DEGAS:
Dynamic Global Address Space programming environments

Final Report from The University of Texas at Austin
Mattan Erez, Co-Principal Investigator!
The University of Texas, Austin, Texas

Katherine Yelick, Principal Investigator?
Lawrence Berkeley National Laboratory, Berkeley, California

Vivek Sarkar, Co-Principal Investigator®
Rice University, Houston, Texas

James Demmel, Co-Principal Investigator?
University of California, Berkeley, California

Abstract: The Dynamic, Exascale Global Address Space programming environment (DEGAS)
project will develop the next generation of programming models and runtime systems to meet the
challenges of Exascale computing. Our approach is to provide an efficient and scalable programming
model that can be adapted to application needs through the use of dynamic runtime features and
domain-specific languages for computational kernels. We address the following technical challenges:

Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global
Address Space (HPGAS) model, demonstrated in UPC++.

Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef-
ficient synchronization mechanisms (Phasers).

Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific
code and scheduling libraries for domain-specific adaptive runtimes (Habanero).

Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re-
ducing data movement.

Resilience: Containment Domains for flexible, domain-specific resilience, using state capture
mechanisms and lightweight, asynchronous recovery mechanisms.

Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage
broad adoption.

'UT-PI Email: mattan.erez@Qutexas.edu; Phone: (512) 471-7846
2PI Email: kayelick@lbl.gov; Phone: (510) 495-2431

3Rice-PI Email: vsarkar@rice.edu; Phone: (713) 348-5304
“UCB-PI Email: demmel@cs.berkeley.edu; Phone: (510) 643-5386

DEGAS: Dynamic Ezascale Global Address Space programming environments 1

Main Accomplishments

The University of Texas at Austin component of the DEGAS project focused on resilience research.
In particular, we had set XXX main objectives. We list these objectives below and then briefly
highlight our main findings. We have accomplished all but the final objective, on which we are still
working (without the use of any grant funds). We have:

1. We developed a general resilience model for partitioned global address space (PGAS) program-
ming models. This model includes a new resilience protocol that ensures consistent recovery
for uncoordinated per-node and per-task resilience actions, along with possible tradeoffs and
simplifications that balance overheads with expressiveness. The model has been published as
a technical report [?] and we are working toward a peer-reviewed publication. To the best of
our knowledge this is the first general PGAS resilience model.

2. We specified the programming abstractions and interfaces for expressing resilience concerns in
hierarchical-PGAS languages, which make use of our resilience model. These were published
in a technical report [?] and as part of the documentation of the Containment Domains
prototype runtime system [2].

3. We developed and released a prototype resilience component for UPC++, based on the
interfaces and protocols mentioned above and the Containment Domains abstractions for
PGAS [7].

4. We are working on evaluating the resilient UPC++ prototype and publishing the results.
The delay in achieving this objective relate to our decision to implement the Containment
Domains resilience runtime both on top of UPC++ and for UPC++ applications and delays
in simply compiling and correctly running existing UPC++ applications.

Findings Highlights

Our research and design is based on the idea of Containment Domains (CDs) [3], which extend
prior resilience models in two important ways for the DEGAS project. First, CDs are designed
to be hierarchical and explicit to the programmer. Second, CDs include support for both strict
CDs, which allow uncoordinated preservation and uncoordinated recovery only between groups
of non-communicating tasks (though with a hierarchy, and relaxed CDs that can be completely
uncoordinated. Within the CD framework, the tradeoff between additional bookkeeping required
for relaxed CDs vs. the additional recovery time for strict CDs is flexible and tunable.

Our model and protocol for PGAS CDs is, to the best of our knowledge, the first to offer
uncoorinated resilience in the general PGAS setting for any properly-synchronized application
without data races (more precisely, without races between local and remote accesses). The closes
prior work [1] was developed for one-sided MPI and is not general enough for the PGAS models
proposed in the DEGAS project, such as UPC++. The main effort was focused on designing and
implementing relaxed CDs for UPC++ and the protocols needed for the very general UPC++.
Our main finding is that the excessive communication logging needed for uncoordinated recovery
between communicating PGAS tasks can be curbed if following the two observations below.

Observation 1
One observation is that the logging overhead for remote reads/writes is smaller than local reads/writes.
Because logging operations are the same for local and remote reads/writes, but remote reads/writes
themselves are more expensive than local ones. We only log remote reads and writes, while using
remote read/write logs to reconstruct memory to up-to-date states to reexecute local reads/writes.
Two tasks are involved in each remote read/write: one task is the initiator of the remote read or
write, and the other task is the one which owns the data of the read/write accesses. For example,
shown in Figure 1, task 70 is the initiator of remote write and task 71 owns the data of the write
access, while task T2 is the initiator of remote read and task T3 owns the data of the read access.

