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Abstract

An increasingly important endeavor is to develop
computational strategies that enable molecular dy-
namics (MD) simulations of biomolecular systems
with spontaneous changes in protonation states
under conditions of constant pH. The present
work describes our efforts to implement the pow-
erful constant-pH MD simulation method based
on a hybrid nonequilibrium MD/Monte Carlo
(neMD/MC) technique within the highly scal-
able program NAMD. The constant-pH hybrid
neMD/MC method has a number of appealing fea-
tures; it samples the correct semi-grand canoni-
cal ensemble rigorously, the computational cost in-
creases linearly with the number of titratable sites,
and it is applicable to explicit solvent simulations.
The present implementation of the constant-pH
hybrid neMD/MC in NAMD is designed to han-
dle a wide range of biomolecular systems with no
constraints on the choice of force field. Further-
more, the sampling efficiency can be adaptively im-
proved on-the-fly by adjusting algorithmic param-
eters during the simulation. Illustrative examples
emphasizing medium and large scale applications
on next-generation supercomputing architectures
are provided.

1 Introduction

Most conventional molecular dynamics (MD) simu-
lations of biomolecular systems aim to sample sta-
tistical mechanical ensembles with a fixed compo-
sition. This largely stems from the fact that many
processes of interest are well described by classi-
cal, fixed valence force-field models. Nonetheless,
a vast amount of biochemistry is regulated by care-
fully buffered solutions and a complex interplay be-
tween multiple protonation states. This is clearly
illustrated, for example, by the sensitivity of en-
zymes to pH (e.g., pH-rate studies) and the pres-
ence of distorted pH gradients in cancerous cells.1,2

In many cases, the number of relevant states is
relatively small (perhaps two to four) and can be
studied by brute force enumeration. However, this
approach quickly becomes untenable for larger sys-
tems or even simple solutions of modest concentra-
tion. Even if the number of truly relevant states
is manageably small compared to the total num-
ber of possible states, it may still not be readily
obvious which of the states is in fact important. If
the feasibility of the calculation demands such an
insight the investigator risks heavily biasing the re-
sults. Such systems require a constant-pH simula-
tion approach that naturally accounts for variation
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of protonation states without a priori enumeration
of the relevant states.

A classical MD simulation in the canonical en-
semble typically samples according to a Hamilto-
nian H(x), where x represents both the coordi-
nates and momenta. Assuming that the system
comprises m titratable sites, the Hamiltonian must
be generalized to control the microscopic potential
function upon changes in protonation states. For
this purpose, we define a vector of coupling param-
eters, λ ≡ {λ1, λ2, . . . , λm}, where each element is
a zero or one to indicate the absence or presence
of a proton at a given site, respectively. The sum
over all elements, nλ ≡

∑m
s=1 λs simply counts the

total number of protons in the system that are cou-
pled to the pH bath. It follows that the simulation
samples from the partition function

Qλ =

∫
dx e−βH(x;λ), (1)

where β ≡ 1/(kBT ), kB is Boltzmann’s constant,
T is the absolute temperature, and the integral is
over the system (or periodic cell) volume. The vec-
tor of coupling parameters is explicitly kept in the
notation H(x;λ) as a reminder that the model is
expected to represent a family of protonation possi-
bilities. A constant-pH simulation samples accord-
ing to this family of Hamiltonians by combining
them into a single semi-grand canonical partition
function:

Ξ(pH) =
∑
λ∈S

Qλ10−nλpH. (2)

The summation extends over the complete set of
possible protonation states S, which has at most
2m elements, although many of these states may
be forbidden. It is also possible for λ to have el-
ements representing protonation sites in solution
to maintain charge neutrality, although this is not
necessary.3 Equation (2) has a form similar to
that of an expanded ensemble4 with the differ-
ence that each state has a weight that is explic-
itly pH-dependent and, thus, has a physical mean-
ing. This differs from the conventional approach
in which the weights are just arbitrary sampling
devices. A Gibbs-sampling view of this problem5

suggests that exploration of the space defined by
x and λ can be accomplished by simply alternat-
ing sampling between the two. This is essentially
the “stochastic titration” method first suggested
by Baptista et al. 6 . Such an approach hinges on

either the strict use of an implicit-solvent model7

or else a sampling of the state space on an implicit
representation followed by a period of solvent “re-
laxation”.6,8 These approximations are used in or-
der to avoid very low efficiency due to steric clashes
in explicit solvent.

More recently, Gibbs sampling methods have
been generalized into a broad class of nonequilib-
rium MD/Monte Carlo (neMD/MC) schemes3,9–12

and this is adopted here. In this scheme each
Monte Carlo (MC) move consists of a short MD
trajectory in which the system is driven from its
current configuration and protonation state (x,λ)
into a new candidate state (x′,λ′). A “pure” Gibbs
sampling scheme is recovered when the length of
the trajectory is zero. The advantage of finite, non-
zero length trajectories is that there is no need to
rely on an auxiliary implicit-solvent model, which
might otherwise limit either the transferability of
the method or its extension beyond fixed-charge
force fields. The disadvantage is that rejecting
neMD/MC moves is generally expensive, since gen-
erating the candidate configuration requires a short
MD simulation. However, it is difficult to compare
this expense against other methods utilizing rel-
atively expensive implicit-solvent models such as
non-linear Poisson-Boltzmann. The latter mod-
els can be quite demanding for large systems and
do not necessarily have cost scaling that coincides
with explicit models, nor the same memory require-
ments.

Other constant-pH approaches are also possible,
which do not sample the semi-grand canonical en-
semble directly. For example, Lee et al. 13 devel-
oped a family of Hamiltonians based on envelop-
ing distribution sampling (EDS), which can be
reweighted to produce the desired statistics. Sev-
eral research groups have also proposed variations
based on continuous titration coordinates using an
extended Lagrangian, whereby the elements of λ
take fractional values and carry fictitious masses
and momenta (so-called “λ-dynamics”).14,15 How-
ever, because protonation states fractionally coex-
ist, some implementations do not appear to have
included rigorous long-range electrostatics until re-
cently;16 this seems especially problematic for sim-
ulations of highly charged systems such as RNA.17

Some implementations also require spurious modi-
fication of the bonded terms in the underlying force
field model, for example, superposition of proto-
nated and deprotonated carboxylate geometries.18

