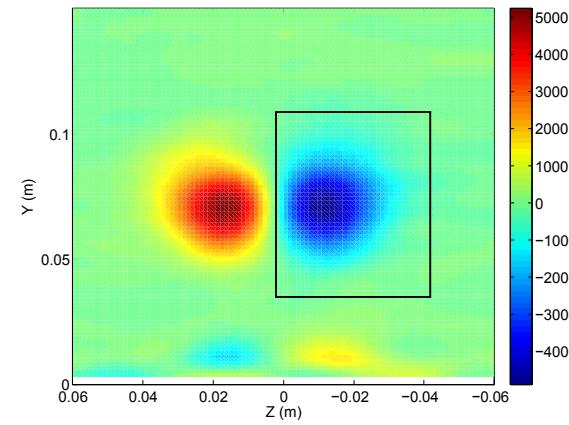
$$\frac{\partial \rho \varepsilon}{\partial t} + \frac{\partial}{\partial x_i} \left[\rho u_i \varepsilon - \left(\mu + \frac{\mu_T}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} \right] = \frac{\varepsilon}{k} (C_1 f_1 P_k - C_2 f_2 \rho \varepsilon) + S_\varepsilon$$

$$\mu_T = C_\mu f_\mu \rho \frac{k^2}{\varepsilon}$$

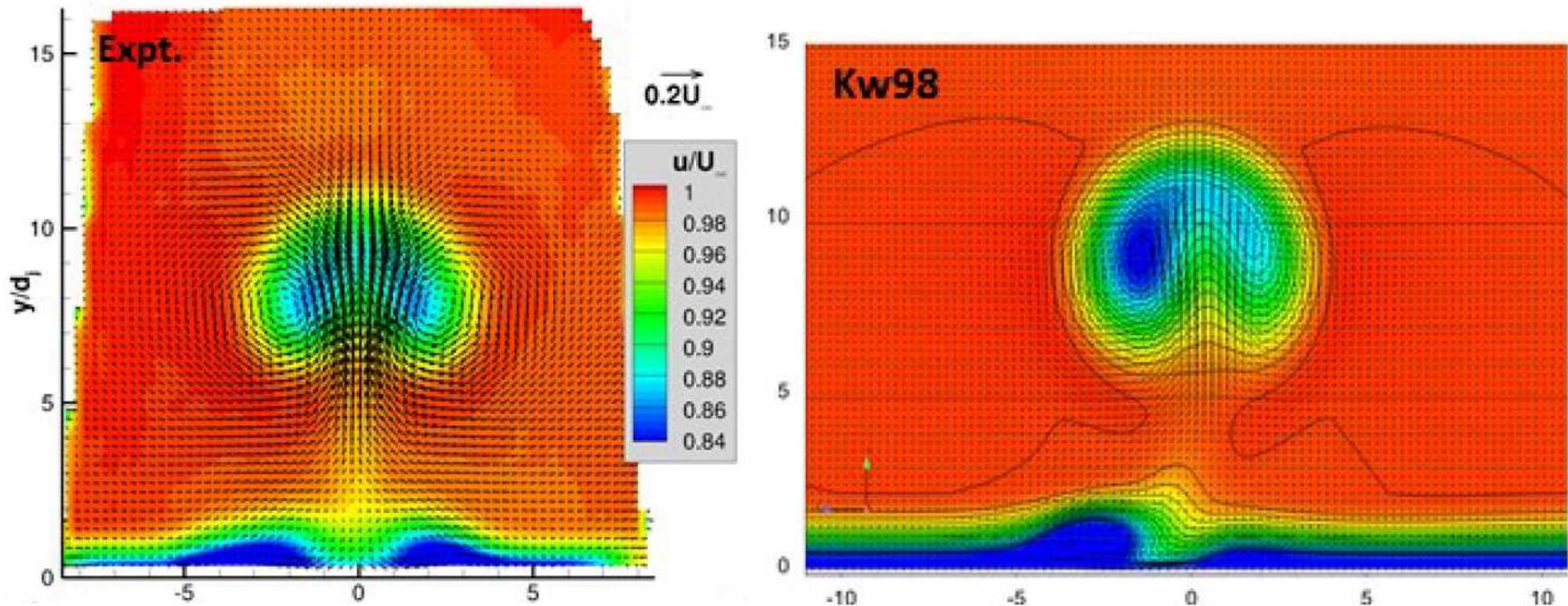
- Sources of errors
 - Parameters $\{C_2, C_1\}$ are obtained from canonical flows
 - C_μ is deemed constant throughout the flowfield
 - Linear stress-strain rate relationship $\tau_{ij} = -2/3k \delta_{ij} + \mu_T S_{ij}$
 - Called a linear eddy viscosity model (LEVM)

Target problem - jet-in-crossflow

- A canonical problem for spin-rocket maneuvering, fuel-air mixing etc.
- We have experimental data (PIV measurements) on the cross- and mid-plane
- Will calibrate to vorticity on the crossplane and test against mid-plane

