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What is a hermetic connector?

Metal Housing

Amorphous or Ceramic
Glass Preform

Electrical Contact

 Barrier to gas/liquid transfer 
between environments.
 Allow electrical transmission

 Designed for extreme conditions
 Thermal

 Pressure

 Shock/vibration

 Many applications:
 Satellites, submarine vehicles, 

medical, telecommunications, etc.

 Types of hermetic connectors
 Matched seals

 Compression seals
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Creating a Hermetic Seal

 Piece-part assembly
 Fixture holds preform and 

contact(s) in shell

 Glass melt and flow
 Belt fed furnace w/ 

multiple chambers

 Exceed melt temp

 Compression from shell 
as connector cools
 304LCTE ≈ 17 ppm/oC

 GLASSCTE ≈ 10 ppm/oC
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extruded solid preform

pressed powder



So what’s the problem?
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• Processing, testing, and fielding causes short and/or long term residual stress.
• Difficult to identify and visualize cracks due to size of connectors. 
• Very difficult to measure stress in the glass of a hermetic connector.

processing…
…testing

Not hermetic.

WE MUST RELY ON MODELING!

Visual, x-ray, CT, ultrasonic, etc. 



So what’s the BIGGER problem?

 Real Geometry  Modeled Geometry
 Drawing does not match processed form (not just tolerances). 

 Menisci vary and may be neglected in the model.

 Shell details may be neglected which affects modeled shell volume.

 FEA Assumptions
 Material model selection for pin, glass, and shell (chosen based on 

available data or limited computational resources). 

 Set temperature (Tset) 

 Glass transition (Tg) is dependent on processing history
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Assumptions and approximations lead to uncertainties in model predictions.



Simulating the Sealing Process

Old way…

 Choose constitutive models:
 Elastic for glass

 Elastic-plastic for metals

 Assume Tset

 Tset  Room Temp

 Rate independent

 Less information about 
processing is needed

 Qualitative predictions
 Lead design process

 Determine features that 
greatly affect stress

New Way!

 Choose constitutive models:
 Viscoelastic for glass

 Viscoelastic-plastic for metals

 Predicted Tg

 >Tg  Room Temp

 Rate dependent

 Detailed information about 
processing is needed

 Quantitative predictions
 Predict evolution of residual 

stress and structural 
relaxation over time. 
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Viscoelastic Glass Predictions
 Simplified Potential Energy Clock (SPEC) Model [1]

 Predicts behavior of thermorheologically simple materials [2]

 thermosets, thermoplastics, elastomers, and inorganic glasses

 Based on the Potential Energy Clock (PEC) model which is derived 
using the Helmholtz free energy and a material clock through which 
potential energy accelerates relaxation. [3,4]

 SPEC easier to calibrate and requires less data to parameterize. 

 stress relaxation, physical aging, creep, and “yield”

 time and temperature history dependent 
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Hermetic Seal Model

RED – Shell

YELLOW – Inorganic sealing glass

GREEN – Pins

half symmetry view

“Top”

“Bottom”

• no glass menisci or pin details
• simplified shell (no threads, rounds, chamfers)
• contiguously meshed interfaces



Residual Stress from Sealing Process

T >>Tg T = 22 oC

x50 mag

compression during cool down

plastic strain in metals

residual tensile stress
*elastic predictions

pins

shell



Constitutive Model Comparison
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EP Shell, Elastic Glass

*assumed failure at 5000 psi

start

end



Constitutive Model Comparison
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EP Shell, Elastic Glass

EP Shell, VE Glass

*1 oC/min cooling rate
*assumed failure at 5000 psi

start

end



Constitutive Model Comparison
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EP Shell, Elastic Glass

EP Shell, VE Glass

VP Shell, VE Glass

*1 oC/min cooling rate
*assumed failure at 5000 psi



History Dependent Predictions
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Assumed 
Tset

*assumed failure at 5000 psi



History Dependent Predictions
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Actual Tg

*assumed failure at 5000 psi



History Dependent Predictions
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*assumed failure at 5000 psi

Actual Tg



History Dependent Predictions
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Actual Tg

*assumed failure at 5000 psi
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Glass Creep at Room Temperature



Aging of Compression Seal

Cooling Rate: 1C/min
• 304L Shell: thermoelastic-plastic

• Alloy 52 Pin: thermoelastic-plastic

• Glass: viscoelastic (SPEC)



Back to uncertainties…
 Geometry

 5-10% error within tolerances

 Glass thickness/position, pin diameter, and various shell features.

 Material properties
 150% error of room temperature predicted tensile stress.

 Based on elastic  1 oC/min viscoelastic

 Difference in predicted stress depends on temperature examined.

 Cooling rate dependence
 50% error of room temperature predicted tensile stress.

 1 oC/min  0.1 oC/min  OR  1 oC/min  100 oC/min

 Difference in predicted stress depends on temperature examined.

 History dependence (aging)
 55% increase in tensile stress after 1 year.

 Additional testing needed to validate aging predictions…
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Conclusion

 FEA models can lack geometry and material model detail and 
still predict qualitative trends to direct the design process.

 Predicted tensile stress when using viscoelastic glass is 
significantly higher than assuming elastic properties. 

 Actual history (processing, aging) makes a difference.

 Quantitative predictions will require physically based models.

 Uncertainty in model predictions are difficult to quantify, but 
easy to identify! �
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QUESTIONS?
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