The motivation behind the current work is to
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address problem spaces that may not be appro-
priate for the other approaches described above.
For example, methods based on an auxiliary
implicit-solvent model are prone to fail when titra-
tions do not occur in aqueous solvent, such as
for membrane-bound proteins or otherwise buried
sites. Another concern is scalability to large sys-
tems with many titratable sites. The EDS-based
approach in particular requires concurrent simula-
tions (replicas) on the order of 2m, such that even
a system of modest size with 10 protonation sites
would require a rather unwieldy 1,024 replicas. A
similar argument can be made for continuous titra-
tion methods, which many research groups analyze
by creating ad hoc bins for the fractional occupa-
tions observed near zero and one.16 In this binning
approach, the data outside of the bins is completely
discarded in some cases. Clearly, the amount of
time spent completely outside of the bins must be
directly proportional to the number of fractional
sites, thereby rendering less and less useable data
as the system size increases. The neMD/MC ap-
proach addresses these shortcomings. As shown
here, the new MC procedure naturally accounts
for all types of environmental responses, including
those found in crowded spaces such as lipid mem-
branes. The cost of sampling also does not increase
with the number of sites, although the overall sam-
pling requirement obviously increases (the curse of
dimensionality). The method also strictly respects
the underlying model (e.g., no auxiliary implicit-
solvent description is needed); the present study
utilizes a fixed charge force field representation,
but this is not algorithmically necessary. It is also
noteworthy that an internally consistent descrip-
tion of tautomeric states is a natural part of the
algorithm.18,19 Lastly, the neMD/MC procedure
can be extended to permit meaningful optimiza-
tion based on the simulation history,20 not least
because of an iterative procedure for pKa estima-
tion.3 All of these merits are seamlessly combined
with the inherent portability, scalability, and flexi-
bility of the NAMD21 simulation engine in order to
permit constant-pH simulations on both commod-
ity and capability computing resources.

2 Theory

The core theoretical arguments for the neMD/MC
constant-pH approach have already been presented
by Chen and Roux 3 based on earlier ideas due to
Stern 9 . Some of these developments have also been

known to the wider constant-pH community for
some time (see, for example, a review by Mongan
and Case 22 from over a decade ago). For clarity,
the ideas needed to understand the new implemen-
tation are presented here.

2.1 Empirical Model Corrections

Consider the equilibrium of an arbitrary titratable
system, A, interconverting between its protonated
(HA) and deprotonated (A−) forms:

HA
∆Fa

A− + H+,

where

10pKa ≡ e−β∆Fa =
QA−QH+

QHA
. (3)

Most classical models do not provide a realistic dis-
sociative model for protons because they neglect a
physical description of covalent bond energies, nu-
clear quantum effects, and/or proton solvation. As
such, direct evaluation of the pKa is generally dif-
ficult and/or inconvenient. It is instead common
to redefine the partition function ratio such that
the model for a particular system exactly matches
a known reference value pKref

a :

10−pKref
a =

QA−

QHA
eβ∆E , (4)

where

∆E ≡ (∆Fa − FH+)− ln 10

β
pKref

a (5)

and FH+ ≡ −β−1 lnQH+ defines the absolute free
energy of a proton in solution. For many force
fields it is easiest to compute ∆F ≡ ∆Fa − FH+

directly. However, this definition is slightly mis-
leading since it implies that FH+ is always a global
constant. Clearly the actual physical quantity for
FH+ must be a constant, but this is only true for
the model if it includes a meaningful description
of bond breakage and formation. Otherwise, there
are other additive errors in ∆Fa, which are not eas-
ily separated in the definition of ∆F . In practice,
suffice to treat ∆F as a single free energy term
even though its physical meaning is rather com-
plex. From here on, all factors containing ∆E are
assumed to be implicitly absorbed into the relevant
partition function ratio.

It is also worth stating that ∆E is technically en-
semble dependent. That is, ∆E formally depends
on the system composition, volume, and tempera-
ture, and this dependence is necessarily inherited
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by the redefined systems. For systems in aqueous
solution the dependence of pKref

a on volume can be
safely ignored provided that the constant-pH en-
semble is simulated at a density reasonably similar
to that at which the reference data is generated.
However, the effect of temperatures far from that
at which pKref

a is measured may be non-negligible
and therefore requires a correction.

2.2 Statistical Mechanical Connections

The above formalism can also be understood as
a statistical mechanical form of the Henderson-
Hasselbalch equation by identifying the protonated
fraction as

PHA(pH) =
QHA10−pH

QA− +QHA10−pH

=
1

1 + 10pH−pKa
, (6)

where, by construction, pKa = pKref
a for the ref-

erence system. The simplest variation is take the
same species A within some other composition but
no additional protonation sites. In this case differ-
ent partition functions Q′

A−
and Q′HA can be con-

structed, but their ratio is no longer directly equal
to pKref

a . Instead one finds that

pKa = − log
Q′

A−

Q′HA

= pKref
a +

β (∆F ′a −∆Fa)

ln 10
.

The pKa of other systems are thus seen to be
shifted with respect to pKref

a by an amount that
can be computed as a difference of relative free
energies. In this two-state case the difference is
exclusively a function of the original Hamiltonian
definitions since the FH+ terms cancel; it does not
depend on ∆E, except through the choice of refer-
ence state.

The construction of computing shifted pKa val-
ues is not as straightforward when dealing with sys-
tems that possess more than two states. As per the
general case described by Eq. (2), the state of a sys-
tem with m protonation sites is completely defined
by its occupancy vector λ (Figure 1). The number
of states described by different permutations of λ
will, in general, be considerably greater than two
and a different shift value will be needed for each
pair of states. Accordingly, the shift must instead
be written as ∆E(λ,λ′), where λ′ is the occupancy

vector for some other state. Subsets of the elements
of λ can be organized into residues and these are
the basic units used to define different values of
∆E(λ,λ′). In practice, a change in λ usually only
involves a few residues, and the change is computed
by summing over the per residue shifts.

Figure 1: The protonation state of a titratable system is
completely defined by its occupancy vector λ, where each
of its m elements is either a one or a zero depending on
whether the given site, s, is or is not occupied, respectively.
The protonation state of individual residues is determined
by a small subset of the elements of λ such that multiple
system states may contain the same residue state. The av-
erage of a given element of λ yields the protonated fraction
for that site and corresponds to a microscopic pKa. Mul-
tiple sites may be equivalent such that a macroscopic pKa

can be determined by grouping two or more sites together
(e.g., the neutral states of carboxylate moieties). However,
even non-equivalent sites can be grouped into macroscopic
transitions, although in these cases the relationship between
the two sets of pKa values is not always straightforward
(e.g., methyl imidazole).