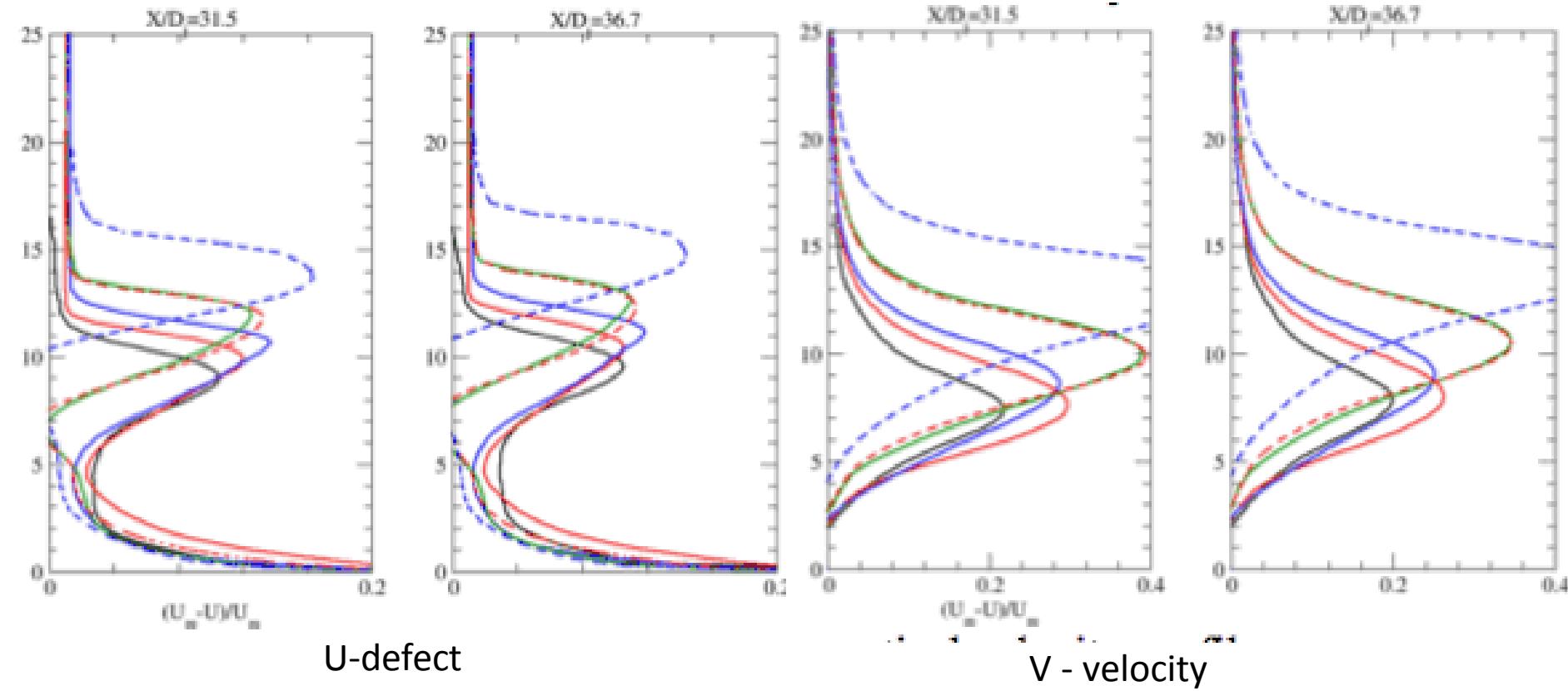


RANS ($k-\omega$) simulations - crossplane results



- Crossplane results for stream
- Computational results (SST) are too round; Kw98 doesn't have the mushroom shape; non-symmetric!
- Less intense regions; boundary layer too weak

RANS (k- ω) simulations – midplane results



- Experimental results in black
- All models are pretty inaccurate (blue and red lines are the non-symmetric results)

Reducing errors

- **Model-form errors**
 - The linear turbulent stress – strain rate relationship (LEVM) can be enriched with quadratic and cubic terms (QEVM / CEVM)
 - Includes terms with vorticity and cross terms with vorticity and strain rate
 - However the high-order models have parameters in them
 - What are the appropriate values for those parameters?
- **Parametric uncertainty**
 - (C_2, C_1) can be estimated (somewhat) from experimental data
 - But because of model-form errors and limited experimental data, these cannot be estimated with much certainty
 - We'll use Bayesian inversion and estimate them as PDFs
 - Quantifies uncertainty in the estimate of the parameters
- **Calibration process**
 - Identify which of the CEVM parameters can actually be estimated from experimental data
 - Then calibrate those along with (C_2, C_1) ; call the full set $\mathbf{C} = (:, C_2, C_1)$

Calibration details

- **Aims of the calibration**
 - Calibrate to a $M = 0.8, J = 10.2$ interaction
 - Learn the form of the high-order eddy viscosity model by fitting to turbulent stresses measurements on the mid-plane
 - Calibrate to crossplane data; check by matching the midplane velocity profiles
- **Technical challenges**
 - Computational cost of 3D JinC RANS simulation
 - Replace 3D RANS with a surrogate model i.e., model crossplane streamwise vorticity $\omega_x^{(RANS)}(\mathbf{y}) = f(\mathbf{y}; \mathbf{C})$, $f(\cdot; \mathbf{C})$ is a curve-fit
 - Surrogate model = emulators
 - Arbitrary combinations of \mathbf{C} may be nonphysical
 - How to build emulators when \mathbf{C} are nonsensical?
 - What functional form to use for $f(\cdot; \mathbf{C})$?

High-order eddy-viscosity model

- Craft 95 describes a cubic eddy viscosity (CEVM) model
 - $\tau_{ij} = -2/3k \delta_{ij} + C_\mu F(S_{ij}, \varepsilon) + c_1 f_1(S_{ij}, \Omega_{ij}, \varepsilon) + c_2 f_2(S_{ij}, \Omega_{ij}, \varepsilon) \dots c_7 f_7(S_{ij}, \Omega_{ij}, \varepsilon)$
 - $F(S_{ij})$ is linear in S_{ij} , $f_1(\cdot, \cdot, \cdot) - f_3(\cdot, \cdot, \cdot)$ are quadratic in S_{ij} & Ω_{ij}
 - $f_4(\cdot, \cdot, \cdot) - f_7(\cdot, \cdot, \cdot)$ are cubic in S_{ij} & Ω_{ij}
- Our experimental data, on the midplane, consists of:
 - S_{ij} & Ω_{ij} obtained from the measured velocity field
 - τ_{ij} and k , also measured
 - ε (dissipation rate of turbulent KE) cannot be measured
 - It is approximated by assuming equilibrium of production and dissipation of turbulent KE.
- Craft's model prescribes $\{c_1 \dots c_7\}$
 - Parameter value obtained from a simple, incompressible turning flow
 - May not be valid for transonic JinC interaction