DEGAS: Dynamic Ezascale Global Address Space programming environments 2

T0 T1

write
initiator

remote write
write
target

read
requestor

T2 T3

remote read request

remote read data

Figure 1: Terminology for remote write (left) and remote read (right)

read
responder

To make it easier for future discussion, T0 is defined as write initiator, T1 as write target, T2 as

read requestor, and T3 as read responder.

Least-Common

Strict Ancestor CD

Relaxed Group

Figure 2: Relaxed Group and Least Common Strict Ancestor (LCSA) CD

One tradeoff for remote read/write logging is which task should log the data: the initiator of
read/write or the task who owns the data. We can mimic the sender-side logging mechanisms of
MPI two-sided communication, and delibrately put logs in a different task from the application data
being logged. Thus, we log writes at the write initiator while logging reads at the read responder.
The benefits of this logging scheme is to keep application data and logging data at two different
places to survive from catastrophic failures. However, this scheme needs to change every remote
read to be an active message so log entries can be generated at the read responder, which may

incur high overhead for remote reads.

Instead, we log write at the write-initiator side and to log reads at the read-requestor side.
This scheme does not require remote reads to be active messages, but the possibility of one failure

DEGAS: Dynamic Ezascale Global Address Space programming environments

causing loss of both application data and read logs must be addressed.

Observation 11

Another observation is that data reads/writes themselves may not be real communication, but
only real communication should be logged. To help filter out non-communication accesses from
logging, we define a relazed group to be the group of relaxed CDs that may communicate with each
other. We further define the least common strict ancestor (LCSA) CD for a relaxed group to be
the lowest-level strict CD that encompass the whole relaxed group. Figure 2 gives an example of a
relaxed group and its least common strict ancestor CD.

Then reads/writes are categorized into three categories, private, temporarily privatized, and
potentially shared. The definitions of them are as follows:

Private
A read or write operation is private if it accesses data that will not be read or written by
any other CD. Note that private addresses may not be used by any other CD until the entire
relaxed group, to which the CD belongs, completes, or, may be reused provided any private
address is written over before being read again.

Temporarily privatized
A read or write operation is temporarily privatized if it accesses data that is: (1) private during
the CD execution, (2) was not written by an earlier sibling CD within the same relaxed group,
and (3) may be used by other CDs in the same relaxed group after the CD completes.

Potentially shared
A read or write operation is potentially shared if it cannot be classified as either private or
temporarily privatized.

All three categories are logical to applications and it does not matter whether reads/writes are
local or remote. Private reads/writes are not real communication, because only one CD touches
the data during its execution. We skip logging for private accesses and reexecute them directly
in reexecution. Potentially shared data, however, implies potential communication. We log all
potentially shared accesses in forward execution, and replay them in reexecution.

The rationale behind temporarily privatized accesses is that a common access pattern in HPC
applications is that each task works on its local copy of shared data and only commits once at the
end. This accessed data is shared between tasks, but private to the task until its final commit.
We log temporarily privatized accesses once, at CD complete time, and all temporarily privatized
accesses are reexecuted in a shadow memory during recovery. Temporarily privatized accesses need
to reexecute in shadow memory, because other non-failed CDs that are executing may touch the
same memory regions used by a failed CD that is reexecuting, yet the reexecuting CD may update
and reuse those addresses as it reexecutes.

Logging Mechanisms Details

To summarize, we log potentially shared remote reads at the read-requestor side and to log poten-
tially shared remote writes at the write-initiator side. In reexecution, potentially shared remote
reads are replayed from logs, while potentially shared remote writes are squashed to avoid data pol-
lution to forward-executing tasks. We skip logs for local reads/writes to reduce error-free overhead,
and to use remote write logs to bring memory state up to date, so local reads/writes can be simply
reexecuted. Collective communications are treated as combinations of read/write operations, and
log/reexecute accordingly.