For any protonation site, the terms in Eq. (2)
can be separated into two groups – those with
and those without the proton present. This parti-
tioning corresponds to separating the Qλ into two
groups based on whether a particular element is
one (Ξ1) or zero (Ξ0). This splitting of the sum-
mation can be done for any site and defines two
nonoverlapping summations over the set:

Ξ(pH) = Ξ0(pH) + Ξ1(pH)10−pH. (7)

Note also that an extra pH-dependent factor has
been factored out of Ξ1 since each term in the sum-
mation has at least one more proton than those in
Ξ0. More complicated partitioning schemes with
more than two groups can also be performed us-
ing sets of sites. For example, three groups can be
used to enumerate the states of histidine based on
its two sites [see Figure (1)]. Following the same
procedure as for the two-state case yields

pKa(pH) = − log
Ξ0(pH)

Ξ1(pH)
, (8)

which is no longer a simple difference in relative
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free energies due to the pH-dependence. It is worth
noting that this equation only contains the ratio
Ξ0/Ξ1 such that the empirical corrections defined
by ∆E(λ,λ′) can be applied.

The dependence of the pKa value on pH is fre-
quently added into Eq. (6) by defining the Hill co-
efficient, n:

pKa(pH) ≈ pK(a)
a + (1− n)

(
pH− pK(a)

a

)
. (9)

This asserts that the deviation is no longer with
respect to pKref

a , but some other “apparent” pKa,

pK
(a)
a (in most cases this is the pH value at which

the occupied and unoccupied fractions are equal
to 1/2). The pH dependence vanishes for n = 1
and the two-state case is recovered. This approxi-
mation might be considered as a first order series

expansion about pK
(a)
a , although this viewpoint is

quite different from the usual physical motivation
for the Hill coefficient.23

2.3 neMD/MC Sampling

Figure 2: The constant-pH MD algorithm consists of two
part cycles in which standard equilibrium MD (blue and
green solid lines) is performed followed by a driven nonequi-
librium switch (orange dotted lines), which changes both
the configuration and protonation state (arbitrarily labeled
A and B). Detailed balance is restored after the nonequilib-
rium steps by applying a MC procedure in which the new
configuration/state is accepted or rejected.

As in previous work3,9 the neMD/MC scheme
is composed of alternating sampling in x at a
fixed protonation state λ using standard MD and
neMD/MC moves sampling in both x and λ (Fig-
ure 2). Only the latter warrants additional com-
ment. The neMD/MC detailed-balance equation
has the form:

ρ(x′,λ′)

ρ(x,λ)
=
T (x,λ→ x′,λ′)

T (x′,λ′ → x,λ)
, (10)

where T is the probability of the given transition
and the ratio of equilibrium distribution functions

is

ρ(x′,λ′)

ρ(x,λ)
= e−∆ε(x,x′;λ,λ′)10−∆npH, (11)

where

∆ε(x,x′;λ,λ′) ≡
β
[
H(x′;λ′)−H(x;λ) + ∆E(λ,λ′)

]
, (12)

and ∆n ≡ nλ′ − nλ.
Following Chen and Roux 3 , the transition prob-

ability is split into two parts:

T (x,λ→ x′,λ′) =

T (i)(λ→ λ′)T (s)(x→ x′|λ→ λ′), (13)

where T (i) is the “inherent” probability that a tran-
sition between two protonation states will occur
and T (s) is the probability that the “switch” be-
tween those states will be accepted given that it
has already been proposed. This is analogous to
the usual practice of splitting T into proposal and
acceptance steps.

In order to accomplish this new splitting, the ra-
tio of distribution functions is factored by first in-

troducing a new pairwise parameter, pK
(i)
a (λ,λ′),

which is added and subtracted in the exponent:

T (i)(λ→ λ′)

T (i)(λ′ → λ)
= 10pK

(i)
a (λ,λ′)−∆npH (14)

T (s)(x→ x′|λ→ λ′)

T (s)(x′ → x|λ′ → λ)
=

e−∆ε(x,x′;λ,λ′)10−pK
(i)
a (λ,λ′) (15)

These detailed-balance conditions can be satisfied
by simple Metropolis criteria for both T (i) and T (s).
In the latter case, one can also use a generalized
neMD/MC criterion by replacing the energy differ-
ence H(x′;λ) − H(x;λ) with the nonequilibrium
work applied during the switch (see Computational
Methods).3,10,12

Because it cancels exactly upon multiplication,

the choice of pK
(i)
a (λ,λ′) is completely arbitrary

and does not affect detailed balance. However, it
clearly affects sampling efficiency by partitioning
effort between the two steps. It has been shown

that choosing pK
(i)
a (λ,λ′) to be the true pKa maxi-

mizes the efficiency. This is because the free energy
of the switching transformation effectively becomes

5



zero.3,20

There are a few modifications to the inherent step
that make the algorithm more useful for systems
that contain multiple residues and/or residues with
more than two states. First, there is an implicit
proposal component in T (i) that is fixed with re-
spect to λ and thus immediately falls out of the
detailed-balance condition. That is, each residue
(or group of residues) that can be titrated is as-
signed a fixed weight during the simulation. At
the beginning of the neMD/MC step, the com-
plete set of states permitted within this group is
selected directly according to the probability mass
function defined by the (normalized) weights. Two
such choices are illustrated in Figure 1, whereby a
carboxylate moiety and/or methyl imidazole group
might be chosen.

Once the residue selections have been made, the
remainder of the transition probability is split yet
further into another proposal and a preliminary ac-
ceptance step:5,24

T (i)(λ→ λ′) = T (i)
p (λ→ λ′)T (i)

a (λ→ λ′) (16)

T (i)
p (λ→ λ′) =

{
0 λ = λ′

p(λ,λ′)
1−p(λ,λ) λ 6= λ′

(17)

T (i)
a (λ→ λ′) = min

[
1,

1− p(λ,λ)

1− p(λ,λ′)

]
, (18)

where

p(λ,λ′) ≡ 10pKi
a(λ,λ′)−(nλ′−nλ)pH∑

λ′′ 10pKi
a(λ′,λ′′)−(nλ′′−nλ′ )pH

. (19)

The first step directly samples all states that are
not the current state, while the second step ac-
cepts or rejects this proposal using a Metropolis cri-
terion and appropriate renormalization. Chodera
and Shirts 5 refer to this approach as “Metropolized
indepence sampling.” This is because, for two

states, T
(i)
p chooses the only possible candidate

state 100% of the time and T
(i)
a reduces to a sim-

ple Metropolis criterion with the conventional ex-
ponential form. Conversely, when p(λ,λ) is very

small, T
(i)
a essentially evaluates to one and T

(i)
p be-

comes an independence sampling amongst all pos-
sible trial states.