Estimation of CEVM parameters

- The 180 measurements that we have may not have info that informs $c_1 \dots c_7$
- Cast the estimation problem as

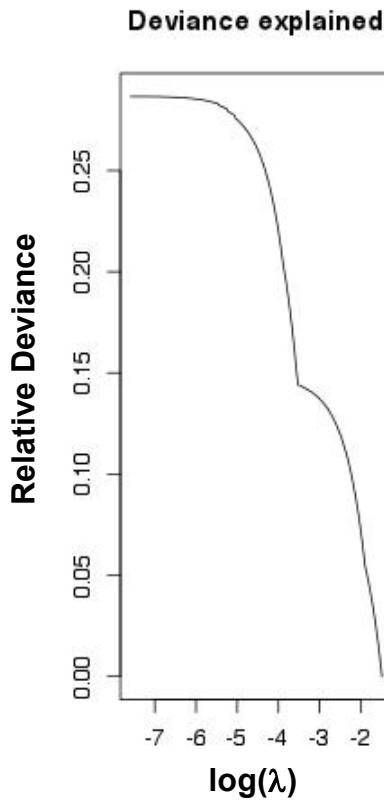
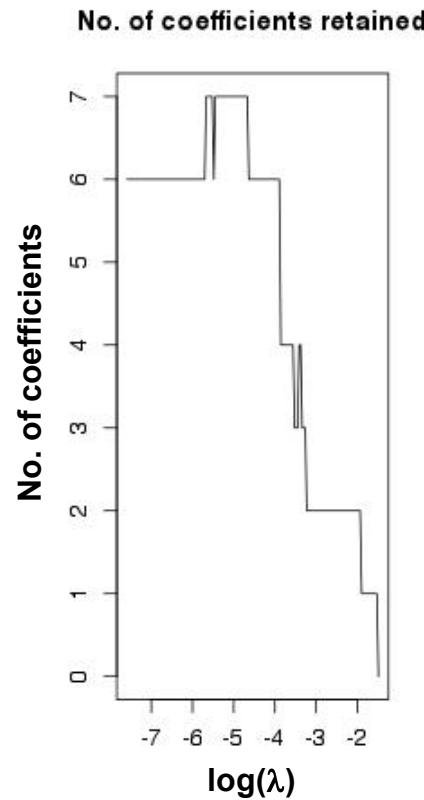
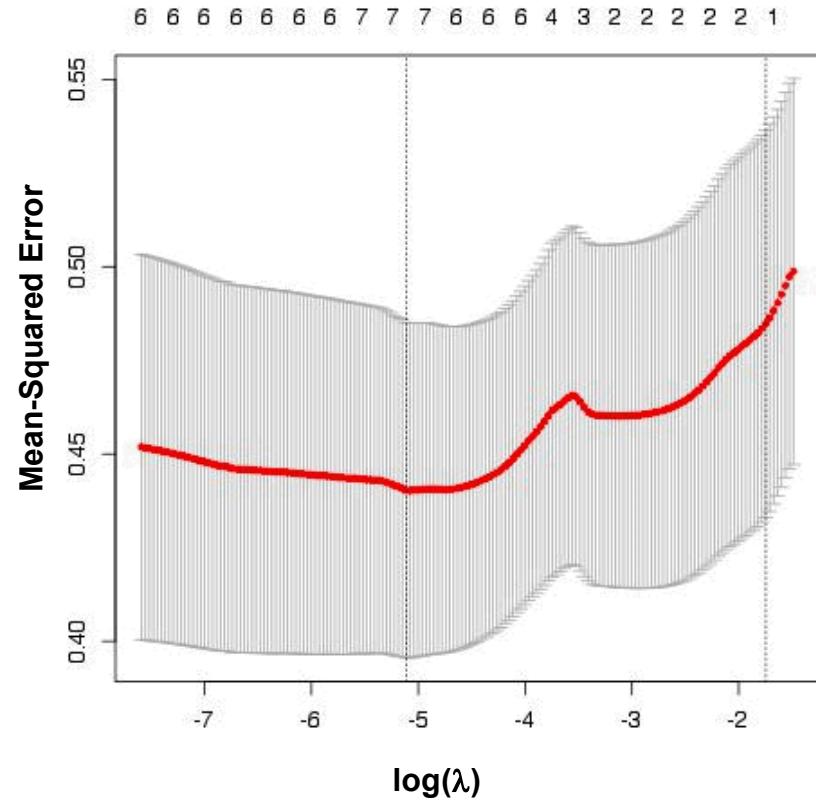
$$\min_x \quad \|Y - Ac\|_2^2 + \lambda \|c\|_1$$

- The first half estimates $x = \{c_i\}$ that provide CEVM predictions near Y
- The second half – the λ penalty – tries to set as many c_i to zero
- Called Shrinkage Regression
- The penalty λ is the lynchpin
 - If it is too small, we get over-fitting (too many c_i survive)
 - The best way to get λ is via k-fold cross-validation
- The method for solving the optimization problem is LASSO

k-fold cross-validation

- Divide the 180 measurements into 8 “folds” (equal subsets)
- Pick a value of λ
 - Pick fold # 1 as the testing set, folds 2-8 as the learning set
 - Solve the optimization problem (solve for \mathbf{c}) using \mathbf{Y} constructed from the learning set
 - Predict the data in the testing set
 - Repeat with folds #2, #3 ... as the testing sets
 - Obtain the mean error and error bars for λ'
- Ultimately you get error as a function of λ
 - Pick the λ with min error
- For higher values of λ , expect to see lots of c_i becoming zero
 - And predictive errors becoming large
- Nomenclature: The norm of difference ($\mathbf{Y}^{(obs)} - \mathbf{Ac}$) is called the ‘deviance’

