SAND2016- 7591C

Validation and Uncertainty Quantification of Hyperspectral Image Modeling

David W. Engel”, Thomas A. Reichardt”, and Thomas J. Kulp®

“Pacific Northwest National Laboratory: 902 Battelle Blvd, Richland, WA, 99354, dave.engel@pnnl.gov
"Sandia National Laboratories: P. O. Box 969, MS 9033, Livermore, CA, 94551, tareich@sandia.gov, tikulp@sandia.gov

INTRODUCTION

Identifying and applying appropriate validation and
uncertainty quantification (V/UQ) methods is instrumental
in strengthening the wvalidity and scientific rigor of
predictive modeling of the hyperspectral imaging (HSI)
observables associated with solid particulate materials.
Validating these predictive models and quantifying
uncertainties inherent in the modeling process presents a
significant research challenge.

In this paper, we present techniques for validating
physics-based models that predict HSI observables of solid
particulate materials and characterizing model uncertainties.
We are employing a hierarchical V/UQ approach by
designing physical experiments and comparing the
experimental results with the outputs of computational
predictive models [1]. We illustrate this approach by
comparing a model for the reflectance of a particulate
material to the reflectance spectrum acquired on a well-
characterized particulate deposit. By validating physical
models with experimental data at various scales, and
characterizing and quantifying uncertainties in the modeling
process, we anticipate that incorporation of V/UQ
techniques will elevate the level of confidence stakeholders
have in model utilization and model outputs.

VALIDATION/UQ PROCESS

The validation process that we are incorporating is
shown in Fig. 1. The key elements of this process are
verification [2], uncertainty quantification (UQ), validation
(or comparison), and model maturity [3]. For this paper, the
primary focus is on UQ, including calibration, sensitivity
analysis (SA), and uncertainty analysis (UA), shown in the
light blue shaded boxes on the left side in Fig. 1.

As Fig. 1 illustrates, the differences resulting from
comparing modeled results and experimental observations
determine the path(s) to model refinements, ie. by
improving the physics models, by collecting and
incorporating more data into the existing model, or both.
Such iterative comparisons provide continuous feedback
into the modeling and UQ process until the differences
between the modeled results and experimental observations
become sufficiently small.

For complex multi-physics problems like modeling the
HSI observables of particulate materials, a hierarchical
approach is needed due to limited feasibility of designing
and conducting accurate validation and UQ experiments on
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Fig. 1. Model validation process, which includes
verification, UQ, and model maturity.
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full-scale systems. To generate comparisons between
modeling and experimental results, we apply such a
hierarchical approach to designing physical experiments
(and/or utilizing available measurement data sets) to
compare with the results of predictive computational
models. This approach divides a system analysis into
several progressively smaller scales— at the system scale
(i.e., the full HSI data cube that is acquired by the sensor), at
the individual-pixel scale of the data cube, at the micro-
scale (i.e. at the level of interaction of electromagnetic
radiation with the particulate medium), and also for the
intrinsic material properties (i.e., the complex refractive
index n+ik of the material, its measurement often requiring
the application of models as well) —to identify and quantify
measured simulation errors against experimental data and to
provide a quantitative assessment of uncertainties. This
hierarchy is illustrated in Fig. 2 by the data flow through the
different models at different scales. We enable scalability by
utilizing both forward and inverse modeling. The left side of
Fig. 2 illustrates the forward (up scale) data and model flow
from intrinsic optical properties all the way up to the sensor
level (data cube). The right hand side of Fig. 2 then starts
with the sensor data and propagates the results for materials
of interest (MOI) down scale back to the intrinsic properties
of the material. This hierarchical approach leverages smaller
scale models and data to investigate the accuracy of the
various components of the system so that lower-level
analysis can inform V/UQ on a larger scale.

The outcome of this V/UQ process will be estimates of
input parameter uncertainties for each calibrated model, the
confidence range of model output at each scale, and the
uncertainty of the overall system response (i.e., sensor data).
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Fig. 2. Data and model flow for the HSI material
identification problem.
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These estimates will be based on the confidence levels
developed in the various decoupled scale problems as well
as the upscaling procedure. By considering smaller scale
problems that isolate particular aspects of the multi-physics
of the full scale system, we should be able to evaluate and
isolate the contributions of different aspects of the model to
the predictive errors, such as the effects of coupling
different physics or the geometric upscaling of the coupled
physics. In the following section, we use a micro-scale
model to demonstrate the utility of using a lower-level
model to inform UQ at a higher level.

MICRO-SCALE MODEL

To illustrate the V/UQ process, we focus the analysis
on a single physical scale—the micro-scale. It is well known
that the reflectance spectrum of a particulate medium can
depend strongly upon the size of the particulates [4], and
that the nature of this dependence is a function of the
material refractive index. To account for this dependence,
we implement a reflectance model developed for an
optically thick particulate deposit with corrections for
particle packing density and particle shape effects [5]. The
model approximates the range of particle size in the deposit
with a bimodal volume log-normal [6] particle size
distribution (PSD). The analyses performed with the micro-
scale model were done using the Dakota software tools [7].