In practice, this algorithm will tend to propose
the most probable state that is not the current
state, unless the current state is strongly favored by
the system pH. For example, at low pH a histidine

residue is most probably in its protonated state.
Since the only other states are neutral tautomers,
one of these must be proposed and with their fixed
tautomeric ratio (near 2 : 1 in single peptides25).
Nonetheless, such a proposal will probably be re-
jected. Conversely, at high pH the histidine is likely
to be in one of its neutral forms and the probability
of proposing the protonated state is low. However,
it is important to remember that even if the inher-
ent step is accepted, this only means that the algo-
rithm then proceeds to the switch step, which itself
can be accepted or rejected. Importantly, since all

of the evaluations needed to compute T
(i)
p and T

(i)
a

are exceedingly inexpensive compared to the cost
of the full switch trajectory, it is worth repeating
the process several times in order to choose a good
candidate. The present algorithm chooses a maxi-
mum number of attempts (by default, the number
of titratable residues in the system) in which to
propose and preliminarily accept a switch move,
which is then performed. If the maximum number
of attempts is reached, then no switch is performed
and neMD/MC cycle is considered as completed.

3 Computational Methods

The constant-pH implementation described here is
available as a Tcl plugin, namdcph, for use in con-
junction with NAMD 2.12 and later versions.21

The focus here is on proteins, but the implemen-
tation is flexible enough to permit new residues
(or molecules) with arbitrary numbers of sites and
states, provided that force field definitions and ref-
erence pKa values are available. All simulations
here were carried out with the CHARMM36 force
field26 and thus the titratable amino acid selection
is limited to only those definitions (serine is de-
fined in CHARMM36, but not used here). Due to
subtleties of the CHARMM residue-topology file
format, terminal groups are not yet titratable and
are instead fixed in their zwitterionic forms.

All MD simulations, constant-pH or otherwise,
utilized the same simulation settings. Periodic
boundary conditions were employed using particle
mesh Ewald electrostatics27 and smooth switching
of the Lennard-Jones forces28 between 10 and 12 Å,
after which an isotropic long-range approximation
was used. The exception to this is membrane sim-
ulations during which switching was performed be-
tween 8 and 10 Å and the isotropic correction was
neglected. Langevin dynamics was employed at
298 K with a friction coefficient of 1 ps−1 coupled
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to heavy atoms only. Unless otherwise specified, in-
tegration was performed with an r-RESPA29 mul-
tiple time-stepping scheme with an effective time
step of 2 and 4 fs for short- and long-range inter-
actions, respectively. The RATTLE30 and SET-
TLE31 algorithms were used to constrain cova-
lent bonds involving hydrogen to their equilibrium
lengths.

3.1 Alchemical Coupling and Force
Field Modifications

!=1/3

!=2/3

!=0 !=1

MC sample of auxiliary

coordinates

removal of auxiliary

coordinates

neMD alchemical

growth

Figure 3: A switch move contains three main steps: 1) an
exact MC sampling of auxilliary sidechain atoms, 2) neMD
propagation of the coordinates and coupling constant λ as
the original coordinates and state (blue spheres) decouple
and the new coordinates and state (green spheres) become
coupled, and 3) removal of the non-interacting atoms. If the
neMD/MC move is rejected, then the simulation continues
from the original coordinates.

When needed, alchemical coupling between pro-
tonation states was accomplished via linear cou-
pling using a “dual-topology” paradigm with ad-
ditional zero-length bonds between equivalent but
otherwise non-interacting atoms (force constant
100 kcal/mol-Å2).32,33 The key advantage of this
approach is that it resolves topological conflicts be-
tween different protonation states, especially when
rigid bonds are used. The result of the isotropic
harmonic bonds is that, when one set of alchemi-
cal atoms is completely uncoupled, the additional
Boltzmann factors for the kinetic and potential
energy of each atom have a Gaussian form in
the Cartesian basis.34 This is exploited during
constant-pH MD by deleting the noninteracting
atoms during “normal” MD and then resampling
them when a neMD/MC switching trajectory is
initialized (Figure 3). After a neMD/MC move in
which the candidate state is accepted, the newly
uncoupled atoms are again deleted, otherwise the
initial coordinates before resampling are used. As a
requirement for this procedure to work, the num-
ber of atoms must be constant before and after
the switch. This means that the coordinates for a
constant-pH trajectory can be analyzed and visu-

alized as if they belonged to a conventional simu-
lation with fixed composition.

Clearly, the above scheme necessitates the intro-
duction of “dummy protons” for all deprotonated
states. These phantom particles only interact with
the system via a small number of bonded force-field
terms. If made appropriately, these adjustments
to the model produce the same ensemble averages,
but do affect the free energy and dynamics of the
system (see Supporting Information). Since the
free energies are themselves part of the constant-
pH simulation (via the reference free energy com-
putations) this strategy poses no problem. The
definition of the potential experienced by dummy
atoms also affects the sampling efficiency and can
be optimized, for example, to produce rapid transi-
tions between configurations that might otherwise
be separated by a barrier when the proton is cou-
pled (see Supporting Information).

3.2 Switching Protocols and Alchemical
Work

The neMD/MC switching trajectories additionally
require a nonequilibrium protocol for uncoupling
the initial protonation state and coupling the can-
didate state. Here a linear switching protocol is
used such that the coupling constant changes at the
beginning of each step (an asymmetric splitting of
the Liouvillian35). This scheme is in line with the
“BBK” leap-frog integrator used in NAMD.21,36

A linear switch appears to be the most efficient
scheme (in the sense of maximizing the mean ac-
ceptance probability) when the endpoints are lin-
early coupled and the transformation is antisym-
metric in time.20 With both these assumptions the
work exerted during anN -step nonequilibrium pro-
tocol is (excluding integrator error12,35,37)

Wp =
1

N

N−1∑
t=0

[U1(xt)− U0(xt)], (20)

where U0 and U1 are the potential energy func-
tions of the system before and after the switch,
respectively. This form for the work is not nec-
essarily ideal, since it assumes that the integrator
error is completely negligible with respect to the
free energy of the transformation. Other integra-
tors and/or expressions for the work may improve
upon this scheme,35,37,38 but our preliminary expe-
rience is that any such errors are negligible relative
to normal statistical uncertainty.
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3.3 Titration Curve and pKa Estima-
tion

Sampling from a constant-pH, semi-grand canoni-
cal ensemble provides a direct estimate of any num-
ber of protonation-state populations by taking sim-
ple averages of the elements of the occupation vec-
tor, λ. Specifically, the fractional population ex-
pressions defined in terms of pKa and pH [Eq. (6)]
can be expressed as ensemble averages of site oc-
cupancies. For example, if a residue has two states
that differ only in the presence and absence of pro-
ton s, then the observed protonated fraction is sim-
ply Ps(pH) = 〈λs〉, where λs is the s-th element of
λ and 〈·〉 indicates an average at fixed pH. By tak-
ing many observations at different pH values these
averages can be interpreted as a titration curve.
The most straightforward analysis is to perform
nonlinear regression using Eqs. (6) and (9) to de-
termine both an apparent pKa and a Hill coeffi-
cient.