LASSO results



Looking for a good λ

- Craft explains around 28% of deviance
- As $\log(\lambda)$ increases and # of terms retained decreases, CEVM worsens
- One gets λ_{\min} and λ_{1se}

Tabulate coefficients and MSE

Method	c_1	c_2	c_3	c_4	c_5	c_6	c_7	MSE
Craft	-0.1	0.1	0.26	-10	0	-5	5	0.662
λ_{\min}	-0.065	-0.103	1.68	-4.02	5.7	5.4	-3.64	0.386
$\lambda_{1\text{se}}$	0.0	0.0	0.455	0.0	0	0	0	0.483
LM	-0.0789	-0.149	2.02	-5.88	0	6.68	-11.87	0.382

- $\ln(\lambda_{\min}) = -5.11$, $\ln(\lambda_{1\text{se}}) = -1.75$
- Craft's default parameters are changed when we regress it to data
 - Results called 'LM'
- When we LASSO the model using $\lambda_{1\text{se}}$, we're left with just 1 quadratic term
 - But the model loses much accuracy
- Let's choose $\lambda_{1\text{se}}$.
 - Provides a simple model, and keeps the Ω^2 term

Calibration of $\{c_3, C_2, C_1\}$

- We will calibrate $\mathbf{C} = (c_3, C_2, C_1)$
 - Our model really has a quadratic eddy viscosity model (QEVM)
- Approach:
 - **Data:** Use vorticity measurements on crossplane to estimate \mathbf{C}
 - Useful measurements available at 225 locations ("probes")
 - **Estimation procedure:** Bayesian calibration using MCMC
 - **Model:** Use surrogate models (emulators) of the RANS simulator
 - Set of 1275 runs in the parameter space \mathcal{C} to make the training data
 - Identify a physically realistic space \mathcal{R} , use SVMs to model \mathcal{R}
 - Make emulators $\omega(\mathbf{C}) = f(c_3, C_2, C_1)$ with polynomials; valid in \mathcal{R}
 - Use MCMC to create the posterior PDF of \mathbf{C}
 - **Checking results**
 - Draw 100 samples from the posterior PDF
 - Develop an ensemble of predictions of vorticity and velocity; compare against measurements

The Bayesian calibration problem

- Model experimental values at probe j as $\omega_{\text{ex}}^{(j)} = \omega^{(j)}(\mathbf{C}) + \varepsilon^{(j)}$, $\varepsilon^{(j)} \sim N(0, \sigma^2)$

$$\Lambda(\omega_{\text{ex}}^{(j)} | \mathbf{C}) \propto \prod_{j \in \mathcal{P}} \exp\left(-\frac{(\omega_{\text{ex}}^{(j)} - \omega^{(j)}(\mathbf{C}))^2}{2\sigma^2}\right)$$

- Given prior beliefs π on \mathbf{C} , the posterior density ('the PDF') is

$$P(\mathbf{C}, \sigma | \omega_{\text{ex}}^{(j)}) \propto \Lambda(\omega_{\text{ex}}^{(j)} | \mathbf{C}, \sigma) \pi(C_1, C_2, C_3) \pi_\sigma(\sigma)$$

- $P(\mathbf{C} | \omega_{\text{ex}})$ is a complicated distribution that has to be described/visualized by drawing samples from it
- This is done by MCMC
 - MCMC describes a random walk in the parameter space to identify good parameter combination
 - Each step of the walk requires a model run to check out the new parameter combination

