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INTRODUCTION

Identifying and applying appropriate validation and 
uncertainty quantification (V/UQ) methods is instrumental 
in strengthening the validity and scientific rigor of
predictive modeling of the hyperspectral imaging (HSI) 
observables associated with solid particulate materials.  
Validating these predictive models and quantifying 
uncertainties inherent in the modeling process presents a
significant research challenge. 

In this paper, we present techniques for validating 
physics-based models that predict HSI observables of solid 
particulate materials and characterizing model uncertainties.  
We are employing a hierarchical V/UQ approach by 
designing physical experiments and comparing the 
experimental results with the outputs of computational 
predictive models [1]. We illustrate this approach by
comparing a model for the reflectance of a particulate 
material to the reflectance spectrum acquired on a well-
characterized particulate deposit. By validating physical 
models with experimental data at various scales, and 
characterizing and quantifying uncertainties in the modeling 
process, we anticipate that incorporation of V/UQ
techniques will elevate the level of confidence stakeholders 
have in model utilization and model outputs. 

VALIDATION/UQ PROCESS

The validation process that we are incorporating is 
shown in Fig. 1. The key elements of this process are 
verification [2], uncertainty quantification (UQ), validation
(or comparison), and model maturity [3]. For this paper, the 
primary focus is on UQ, including calibration, sensitivity 
analysis (SA), and uncertainty analysis (UA), shown in the 
light blue shaded boxes on the left side in Fig. 1. 

As Fig. 1 illustrates, the differences resulting from 
comparing modeled results and experimental observations 
determine the path(s) to model refinements, i.e. by 
improving the physics models, by collecting and 
incorporating more data into the existing model, or both. 
Such iterative comparisons provide continuous feedback
into the modeling and UQ process until the differences 
between the modeled results and experimental observations 
become sufficiently small.

For complex multi-physics problems like modeling the 
HSI observables of particulate materials, a hierarchical 
approach is needed due to limited feasibility of designing 
and conducting accurate validation and UQ experiments on 

full-scale systems. To generate comparisons between 
modeling and experimental results, we apply such a 
hierarchical approach to designing physical experiments 
(and/or utilizing available measurement data sets) to 
compare with the results of predictive computational 
models. This approach divides a system analysis into 
several progressively smaller scales— at the system scale
(i.e., the full HSI data cube that is acquired by the sensor), at 
the individual-pixel scale of the data cube, at the micro-
scale (i.e. at the level of interaction of electromagnetic 
radiation with the particulate medium), and also for the 
intrinsic material properties (i.e., the complex refractive 
index n+ik of the material, its measurement often requiring
the application of models as well) —to identify and quantify 
measured simulation errors against experimental data and to 
provide a quantitative assessment of uncertainties. This 
hierarchy is illustrated in Fig. 2 by the data flow through the 
different models at different scales. We enable scalability by 
utilizing both forward and inverse modeling. The left side of 
Fig. 2 illustrates the forward (up scale) data and model flow 
from intrinsic optical properties all the way up to the sensor 
level (data cube). The right hand side of Fig. 2 then starts 
with the sensor data and propagates the results for materials 
of interest (MOI) down scale back to the intrinsic properties 
of the material. This hierarchical approach leverages smaller 
scale models and data to investigate the accuracy of the 
various components of the system so that lower-level 
analysis can inform V/UQ on a larger scale.

The outcome of this V/UQ process will be estimates of 
input parameter uncertainties for each calibrated model, the 
confidence range of model output at each scale, and the 
uncertainty of the overall system response (i.e., sensor data). 

Fig. 1. Model validation process, which includes 
verification, UQ, and model maturity.
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Fig. 2. Data and model flow for the HSI material 
identification problem.

These estimates will be based on the confidence levels 
developed in the various decoupled scale problems as well
as the upscaling procedure. By considering smaller scale
problems that isolate particular aspects of the multi-physics 
of the full scale system, we should be able to evaluate and 
isolate the contributions of different aspects of the model to 
the predictive errors, such as the effects of coupling 
different physics or the geometric upscaling of the coupled 
physics. In the following section, we use a micro-scale 
model to demonstrate the utility of using a lower-level 
model to inform UQ at a higher level.

MICRO-SCALE MODEL

To illustrate the V/UQ process, we focus the analysis 
on a single physical scale—the micro-scale. It is well known 
that the reflectance spectrum of a particulate medium can 
depend strongly upon the size of the particulates [4], and
that the nature of this dependence is a function of the 
material refractive index. To account for this dependence, 
we implement a reflectance model developed for an 
optically thick particulate deposit with corrections for 
particle packing density and particle shape effects [5]. The 
model approximates the range of particle size in the deposit 
with a bimodal volume log-normal [6] particle size 
distribution (PSD). The analyses performed with the micro-
scale model were done using the Dakota software tools [7].

Model Optimization
An optimization analysis was performed on the micro-

scale model to estimate the input parameters that best fit 
laboratory measured fused silica reflectance, with the goal 
of calibrating model parameters to best approximate 
material morphology when the material type and the 
reflectance are known. The micro-scale model utilizes eight 
input parameters, including:
1) rg, the characteristic particle radius of the large-particle 

mode of the PSD
2) [ln(σg)]

2, the width of the large-particle mode of the PSD

3) rg, the characteristic particle radius of the small-particle 
mode of the PSD

4) [ln(σg)]
2, the width of the small-particle mode of the 

PSD
5) γ, the population ratio between the two modes
6) particle fill factor to account for the impact of packing 

density on particle scattering within the medium
7) angle bin # for the angle of incidence, varied to account

for surface roughness effects
8) Fresnel-like component resulting from impact of packing 

density on the first-surface reflection

For an initial assessment of model validity, we focus on the
first five parameters associated with the PSD, comparing the 
PSD calculated from optimized parameters to PSDs 
measured via laser diffraction. We display one such set of 
comparisons in Fig. 3. Optimization of the reflectance 
model to the measurement of a reflectance spectrum of a 
silica particulate deposit (Fig. 3, left) yields a PSD 
consistent with independent laser-diffraction measurements
of the particle population (Fig. 3, right), demonstrating that 
the numerically invertible model can extract approximate
morphology when material type and reflectance are known.