3.3.1 Macro-/Microscopic Titrations

The simple formalism of averaging elements of λ
only describes a method for considering micro-
scopic titrations – movements of individual pro-
tons. However, most residues are best character-
ized by their unique macroscopic titration, which
often includes multiple sites grouped together. For
the imidazole example in Figure 1, this means
grouping together both sites, since the neutral
states are distinct, but convert into the same proto-
nated state. The protonated fraction for this case
is thus 〈λsλs+1〉 and this is the titration curve that
can generally be observed in a laboratory titra-
tion. However, the two deprotonated fractions
must be computed separately as 〈λs(1−λs+1)〉 and
〈(1−λs)λs+1〉 and correspond to microscopic titra-
tions.

If sites are equivalent, the macro-/microscopic
distinction can still be made, but might be less
useful. Perhaps the most obvious example is a
carboxylate, for which the macroscopic protonated
fraction is the aggregate of two equivalent sites
(i.e., 〈λ1(1− λ2) + (1− λ1)λ2〉, Figure 1). In prin-
ciple the two components can be computed sepa-
rately to yield two identical pKa values. In general,
a residue with q equivalent sites and p protons in
the protonated state will have macroscopic (M) and

microscopic (µ) values that differ as:

pKa,µ − pKM
a = log

(
p

q − p+ 1

)
. (21)

Since this difference is a straightforward constant,
we choose the macroscopic value as more intuitive
in nearly all instances. However, it may still be
useful to monitor the microscopic values separately,
since agreement between equivalent sites is a nec-
essary (but not sufficient) condition for statistical
convergence.

3.3.2 Accurate Estimation with WHAM

Here we note a simple and straightforward use of
the unbinned weighted histogram analysis method
(UWHAM),39 which has not, to our knowledge,
been reported in the literature before. It is ap-
propriate when data has been collected at multi-
ple pH values and can be extended to variation
of other parameters, such as temperature or addi-
tional bias potentials for enhanced sampling. The
UWHAM equations only involve energy differences
as a function of the parameter that is being varied
(i.e., pH). Since the Hamiltonian of the system
does not depend on the pH, all terms involving x
cancel and only terms containing λ remain. If oc-
cupation vectors are tracked during simulations at
k = 1, . . . ,M pH values, then the protonated frac-
tion of some state defined by the indicator function
χ(λt) is (see the discussion above):

Pχ(pH) =
1

N

N∑
t=1

wt(pH)χ(λt), (22)

where

wt(pH) ≡

[
M∑
k=1

Nk

N
ef(pHk)−f(pH)10−(pHk−pH)nt

]−1

(23)
is the effective weight of sample t (0 ≤ wt(pH) ≤
1), nt is the number of protons observed at each of
Nk samples observed at pHk, and N ≡

∑M
k=1Nk.

The summation over t thus includes all observed
occupancy vectors from all pH values at which data
were gathered. The function f(pH) is the semi-
grand potential with respect to the pH, which must
first be determined at the M values where samples
were accrued.39–42 However, after this has been
done any pH value may be inserted into Eq. (22)
and so it is effectively an analytic estimate of the
titration curve, albeit containing N parameters.
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This is to be contrasted with the two-parameter
Hill coefficient approach.

Although the above is a strikingly simple spe-
cial case of the traditional Ferrenberg-Swendsen,
WHAM equations,39–42 it has some potentially un-
expected consequences. Specifically, for simple sys-
tems where only one proton is titrating Eq. (22) is
exactly a sigmoid for each state (see Supporting
Information). As such, all reweighted populations
will fall on exactly the same curve without any fit-
ting. This means that Eq. (6) can be inverted at
any point to give the same value for the pKa, as
it should. This is clearly not the case when pop-
ulations are counted separately at each pH, as is
usually done. In practice one can still perform fit-
ting on any selection of points, but the asymptotic
standard error of the parameters will be numeri-
cally zero. This procedure obviates the need for
Hill coefficients, since these would be exactly unity
within numerical error.

In the present work, the reported titration curves
are computed using UWHAM and all reported
pKa values reflect a nonlinear regression utiliz-
ing a Hill coefficient, unless it is rigorously unity.
The observed populations in each fit are taken
only at those pH values where data was collected
and the population is neither exactly one nor zero
(i.e., when the pH is very different from the pKa).
When applicable, the reported values are for the
aggregate data over multiple runs and the error
is the standard deviation of fits to the individual
data sets; this quantity is generally larger and more
realistic than the fitting error. If a replicate did
not provide a meaningful estimate of a pKa then
the appropriate extremal pH value was assigned
instead.

3.4 Reference Energy Shifts

Reference energy shifts were computed using a set
of terminally blocked dipeptides solvated in a pre-
equilibrated 39 Å cube of water (1981 molecules).
After minimization (500 steps) and equilibration
(1 ns) in the protonated state the system was then
converted to a dual topology and the same process
was repeated. The free energies between pairs of
states at 298 K were first computed using a two-
dimensional expanded ensemble scheme43 in which
the alchemical coupling constant (six values lin-
early spaced between zero and one) and thermostat
temperature (seven values exponentially spaced be-
tween 290 and 325 K) were varied. Each simula-

tion was 200 ns long with 10 ps between proposed
state changes and data collection. In order to make
conservative estimates of the free energies, the r-
RESPA scheme was not used for these simulations
and the first 500 ps were discarded as equilibration
before analysis with UWHAM.39

A second round of energy shifts were computed
for each amino acid by running constant-pH simu-
lations at six pH values (eight for histidine) spaced
at 0.2 unit intervals about the desired reference
pKa. The reported titration curves and pKa values
reflect the pooled data from eight trials, while the
error bars are the scaled standard error of the in-
dividual pKa estimates. All simulations attempted
protonation moves every 10 ps with switch times of
15 ps (this seems to be near optimal for a solvent
exposed carboxylate20) over the course of at least
10 ns and the first 1 ns was discarded as equili-
bration. In each case the computed/observed pKa

was then compared with pKref
a and the free energy

value was corrected if necessary. After a correction
the complete assay was repeated until the observed
and reference values agreed within reasonable cer-
tainty.