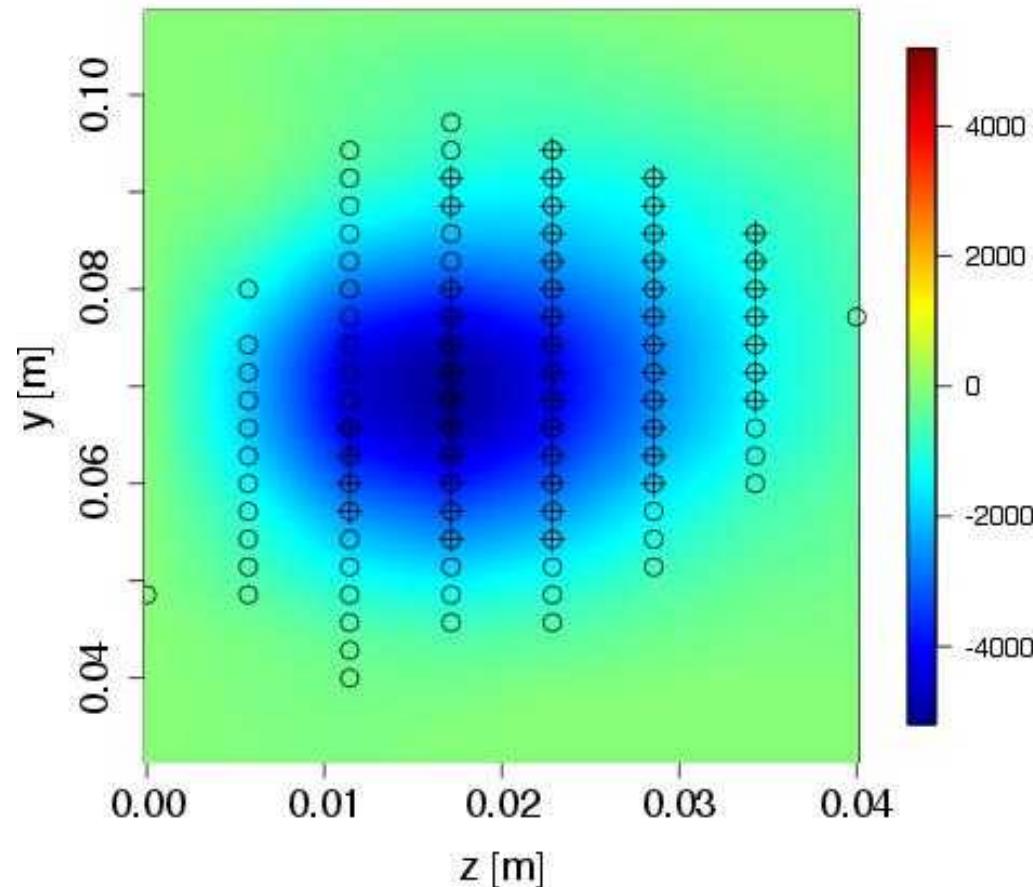
Making emulators - 1

- **Training data**
 - Sample the parameter space $\mathbf{C} = \{c_3, C_2, C_1\}$; bounds are known
 - Run RANS models at ~ 1500 samples; save vorticity on cross-plane
 - Select the top 25% of the training runs
 - Call this subspace of \mathcal{R}
 - Keeps us out of non-physical parts of the parameter space C
- **Making emulators in \mathcal{R}**
 - Model vorticity at probe j $\omega^{(j)}$ as a polynomial in \mathbf{C}

$$\omega^{(j)} \cong a_0 + a_1 c_3 + a_2 C_2 + a_3 C_1 + a_4 c_3 C_2 + a_5 c_3 C_1 + a_6 C_2 C_1 + \dots$$
 - Simplify using AIC; cross validated using repeated random sub-sampling (100 rounds)
 - RMSE in Learning & Testing sets should be equal
 - Accept all surrogate models that have $< 10\%$ error

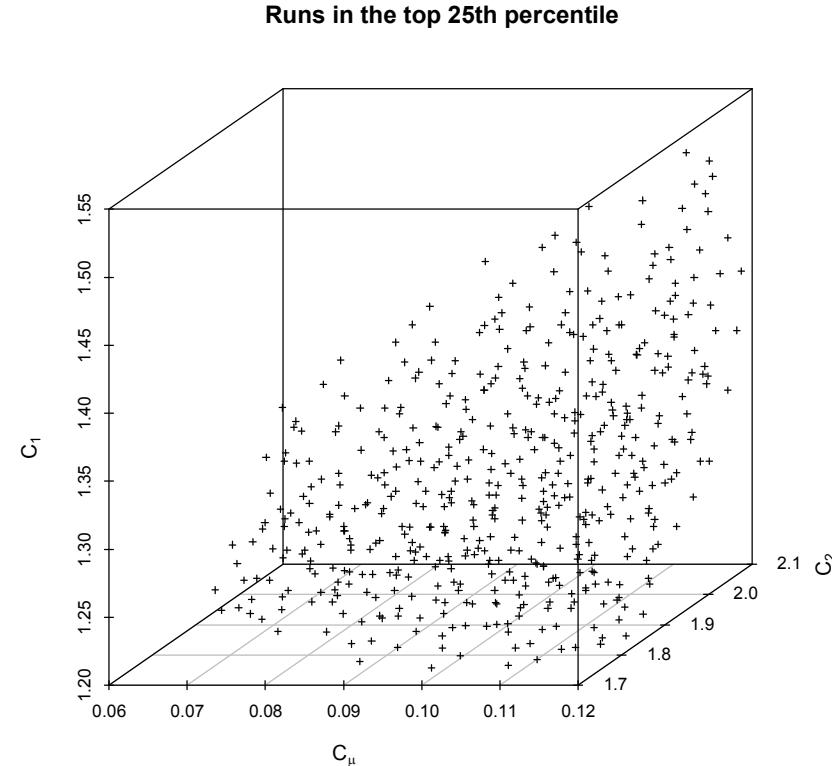
Making emulators - 2

- Emulators with 10% accuracy could only be made for 55 / 224 probes
 - 90 with large vorticity (circles)
 - 55 with emulators (+)
- Also, the emulators are only applicable in the \mathcal{R} section of the parameter space C



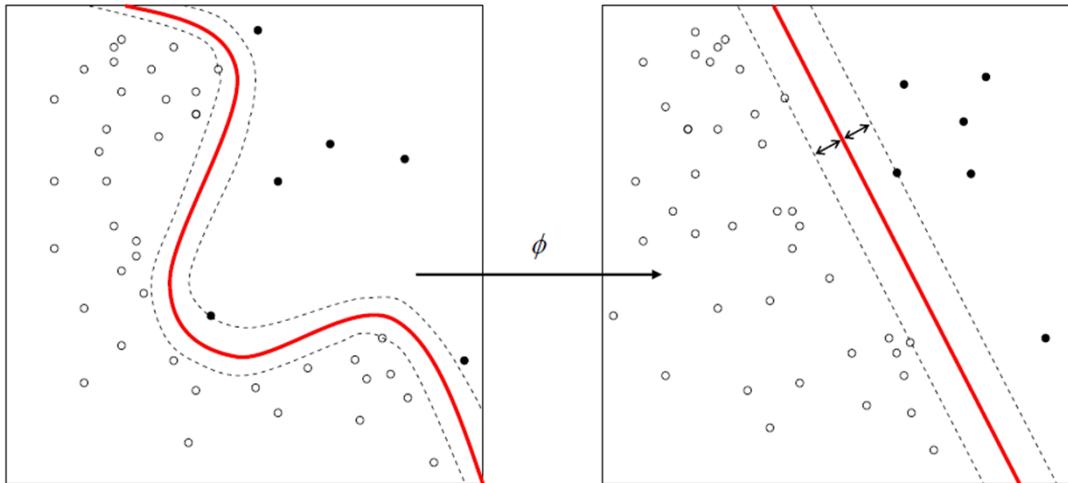
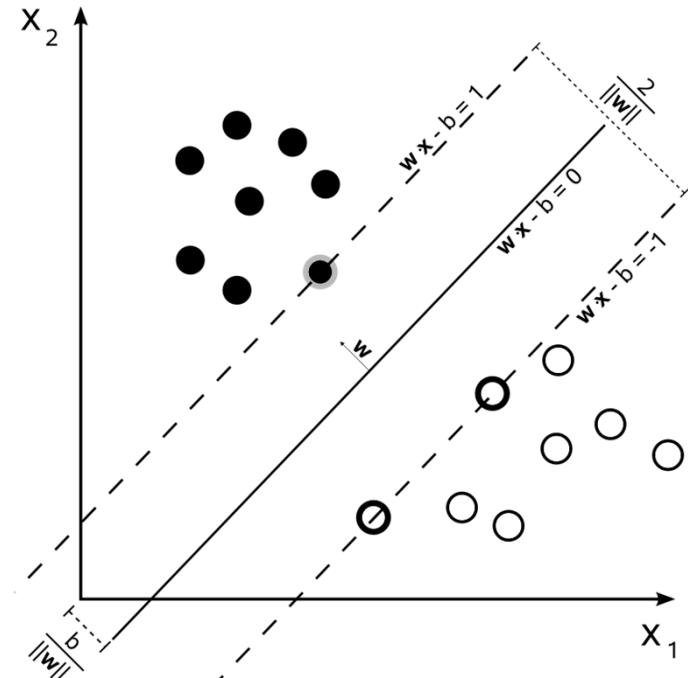
Making the informative prior