Fig. 3. Results of optimization: left is reflectance and 
right is particle size distribution.

UNCERTAINTY QUANTIFICATION

The optimization (calibration) exercise discussed above
showed that a high level of agreement is obtainable using
the micro-scale model results and laboratory data. However, 
in real world applications, larger uncertainties stemming
from multiple sources can be difficult to capture and thus 
require more complex approaches to modeling uncertainties. 
Below we describe a stochastic approach to uncertainty 
modeling.

Bayesian Calibration
To estimate uncertainties with the model input 

parameters, a Bayesian-like calibration can be used to 
explicitly deal with (1) treatment of functional output, (2) 
emulation of the model (functional) output, and (3) 
calibration parameter screening and selection [8]. In 
Bayesian calibration, uncertain input parameters are 
described by a “prior” distribution. The priors are updated 
with experimental data in a Bayesian framework that 
involves the experimental data and a likelihood function 
which describes how well each parameter value is supported 
by the data. The posterior distribution is the distribution for



the input parameters after taking into account the observed 
data. This posterior distribution can be determined by 
Bayes’ rule [8], as shown in Eq. 1,

p(θ| X, �) ∝  p(X |θ) p(θ, �) (1)                                          

where the sampling distribution, p(X|θ), is the distribution 
of the observed data conditional on its parameters (also 
called the likelihood function), p(θ,α) is the prior parameter 
distributions, and α is a hyper parameter (parameter of the 
prior distribution). The results of a Bayesian calibration 
analysis for the same example from the optimization 
exercise are shown in Fig. 4. The prior distributions are 
represented by the blue dash lines, the posterior 
distributions are represented by the histograms, with a beta 
distribution being fit to each histogram (red curves). 

For this analysis, 150 functional evaluations were performed 
using the prior distributions shown in Fig. 4 and a Latin 
Hypercube sampling design [9]. A Gaussian Process (GP) 
model was then fit to the functional evaluations to be used 
as a surrogate model (emulator). A Markov Chain Monte 
Carlo analysis with 5000 iterations was then performed 
using the GP model to best fit the measured data [10].

Sensitivity Analysis
After calibration, a sensitivity analysis (SA) was

performed to further understand the model, i.e., to ascertain 
which model parameters contribute the most to the 
uncertainty in the output, and to ensure that the model 
behaves as expected when model parameters vary [11]. A 
simple SA was performed using the posterior distributions 

from the calibration and the Morris design [12]. In this 
design, only one parameter value is changed and the model 
is run. A compilation of this analysis is shown in Fig. 5. 

The SA utilized a very simple designed, nonetheless
revealed added insights. For instance, changing values for 
parameters 3-5 had very little effect on reflectance, 
indicating that the primary impact of particle size is 
associated with the large particle mode of the PSD.  While 
changes in parameters 1, 2, 6, and 7 had noticeable effects
on the change in reflectance, the change in parameter 8 had 
a much larger effect. This is consistent with the reported
strong impact of particle packing density on changes in the 
reflectance due to the Fresnel-like component [13].  The
analysis also pointed to anomalous model results when the 
packing density (parameter 6) was large for wavelengths 
between 5-6 µm (green curve), likely associated with a 
limited range of numerical applicability in the computation
used to account for the impact of packing density on particle 
scattering within the medium.

Uncertainty Analysis
Uncertainty analysis (UA) refers to the process of 

propagating the uncertainty in the model parameters through 
to the outputs of interest to obtain a distribution of model 
output. Utilizing the posterior parameter distributions 
extracted from the calibration exercise, a Monte Carlo 
simulation was performed to estimate the output 
uncertainties. The results of the UA are shown in Fig. 6. 
Importantly, these uncertainties assume both the PSD and 
the Fresnel-like component are unknown, so the results 
emphasize the impact of these parameters on the HSI 
observable.  These results could then be used to propagate 
up the modeling hierarchy as illustrated in Fig. 6 to 

Fig. 4. Calibration results: blue dash lines are prior 
distributions, histograms are posterior distributions 
and red curves are beta distributions fit to the 
histograms..

Fig. 5. Sensitivity analysis utilizing the Morris design 
for global sensitivity.



investigate how uncertainties at the micro-scale could affect 
modeling results at the system (i.e. sensor data) level.

CONCLUSION

In this paper, we introduce a hierarchical approach to 
validating a multi-scale model for predicting HSI 
observables from solid particulate materials, and illustrate 
techniques for quantifying uncertainties in the complex 
modeling process. We describe an iterative process of using 
comparative differences between experimental observations
and model results to evaluate model validity. Using a single-
scale model as a proof-of-concept example, we demonstrate
the feasibility of the Bayesian approach to modeling 
uncertainty at the micro scale and briefly discuss using the 
results for estimating its impact on model uncertainty at 
higher scales. We also show that sensitivity and uncertainty 
analysis, as part of our approach, generated added insight 
into anomalies in the modeling, which can provide valuable 
feedback to model developers and experimentalists. Our 
work helps address UQ within the HSI model application
domain and, with continuing efforts, will help researchers 
and stakeholders gain greater confidence in the utility and 
defensibility of multi-scale physical models and model 
outputs. 
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Fig. 6. Uncertainty analysis based on the 
calibration posterior parameter distributions 
assuming no known parameters.