3.5 Membrane Translocation of a
Titratable Peptide

A 1–palmitoyl–2–oleoyl–phosphatidylcholine
(POPC) bilayer was constructed with approximate
dimensions 57 × 57 × 126 Å (100 lipid units, 9282
water molecules) using the CHARMM-GUI mem-
brane builder.44 A terminally blocked pentapep-
tide, AADAA, was then immersed in the aqueous
phase, roughly 50 Å away from the barycenter
of the membrane. For comparison purposes, a
reference assay of the pentapeptide immersed in
a bulk aqueous environment was also prepared
(39 Å cube, 1936 water molecules). The initial
configurations, wherein the pentapeptide was lo-
cated at distinct altitudes (between 0 and 50 Å
at 10 Å intervals) along the normal to the lipid
bilayer (i.e., the z coordinate) were generated by
a 200 ps steered MD simulation.45 Each of the six
resulting structures were then equilibrated (50 ns)
while the barycenter of the pentapeptide was held
near a constant value of z by a positional harmonic
restraint with a force constant of 100 kcal/mol-Å2.

Constant-pH MD assays of the titration curves
at each z-value were determined from up to eleven
individual simulations, representing an aggregate
time ranging from about 180 to 680 ns per z-value
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(2.4 µs total for the full translocation). In addition,
the reference pKa, determined using the assay in
bulk water, was obtained from up to seven individ-
ual simulations, amounting to an aggregate time
of 310 ns. All simulations attempted protonation
moves every 10 ps with switch times of 10 ps. In ac-
cordance with the expectation that the pKa value
of the aspartate would increase near the membrane,
the estimated inherent pKa value was increased (as
high as six units) for smaller values of z.

Lastly, in order to obtain the correct baseline in
water of the pKa profile as a function of z and,
hence, account for the fact that an appreciable
fraction of the simulation assay is occupied by the
lipid bilayer, causing a shift in the electrostatic
potential, a separate 10 ns simulation was per-
formed in the absence of the pentapeptide. Based
on this additional simulation, the average electro-
static potential along the z-axis was computed,
from whence a pKa shift of 2.4 units was inferred
due to a difference in the Galvani potential.46

3.6 Simulation of a Globular Protein

Staphylococcal nuclease (PDB: 3BDC)47 was sol-
vated in a 86 Å truncated octahedron (15557 water
molecules) with a NaCl concentration near 100 mM
after neutralization at pH 7 (26 Na+, 31 Cl−) us-
ing CHARMM-GUI.44 This was intended to re-
produce as closely as possible the setup used by
Huang et al. 16 in their constant-pH simulations of
the same system, except omitting their use of a
hydroxide force field. All simulations of this sys-
tem also utilized hydrogen mass repartitioning of
the protein.48 The system was first minimized (500
steps) and then equilibrated (6 ns) with harmonic
restraints (10 kcal/mol-Å2) on the heavy atoms set
against the crystal structure reference. These were
decreased by half at 200 ps intervals and then re-
moved completely after 1 ns. Equilibration also
utilized pressure coupling at 1 bar with a Langevin-
piston barostat (piston period of 50 fs and decay
time of 25 fs). Constant-pH MD assays of the titra-
tion curves were performed on 12 pH values be-
tween 2.0 and 7.5 at 0.5 unit intervals and repeated
four times. All simulations attempted protonation
moves every 10 ps over 34 ns with switch times of
20 ps (i.e., 3400 neMD/MC cycles) and the first
1 ns was discarded as equilibration. Inherent pKa

values were assigned based on the experimental val-
ues of Castañeda et al. 47 and fixed throughout the
simulation. If experimental values were not avail-

able, the reference pKa was used instead.

4 Results and Discussion

4.1 Reference Simulations

A core component of calibrating the constant-pH
approach described here is the computation of the
reference energy shifts defined by Eq. (5) These are
tabulated in Table 1 for the CHARMM36 protein
force field. It is important to note that both com-
ponents of these shifts are temperature dependent
and so the tabulation at 298 K may be a limita-
tion – this is difficult to gauge unless the corre-
sponding experimental enthalpy of reaction is also
known. These can be calculated for reference sim-
ulations and it can be seen that the temperature
dependence of the force field is often significant.
Whether or not this is physically accurate remains
to be seen.

Table 1: The reference pKa and free energy values needed
for a constant-pH simulation are tabulated here for the
CHARMM36 force field. Energies are in kcal/mol at 298 K
and error bars represent 95% confidence intervals. Most val-
ues are defined in Eq. (5). The corrected values, ∆Fcorr,
represent adjustments made after simulations at constant-
pH in order to reproduce the reference value (if needed).
The uncertainties for these are essentially the same as for the
uncorrected values. The temperature dependence is quan-
tified by fitting ∆F as a function of temperature using a
linear expansion of the internal energy, that is, ∆U(T ) =
∆U298 + ∆Cv,298(T − 298 K).

pKref
a ∆F ∆U298 ∆Cv,298 ∆Fcorr

ASP 4.0a -50.3 (0.4) -60.0 -9.7 -50.0
GLU 4.4a -64.6 (0.5) -78.8 -14.2 -64.4

HIS 6.4b

HIS-δ 6.5b -0.1 (0.4) 2.0 2.1 –

HIS-ε 7.0b -15.9 (0.4) -23.0 -7.1 –
CYS 9.5a -80.8 (0.3) -84.6 -3.7 –
LYS 10.4a 43.2 (0.4) 54.0 10.7 41.9

aFrom Nozaki and Tanford 49

bFrom Tanokura 25 , adjusted by Bashford et al. 50

After employing the results of Table 1 in
constant-pH simulations, it can be seen that the
reference pKa construction was successful as all
values are reproduced within 0.2 units. (Figure 4).
It is worth noting that the simulations here are ex-
tremely conservative in length and large error bars
are assumed (two and a half standard deviations
of the mean). Combined with the unavoidable er-
ror bars from the reference free energy simulations
(Table 1) it would seem that, in practice, pKa
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values estimated from constant-pH simulations are
only likely to be systematically accurate within
∼0.3 units. This is because any pKa calculation
based on constant-pH is intrinsically a relative pKa

with respect to these reference quantities. These
must always carry some statistical uncertainty
into the simulation and this cannot be removed by
additional sampling, hence it is effectively system-
atic. However, these errors could cancel consider-
ably when examining pKa values between different
residues in the same system. The real strength of
the method should be in determination of corre-
lations between titratable sites. Conventional free
energy simulations will likely be superior in strict
quantitative estimation, but would require a great
deal of manual intervention for determining which
groups meaningfully interact.