- Our emulators are valid only inside \mathcal{R} in the parameter space \mathbf{C}
- During the optimization (MCMC) we have to reject parameter combinations outside \mathcal{R} (this is our prior belief $\pi_{\text{prior}}(\mathbf{C})$)
 - We define $\zeta(\mathbf{C}) = 1$, for \mathbf{C} in \mathcal{R} and $\zeta(\mathbf{C}) = -1$ for \mathbf{C} outside \mathcal{R}
 - Then the level set $\zeta(\mathbf{C}) = 0$ is the boundary of \mathcal{R}
- The training set of RANS runs is used to populate $\zeta(\mathbf{C})$
- We have to “learn” the discriminating function $\zeta(\mathbf{C}) = 0$
 - We do that using support vector machine (SVM) classifiers



What is a SVM classifier?

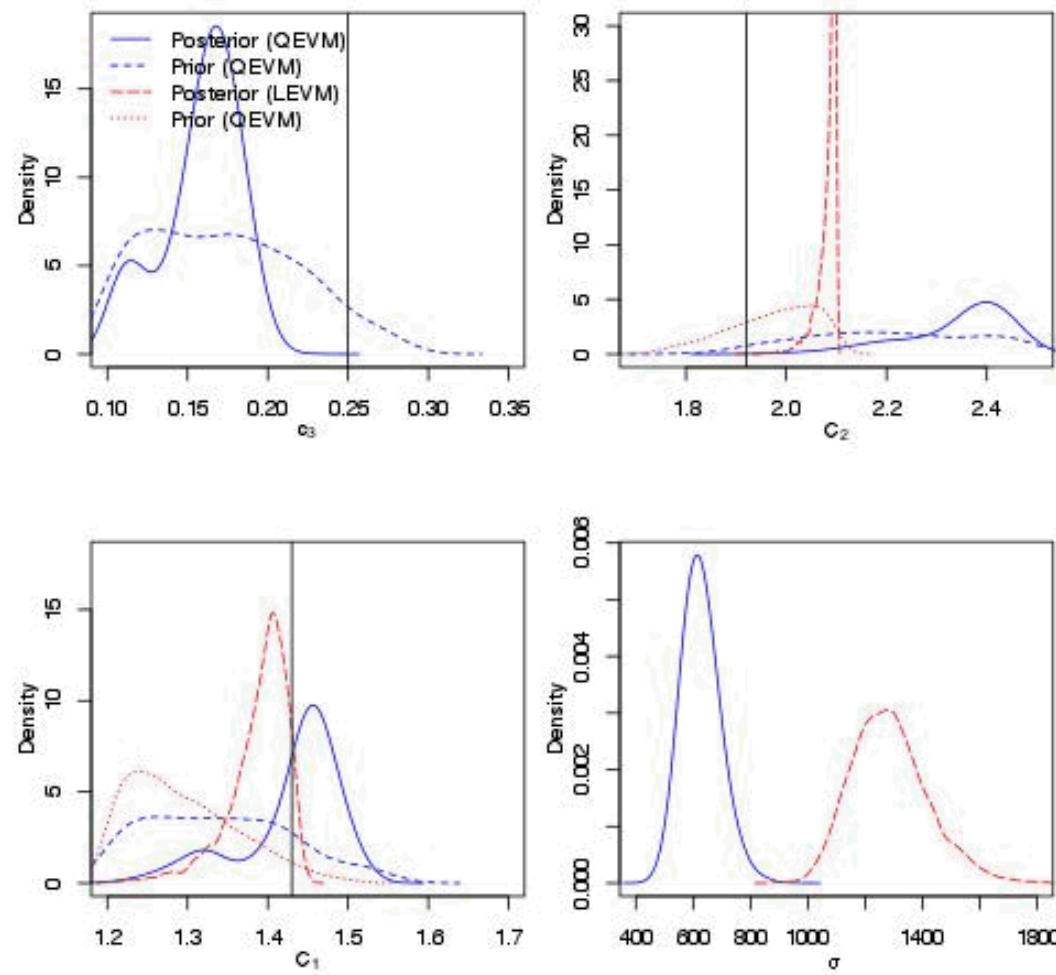
- Given a binary function $y = f(\mathbf{x})$ as a set of points (y_i, \mathbf{x}_i) , $y_i = (0, 1)$
 - Find the hyperplane $y + \mathbf{A}\mathbf{x} = 0$ that separates the \mathbf{x} -space into $y = 0$ and $y = 1$ parts
- Posed as an optimization problem that maximizes the margin



