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What is a hermetic connector? ) s,

= Barrier to gas/liquid transfer
between environments.

= Allow electrical transmission

= Designed for extreme conditions

= Thermal

= Pressure
= Shock/vibration

Metal Housing

= Many applications:

= Satellites, submarine vehicles,
medical, telecommunications, etc.

Amorphous or Ceramic
Glass Preform

= Types of hermetic connectors Electrical Contact

= Matched seals

= Compression seals




Creating a Hermetic Seal ) .

extruded solid preform

= Piece-part assembly

= Fixture holds preform and
contact(s) in shell

pressed powder
L

= Glass melt and flow

= Belt fed furnace w/
multiple chambers

= Exceed melt temp

= Compression from shell
as connector cools
= 304l = 17 ppm/°C
= GLASS ¢ = 10 ppm/°C




So what’s the problem? UL

00

B— Not hermetic.

Visual, x-ray, CT, ultrasonic, etc.

* Processing, testing, and fielding causes short and/or long term residual stress.
« Difficult to identify and visualize cracks due to size of connectors.
« Very difficult to measure stress in the glass of a hermetic connector.

WE MUST RELY ON MODELING!




So what’s the BIGGER problem? (.

Assumptions and approximations lead to uncertainties in model predictions.

= Real Geometry 2 Modeled Geometry
= Drawing does not match processed form (not just tolerances).
= Menisci vary and may be neglected in the model.
= Shell details may be neglected which affects modeled shell volume.

= FEA Assumptions

= Material model selection for pin, glass, and shell (chosen based on
available data or limited computational resources).

= Set temperature (T,,)

= Glass transition (Tg) is dependent on processing history




Simulating the Sealing Process

Old way...
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New Way!

Choose constitutive models:
= Elastic for glass
= Elastic-plastic for metals

Assume T,
" T.. =2 Room Temp

= Rate independent

Less information about
processing is needed

Qualitative predictions
= Lead design process

= Determine features that
greatly affect stress

Choose constitutive models:
= Viscoelastic for glass
= Viscoelastic-plastic for metals

Predicted T,
= >T, =2 Room Temp
= Rate dependent

Detailed information about
processing is needed

Quantitative predictions

= Predict evolution of residual
stress and structural
relaxation over time.




Viscoelastic Glass Predictions

= Simplified Potential Energy Clock (SPEC) Model [1]

= Predicts behavior of thermorheologically simple materials [2]

= thermosets, thermoplastics, elastomers, and inorganic glasses

= Based on the Potential Energy Clock (PEC) model which is derived
using the Helmholtz free energy and a material clock through which

potential energy accelerates relaxation. [3,4]

= SPEC easier to calibrate and requires less data to parameterize.

= stress relaxation, physical aging, creep, and “yield”

= time and temperature history dependent
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Hermetic Seal Model ) e,

RED — Shell
A B Kol Inorganic sealing glass

GREEN - Pins

e
S e
V7277

X
OO S
s
AWy

“Bottom”

half symmetry view

no glass menisci or pin details
« simplified shell (no threads, rounds, chamfers)
» contiguously meshed interfaces



Residual Stress from Sealing Process (@i

/ compression during cool down \
ﬁastic strain in metam

residual tensile stress
*elastic predictions




Constitutive Model Comparison @

EP Shell, Elastic Glass

GtM Seal Constitutive Model Comparison
(stress at pin-glass interface)
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Constitutive Model Comparison @

EP Shell, Elastic Glass

GtM Seal Constitutive Model Comparison
(stress at pin-glass interface)
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Constitutive Model Comparison @

EP Shell, Elastic Glass

EP Shell, VE Glass

VP Shell, VE Glass

Max Principal Stress (psi)

GtM Seal Constitutive Model Comparison
(stress at pin-glass interface)
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History Dependent Predictions ) .

Thermal Strain Max Principal Stress at Pin/Glass Interface
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History Dependent Predictions ) .

Thermal Strain Max Principal Stress at Pin/Glass Interface
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History Dependent Predictions ) .

Thermal Strain Max Principal Stress at Pin/Glass Interface
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History Dependent Predictions ) .

Thermal Strain Max Principal Stress at Pin/Glass Interface
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Glass Creep at Room Temperature @

3-Pnt Bending Test

0.06 -t R YI side 1 Creep Under Dead Load
! ~ B S021 side 2
- /’ \ . 3023 side 1
Qo 0.04 340C for 2days% | = S023side 2 X
£ . \| * S015side 1
- 2 s B S015 side 2
S 0.0 e ] side 2
:'3 .0 v
=
@ [ ] ]
g 0.02} % F ] T (°C) Stress (psi)
[ N ry : 340 3500
-0.04 [ F ] 200 3500
: \.\/’ : 20 4000
006 L S

. .. . Measurable creep 440°C below glass transition...
So what happens over long periods of time?




Aging of Compression Seal ) .
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Back to uncertainties... ) e,

= Geometry
= 5-10% error within tolerances
= Glass thickness/position, pin diameter, and various shell features.

= Material properties

= 150% error of room temperature predicted tensile stress.
= Based on elastic =2 1 °C/min viscoelastic

= Difference in predicted stress depends on temperature examined.
= Cooling rate dependence
= 50% error of room temperature predicted tensile stress.
= 1°C/min =2 0.1 °C/min OR 1°C/min = 100 °C/min
= Difference in predicted stress depends on temperature examined.
= History dependence (aging)
= 55% increase in tensile stress after 1 year.
= Additional testing needed to validate aging predictions...




Conclusion )

= FEA models can lack geometry and material model detail and
still predict qualitative trends to direct the design process.

= Predicted tensile stress when using viscoelastic glass is
significantly higher than assuming elastic properties.

= Actual history (processing, aging) makes a difference.

= Quantitative predictions will require physically based models.

= Uncertainty in model predictions are difficult to quantify, but
easy to identify! =




QUESTIONS?
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