0.0

0.2

0.4

0.6

0.8

1.0

 4  5  6  7  8  9  10  11

ASP:  4.1 +/-  0.1
GLU:  4.4 +/-  0.1

HIS-δ:  6.6 +/-  0.2
HIS-ε:  7.1 +/-  0.2

LYS: 10.4 +/-  0.3
CYS:  9.5 +/-  0.1

p
ro

to
n

a
te

d
 f

ra
c
ti
o

n
/s

ta
te

 p
o

p
u

la
ti
o

n

pH

Figure 4: Titration curves are easily computed for the
reference dipeptides after initial parameterization and sub-
sequent constant-pH simulations. Data points represent ex-
plicitly sampled pH values while lines represent the analytic
curves predicted by UWHAM.

4.2 pKa Shifts From Peptide Transloca-
tion Across a Membrane

A key motivation of the neMD/MC constant-pH
approach is to enable efficient changes of proto-
nation states in crowded environments, such as
lipid membranes. Existing methods based on im-
plicit solvation models, for example, are unlikely,
to be efficient in this regime. As a cogent example
we demonstrate a titratable pentapeptide at vari-
ous levels of insertion above a POPC lipid bilayer.
The evolution of the pKa of the central aspartate
residue as a function of the POPC bilayer normal
is shown in Figure 5. As a basis of comparison, the
pKa of the same pentapeptide in a bulk aqueous
environment was determined to be 3.9.

A

B

Figure 5: Translocation of a terminally blocked, titrat-
able pentapeptide, AADAA, across a 1–palmitoyl–2–oleoyl–
phosphatidylcholine bilayer was performed by restraining
the system at various separations (panel B, top). The insets
depict the protonation probability of the central aspartic–
acid residue for different positions of pentapeptide along bi-
layer normal (panel A). Here, z is the Euclidian distance
separating the center of mass of the pentapeptide from that
of the membrane, projected onto the direction normal to
the interface (i.e., z = 0 corresponds to the middle of the
∼27 Å thick membrane). The dashed red line in panel B
corresponds to the pKa in bulk water.

This result is in excellent agreement with the
potentiometric titration of 3.9 in synthetic, un-
charged alanine–based pentapeptides,51 and con-
sonant with the average measurement of 3.5 in a
series of folded proteins.52 From the onset, a shift
of the pKa can be observed as the permittivity of
the environment progressively changes from that of
water to the interior of the bilayer. While the pKa

remains nearly that in the bulk aqueous medium
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starting roughly 15 Å away from the head–group
region, it increases almost linearly as the pentapep-
tide translocates towards the center of the mem-
brane hydrophobic core. At z = 0, the pKa peaks
at 7.3, which corresponds to a shift of 3.4 units with
respect to the bulk region, far from the interface.
Obtaining a converged value of the pKa when the
peptide is buried deep in the interior of the POPC
bilayer constitutes a daunting task, requiring sub-
stantial sampling, owing to the partial hydration
of the titratable amino acid. As the pentapeptide
partitions into the membrane, it is accompanied
by a retinue of water molecules trapped amidst the
lipid chains and preserving, at least in part, the
hydration state of the carboxylic-acid moiety. As
a basis of comparison, although their constant-pH
simulations do not tackle the more difficult scenario
wherein the pentapeptide lies in the middle of the
bilayer, Teixeira et al. 53 predict a similar trend in
the shift of the pKa.

4.3 Virtual Titration of Staphylococcal
Nuclease
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Figure 6: Representative macroscopic titration curves (8
of 22 total) for SNase indicate a wide range of pKa values,
even amongst similar residues. Residues are colored by type
and have different line patterns to denote the same residue in
different environments (in ascending order as solid, dashed,
and dotted lines).

A second motivation for the neMD/MC constant-
pH approach is to enable efficient sampling of large
numbers of protonation states. Scaling in this man-
ner may be a limitation of methods that utilize
intermediate states where protons are only par-
tially interacting. As a demonstration of this abil-
ity we present simulations of a medium-sized glob-
ular protein, Staphylococcal nuclease (SNase, 143
residues), over a broad range of pH values. Repre-

sentative titration curves (Figure 6) show that mul-
tiple titratable side chains are well described with
a diverse set of responses to the protein environ-
ment (e.g., GLU10 and GLU52 differ by∼2 units in
their apparent pKa). Quantitative determinations
of the apparent pKa values (Table 2) show excellent
agreement with both experimental and theoretical
determinations of the carboxylate groups (to our
knowledge, the only groups for which data is avail-
able). Complete fitting results, including Hill coef-
ficient comparisons, are available in the Supporting
Information.

Although Huang et al. 16 also used the
CHARMM36 force field, it is unclear exactly how
much agreement one can expect between the two
sets of simulations. In many cases the values are
extremely similar (as few as 0.1–0.2 units). Oth-
ers differ by as much as 0.8 units, but these cases
also have large relative statistical uncertainty. If
perfect agreement is assumed to be possible, then
our previous speculation that absolute pKa values
(regardless of statistical uncertainties) can only be
trusted within 0.5 units seems to be reasonable.

Table 2: Apparent pKa values for SNase are tabulated
from Hill equation fits to the data presented here. Compar-
ison values, where available, are given from both theory and
experiment. Error bars have been adjusted to represent 95%
confidence intervals. Errors from Huang et al. 16 reported as
zero were assumed to be 0.1 units before rescaling.

residue this work λ-dynamics16 expt.47

GLU

10 3.23 (0.60) 3.20 (0.25) 2.82 (0.22)
43 4.44 (0.07) 4.10 (0.25) 4.32 (0.10)
52 5.01 (0.26) 4.70 (0.50) 3.93 (0.20)
57 4.85 (0.33) 4.10 (0.75) 3.49 (0.22)
67 4.23 (0.80) 4.00 (0.50) 3.76 (0.18)
73 3.48 (0.92) 3.60 (0.25) 3.31 (0.03)
75 2.98 (1.31) 2.70 (1.00) 3.26 (0.12)

101 4.55 (0.45) 4.70 (0.50) 3.81 (0.25)
122 3.90 (0.64) 4.40 (0.25) 3.89 (0.22)
129 5.08 (0.61) 5.50 (0.25) 3.75 (0.22)
135 3.35 (0.48) 2.90 (0.25) 3.76 (0.20)