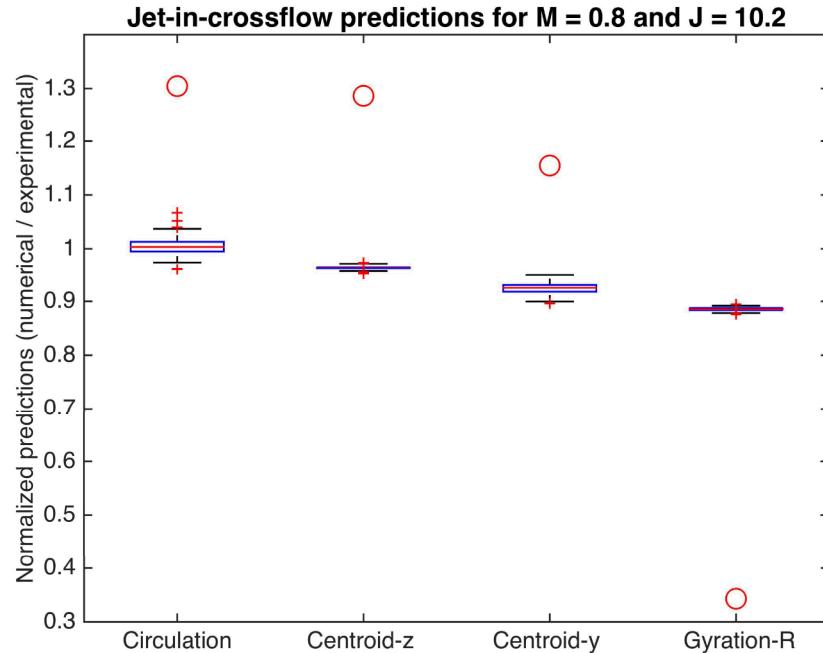
- In case of a curved discriminator, need a transformation first
 - Achieved using kernels
 - We use a cubic kernel

PDFs

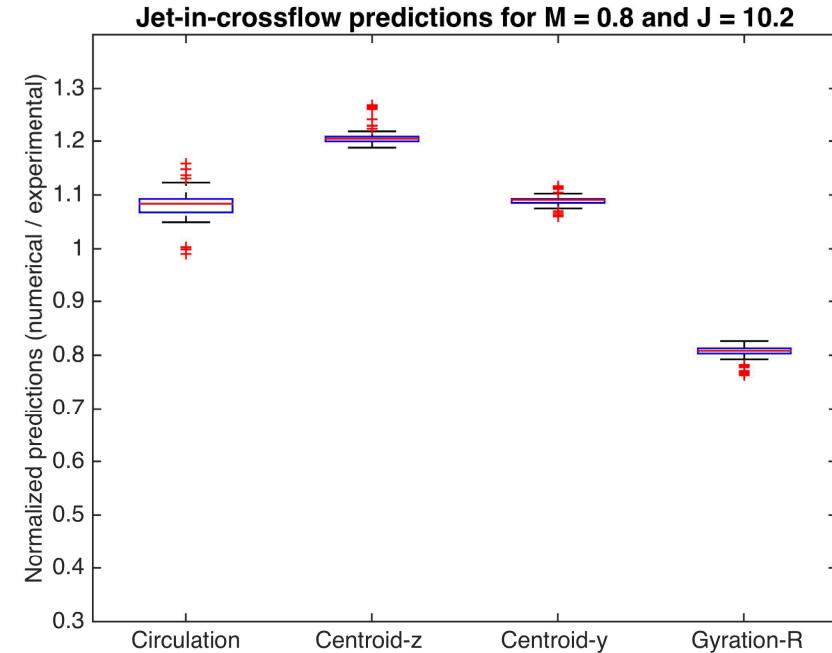
- About 60,000 MCMC steps to convergence
- Calibrated values of \mathbf{C} quite different from the ones from (incompressible) literature
- (C_2, C_1) are also present in linear eddy viscosity models (LEVM)
 - C_2 differs significantly between LEVM / QEVM
 - QEVM is more accurate (σ)