Model Optimization

An optimization analysis was performed on the micro-
scale model to estimate the input parameters that best fit
laboratory measured fused silica reflectance, with the goal
of calibrating model parameters to best approximate
material morphology when the material type and the
reflectance are known. The micro-scale model utilizes eight
input parameters, including:
1) 1, the characteristic particle radius of the large-particle

mode of the PSD

2) [1n(6g)]2, the width of the large-particle mode of the PSD

3) ry, the characteristic particle radius of the small-particle
mode of the PSD

4) [1n(6g)]2, the width of the small-particle mode of the
PSD

5) v, the population ratio between the two modes

6) particle fill factor to account for the impact of packing
density on particle scattering within the medium

7) angle bin # for the angle of incidence, varied to account
for surface roughness effects

8) Fresnel-like component resulting from impact of packing
density on the first-surface reflection

For an initial assessment of model validity, we focus on the
first five parameters associated with the PSD, comparing the
PSD calculated from optimized parameters to PSDs
measured via laser diffraction. We display one such set of
comparisons in Fig. 3. Optimization of the reflectance
model to the measurement of a reflectance spectrum of a
silica particulate deposit (Fig. 3, left) yields a PSD
consistent with independent laser-diffraction measurements
of the particle population (Fig. 3, right), demonstrating that
the numerically invertible model can extract approximate
morphology when material type and reflectance are known.
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Fig. 3. Results of optimization: left is reflectance and
right is particle size distribution.

UNCERTAINTY QUANTIFICATION

The optimization (calibration) exercise discussed above
showed that a high level of agreement is obtainable using
the micro-scale model results and laboratory data. However,
in real world applications, larger uncertainties stemming
from multiple sources can be difficult to capture and thus
require more complex approaches to modeling uncertainties.
Below we describe a stochastic approach to uncertainty
modeling.

Bayesian Calibration

To estimate uncertainties with the model input
parameters, a Bayesian-like calibration can be used to
explicitly deal with (1) treatment of functional output, (2)
emulation of the model (functional) output, and (3)
calibration parameter screening and selection [8]. In
Bayesian calibration, uncertain input parameters are
described by a “prior” distribution. The priors are updated
with experimental data in a Bayesian framework that
involves the experimental data and a likelihood function
which describes how well each parameter value is supported
by the data. The posterior distribution is the distribution for



the input parameters after taking into account the observed
data. This posterior distribution can be determined by
Bayes’ rule [8], as shown in Eq. 1,

POl X, @) o« p(X|6) p(6, @) (1)

where the sampling distribution, p(X]6), is the distribution
of the observed data conditional on its parameters (also
called the likelihood function), p(6,0) is the prior parameter
distributions, and o is a hyper parameter (parameter of the
prior distribution). The results of a Bayesian calibration
analysis for the same example from the optimization
exercise are shown in Fig. 4. The prior distributions are
represented by the blue dash lines, the posterior
distributions are represented by the histograms, with a beta
distribution being fit to each histogram (red curves).
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Fig. 4. Calibration results: blue dash lines are prior
distributions, histograms are posterior distributions
and red curves are beta distributions fit to the
histograms..

Fresnel component

For this analysis, 150 functional evaluations were performed
using the prior distributions shown in Fig. 4 and a Latin
Hypercube sampling design [9]. A Gaussian Process (GP)
model was then fit to the functional evaluations to be used
as a surrogate model (emulator). A Markov Chain Monte
Carlo analysis with 5000 iterations was then performed
using the GP model to best fit the measured data [10].

Sensitivity Analysis

After calibration, a sensitivity analysis (SA) was
performed to further understand the model, i.e., to ascertain
which model parameters contribute the most to the
uncertainty in the output, and to ensure that the model
behaves as expected when model parameters vary [11]. A
simple SA was performed using the posterior distributions

from the calibration and the Morris design [12]. In this
design, only one parameter value is changed and the model
is run. A compilation of this analysis is shown in Fig. 5.

The SA utilized a very simple designed, nonetheless
revealed added insights. For instance, changing values for
parameters 3-5 had very little effect on reflectance,
indicating that the primary impact of particle size is
associated with the large particle mode of the PSD. While
changes in parameters 1, 2, 6, and 7 had noticeable effects
on the change in reflectance, the change in parameter 8 had
a much larger effect. This is consistent with the reported
strong impact of particle packing density on changes in the
reflectance due to the Fresnel-like component [13]. The
analysis also pointed to anomalous model results when the
packing density (parameter 6) was large for wavelengths
between 5-6 um (green curve), likely associated with a
limited range of numerical applicability in the computation
used to account for the impact of packing density on particle
scattering within the medium.
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Fig. 5. Sensitivity analysis utilizing the Morris design
for global sensitivity.

Uncertainty Analysis

Uncertainty analysis (UA) refers to the process of
propagating the uncertainty in the model parameters through
to the outputs of interest to obtain a distribution of model
output. Utilizing the posterior parameter distributions
extracted from the calibration exercise, a Monte Carlo
simulation was performed to estimate the output
uncertainties. The results of the UA are shown in Fig. 6.
Importantly, these uncertainties assume both the PSD and
the Fresnel-like component are unknown, so the results
emphasize the impact of these parameters on the HSI
observable. These results could then be used to propagate
up the modeling hierarchy as illustrated in Fig. 6 to
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Fig. 6. Uncertainty analysis based on the
calibration posterior parameter distributions
assuming no known parameters.

investigate how uncertainties at the micro-scale could affect
modeling results at the system (i.e. sensor data) level.

CONCLUSION

In this paper, we introduce a hierarchical approach to
validating a multi-scale model for predicting HSI
observables from solid particulate materials, and illustrate
techniques for quantifying uncertainties in the complex
modeling process. We describe an iterative process of using
comparative differences between experimental observations
and model results to evaluate model validity. Using a single-
scale model as a proof-of-concept example, we demonstrate
the feasibility of the Bayesian approach to modeling
uncertainty at the micro scale and briefly discuss using the
results for estimating its impact on model uncertainty at
higher scales. We also show that sensitivity and uncertainty
analysis, as part of our approach, generated added insight
into anomalies in the modeling, which can provide valuable
feedback to model developers and experimentalists. Our
work helps address UQ within the HSI model application
domain and, with continuing efforts, will help researchers
and stakeholders gain greater confidence in the utility and
defensibility of multi-scale physical models and model
outputs.
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