ASP

19 2.77 (0.76) 3.30 (1.50) 2.21 (0.18)
21 6.78 (0.99) 6.00 (0.75) 6.54 (0.05)
40 3.32 (0.52) 2.90 (0.25) 3.87 (0.22)
77 0.82 (0.50) <-1.00 <2.20
83 1.97 (0.72) <0.00 <2.20
95 2.74 (0.39) 3.00 (0.25) 2.16 (0.18)

143 4.41 (0.64) n/a 3.80 (0.25)
146 4.01 (0.34) n/a 3.86 (0.12)

LYS 24 8.43 (0.45) n/a n/a

HIS
8 6.66 (0.56) n/a n/a

121 5.36 (0.50) n/a n/a

Although SNase contains several lysine residues,
nearly all of them have pKa values outside the pH
range used here and therefore show zero protona-
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tion events. This is not because these residues
were not permitted to titrate, but is instead an
intrinsic feature of the two-step inherent pKa algo-
rithm.3 Accordingly, these residues are not listed
in Table 2 and can only be said to have pKa val-
ues greater than 7.5 based on the data here. In-
terstingly, LYS24 has an apparent pKa of 8.4 and
spent as much as 10% of the simulation at pH 7.5
in its neutral form (see Figure 6). Our simulation
does not necessarily render a physically accurate
description of SNase, but it highlights the fact that
the method used here automatically captures unex-
pected behavior without any input from the user.

4.4 Practical Considerations

The examples above are intended to be repre-
sentative of both typical and challenging cases
amenable to constant-pH simulations. It is worth
discussing possible limitations and shortcomings of
the method, specifically as they could have been
encountered in these demonstrations. Most glar-
ingly, there are two adjustable parameters in the
method, the switch time and the inherent pKa,
which strongly affect efficiency and, if chosen im-
properly, could have given rise to severely disap-
pointing results. These parameters deserve closer
individual discussion.

In previous work we analyzed the efficiency of a
simple carboxylate system in explicit solvent and
did a systematic test of short and long switch
times.20 In that work it was shown that an opti-
mal switch (in the sense of maximizing the transi-
tion rate between states) should exist and depends
on both the magnitude and intrinsic time scale of
equilibrium fluctuations in the “force” along the
interaction coupling. It was found that the op-
timal switch time was roughly an order of mag-
nitude greater than the (apparent) time scale –
a strikingly reasonable 11 ps. The present work
seems to confirm that this estimate is transferable
to titratable groups exposed to the solvent, even
non-carboxylate moieties; we therefore recommend
an initial value of 10–20 ps for essentially all residue
types presented here. A modest extension of the
same theoretical analysis also indicates that the
optimal switch time almost always corresponds to
an optimal mean acceptance probability of 20–25%
(see Supporting Information). Although no adjust-
ments seemed to be necessary in this work, a simple
and reasonable adaptive scheme would be to track
the acceptance rate (this is a standard output in

the current code) and then increase (or possibly
decrease) the switch time based on this simple cri-
terion.

The two-step inherent pKa algorithm is a crit-
ical component of the overall performance when
simulating many residues across a broad range of
pH values. A given simulation will naturally spend
more time sampling residues with pKa values close
to the pH and therefore most physically relevant.
This is clearly demonstrated by the SNase exam-
ple above, wherein several lysine residues were per-
mitted to titrate throughout the simulation (and
occasionally did), but nearly all protonation state
changes at pH ≤ 7 were by aspartate and gluta-
mate, which had predicted pKa values between two
and six. In other words, the imposed pH and pre-
dicted pKa values must closely coincide, otherwise
titration of the site will be essentially ignored. This
is also appealing from the standpoint that setting
the pKa of a residue to plus or minus infinity (or
any large number in fact) effectively assigns a fixed
protonation state. This is a much more explicit
practice than simply assuming a fixed valence when
constructing the system topology.

The main disadvantage of the inherent pKa al-
gorithm is that residues for which titration is de-
sired must have estimated pKa values that are
fairly accurate (or at least in the pH range being
studied). Otherwise, efficiency will be severely im-
pacted. If one assumes that most residues are only
weakly shifted with respect to their reference value,
then this simple estimate should be adequate in
most cases. However, for larger shifts this can be
severely problematic.

For example, consider a system with two aspar-
tate residues, one of which is expected to be shifted
towards neutrality by about two units, while the
other is assumed to be near its reference value.
In most biological applications, the shifted residue
is of more probable importance and so it would
seem reasonable to focus the majority of simula-
tions near a pH of six. Imagine instead that these
residues were misidentified and their behavior is
reversed or, at the very least, that the residue as-
sumed to be unshifted is also in fact shifted. In
the former example the inherent pKa algorithm
will fail almost completely in the sense that very
few state changes are likely to be successful (much
less attempted). In the latter case, the results may
still be highly biased, since the true, shifted behav-
ior of the aspartate may be hidden by the narrow
range of pH values. This scenario, although con-

13



trived, is a strong argument in favor of using a
wide range of pH values (an extent of at least four
units seems reasonable) or even using an expanded
ensemble in which the pH is able to vary.8,54,55 A
complementary and/or alternative adjustment con-
sists in selectively deactivating the inherent pKa

algorithm for a small subset of residues that are
either suspected of being important or have other-
wise uncharacterized behavior. This can be done
by trivially setting the inherent pKa equal to the
pH. Since the particular value of the inherent pKa

only impacts efficiency, these residues could even
be “re-activated” at a later time if data collection
indicates that the behavior is not of interest.

5 Conclusion

This work introduces yet another route to perform-
ing constant-pH simulations. However, far from
being a gratuitous exercise, this approach offers
several advantages and features with respect to ex-
isting approaches. The implementation is efficient
and scalable, and represents one of the few meth-
ods that can be plausibly used on very large chem-
ical systems with large numbers of titratable sites.
The approach is also general with respect to the
model and does not rely on any special treatment
of the solvent; this aspect is of paramount impor-
tance for membrane simulations, for example. Ad-
ditional work is ongoing to integrate the method
with next-generation force fields such as those that
include polarizability, for instance by means of the
introduction of Drude oscillators. The method is
also agnostic to the details of the equilibrium sam-
pling step and thus permits easy integration with
enhanced sampling methods. Additional pertur-
bations could even be included in the nonequilib-
rium step without significant complication. Lastly,
analysis of the method is relatively straightforward,
with no fractional states to consider and there-
fore amenable to reweighting procedures such as
WHAM,39–42 which greatly improves the accuracy
and reliability of the observed titration curves.
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