QEVM point vortex metrics



LEVM

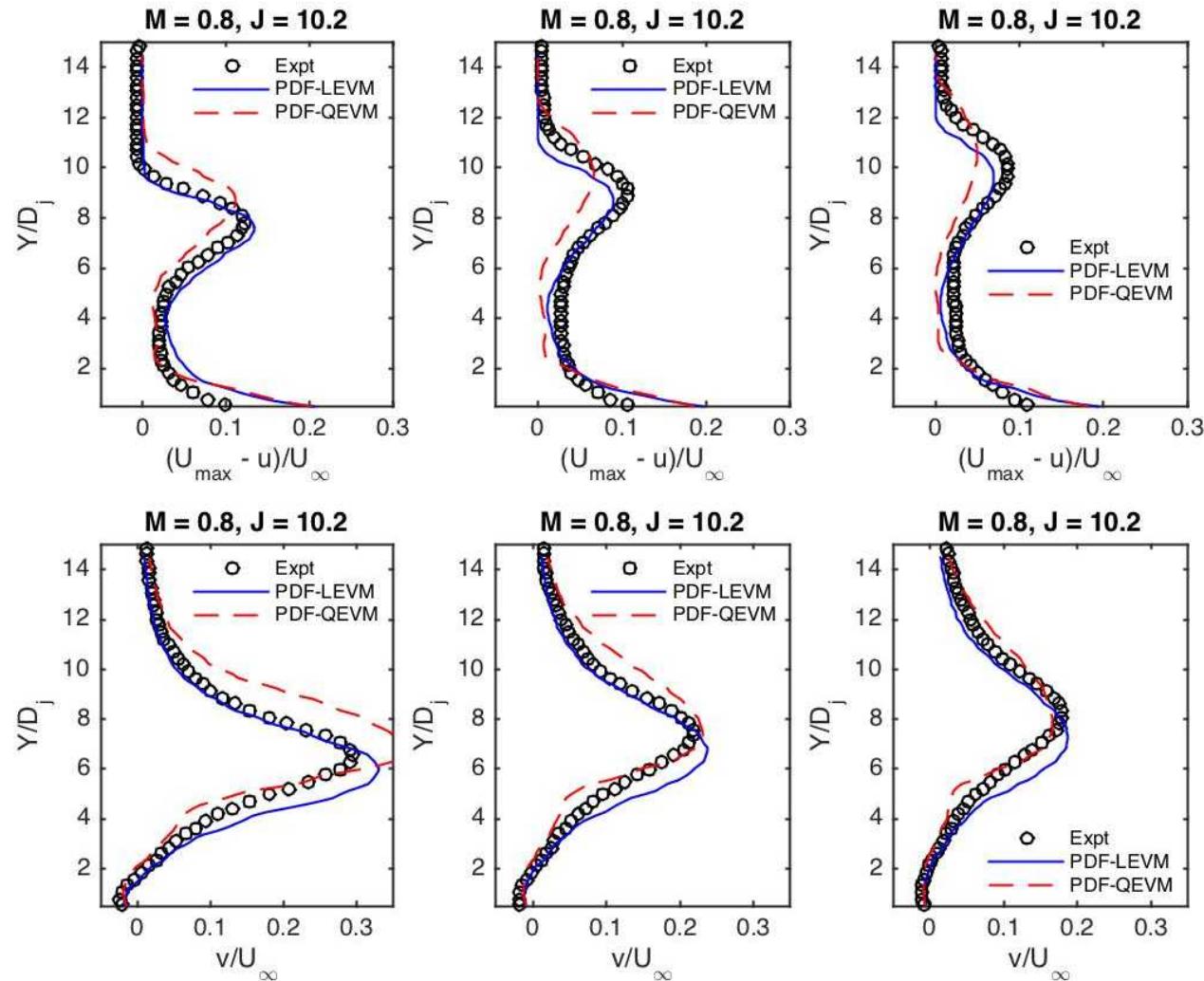


QEVM

- QEVM worse than LEVM, for sure
- Circles are LEVM nominal predictions
- **CAUTION: Preliminary results from 1/8/2016**

QEVM PPT predictions on midplane

- QEVM about as good as LEVM
- **CAUTION:**
Prelim results from
1/8/2016



Conclusions

- We are beginning to “fix-up” engineering models with observational data
 - Includes both estimating model parameters and enriching closure models (inferring missing physics in models)
 - Methods are Bayesian; fully probabilistic inference (of parameters, at least)
 - Accommodates uncertainty in estimates due to limited data and shortcomings of the RANS model (model-form error)
- We can tackle rather complicated problems using Bayesian inference
 - Computational costs are immense, but only for generating training data
 - Brittle – we depend on emulators, which can’t always be made
 - Can tackle peculiarities of non-physical parameter spaces using informative priors (classifiers)
- Tools and theories: A mixture of statistics and machine learning
 - Bayesian inference, emulators, shrinkage are conventionally statistical
 - Classifiers etc. are purely ML
 - As we scale up and confront large data (simulated flowfields etc.) to infer model-form error, expect MapReduce implementations of these tools

BONEYARD

What is MCMC?

- A way of sampling from an arbitrary distribution
 - The samples, if histogrammed, recover the distribution
- Efficient and adaptive
 - Given a starting point (1 sample), the MCMC chain will sequentially find the peaks and valleys in the distribution and sample proportionally
- Ergodic
 - Guaranteed that samples will be taken from the entire range of the distribution
- Drawback
 - Generating each sample requires one to evaluate the expression for the density π
 - Not a good idea if π involves evaluating a computationally expensive model

An example, using MCMC

- Given: (Y^{obs}, X) , a bunch of n observations
- Believed: $y = ax + b$
- Model: $y_i^{\text{obs}} = ax_i + b_i + \varepsilon_i, \varepsilon \sim \mathcal{N}(0, \sigma)$
- We also know a range where a , b and σ might lie
 - i.e. we will use uniform distributions as prior beliefs for a , b , σ
- For a given value of (a, b, σ) , compute “error” $\varepsilon_i = y_i^{\text{obs}} - (ax_i + b_i)$
 - Probability of the set $(a, b, \sigma) = \prod \exp(-\varepsilon_i^2/\sigma^2)$
- Solution: $\pi(a, b, \sigma | Y^{\text{obs}}, X) = \prod \exp(-\varepsilon_i^2/\sigma^2) * (\text{bunch of uniform priors})$
- Solution method:
 - Sample from $\pi(a, b, \sigma | Y^{\text{obs}}, X)$ using MCMC; save them
 - Generate a “3D histogram” from the samples to determine which region in the (a, b, σ) space gives best fit
 - Histogram values of a , b and σ , to get individual PDFs for them
 - Estimation of model parameters, with confidence intervals!

MCMC, pictorially

- Choose a starting point, $P^n = (a_{curr}, b_{curr})$
- Propose a new a , $a_{prop} \sim \mathcal{N}(a_{curr}, \sigma_a)$
- Evaluate $\pi(a_{prop}, b_{curr} | \dots) / \pi(a_{curr}, b_{curr} | \dots) = m$
- Accept a_{prop} (i.e. $a_{curr} \leftarrow a_{prop}$) with probability $\min(1, m)$
- Repeat with b
- Loop over till you have enough samples