Remote reads do not need to be ordered with respect to local reads/writes, because they will
never touch overlapping regions. The interleaving between incoming remote writes and local
reads/wirtes, however, needs to be preserved to correctly reexecute them in an order consistent
with that observed by non-reexecuting tasks. Each task maintains two counters, Epoch Counter

DEGAS: Dynamic Ezascale Global Address Space programming environments 4

T0 T1 T2 T3

EC=1, IWC=0 EC=1, IWC=0 barrier1 EC=1, IWC=0 EC=1, IWC=0
EC=2, IWC=0 EC=2, IWC=0 EC=2, IWC=0 EC=2, IWC=0
Igck
EC=3, IWC=0
write1
_______ EC=2, IWC=1
write2
____________ =—=P= |EC=2, IWC=1
i logk
o
unldck _ _
EC=4, INC=0) EC=3, WC=0
write.
el S et |
“---—-—" EC=2, IWC=2
unldgck logk
EC=4, IWC=0 EC=3, IWC=2
write5
-— | write6 EC=3
EC=2,WC=3| == ___|
_____ -
uniqck
EC=4, IWC=2
EC=5, IWC=0 EC=3, IWC=3 barrier2 EC=5, IWC=0 EC=5, IWC=2
EC=6, IWC=0 EC=4, IWC=3 EC=6, IWC=0 EC=6, IWC=2

Figure 3: Example for EC and IWC.

(EC) and Incoming Write Counter (IWC), to preserve the interleaving pattern. EC is maintained
by software and is incremented at every synchronization event (i.e., locks, fences, barriers, and
strict reads/writes). IWC, on the other hand, is managed by write-target-side NIC hardware and
is incremented each time a NIC sees an incoming write operation. Two other implicit counters
are also used to restore the interleaving pattern: Program Order(PO) and Log Sequence Number
(LSN). Program order is the executing order of instructions in computer code, while log sequence
number is monotonically incremented by each task each time a log entry is generated.

Remote writes are logged in three steps: (1) when a task initiates a remote write, it generates
one write log entry at the write-initiator side to log the accessed address and write value; (2) the
write goes through the network, and the ACK message carries the write-target side EC and IWC to
the write initiator; and (3) the write initiator then generates another log entry to log the target-side
EC and IWC values. This way, all remote writes will have target-side EC/IWC associated with
them.

When a failure happens, the failed CD gathers write logs from its relaxed group, rewinds the
EC to EC_begin (EC value at CD begin), and then starts reexecution. In reexecution, the EC is
incremented the same way with forward execution, and memory state is restored epoch by epoch.
In each epoch, first, all incoming write logs, whose EC is the same value with the current epoch,
are replayed in increasing IWC order. Then, local reads/writes are reexecuted and remote reads
are replayed when they are reexecuting.

In each epoch, we arbitrarily choose to replay incoming remote writes first, and reexecute
local reads/writes second. This order is reasonable based on the assumption that applications are
properly synchronized. Hence in the same epoch, incoming writes and local reads/writes will not
touch overlapping regions. UPC/UPC++, however, allows racy codes as long as every task views
the race order the same way. Current PGAS CDs cannot guarantee to precisely restore the race
order to match that of forward execution.

DEGAS: Dynamic Ezascale Global Address Space programming environments 5

A
=
3
o
B D
C E
X /
—1\
—\
F Relaxed CD

StrictcD

Figure 4: Log Management Example.

Besides communications and synchronizations, non-deterministic runtime events need to be
logged as well. For example, random number generation functions need to be logged to regenerate
the same random number in reexecution. Memory allocation should also be logged because other
CDs may access allocated memory regions and failed CDs should provide the same allocated address
in reexecution. Memory deallocation is deferred to the completion of a common ancestor CD that
spans memory allocation and deallocation pairs.

Figure 3 shows a similar but more complex example as Figure ?7. This example shows that
remote writes can be correctly reordered with the support of the EC and IWC. Note that at each
synchronization event, such as lock/unlock operations, the initiator-side EC is incremented once to
bring local execution into the next epoch. Barriers, on the other hand, increment the EC twice for
each task: once at the entrance of the barrier and once at the exit to ensure all tasks enter into new
epochs. In this example, write/ and write6 are ordered by EC of T8; writel, write3 and write
are order by IWC in T1, and write2 and write4 are ordered by IWC in T3.

Log Management

CDs create read/write log stores when a CD object is created, and generate/replay logs to/from
these log stores when CDs are in execution/reexecution. However, it is not safe to delete commu-
nication logs when a relaxed CD completes, because a relaxed CD may be reexecuted even after it
completes because of escalation. Figure 4 provides an example of such a situation. In this example,
one top level strict CD has 4 parallel relaxed child CDs (e.g., CD F), and each relaxed child CD
has 3 sequential relaxed CDs (e.g., CD F has relaxed children CD A, B, and C). The red lines in
this example represent global barriers across all tasks. Failures in CD C may be escalated to CD
F, and CD F will reexecute CD A, B, and C sequentially. CD A and CD B, in this case, need their
communication logs to provide consistent recovery.

Instead of deleting communication logs at a CD’s complete time, relaxed CDs should push their
communication logs to their parent CDs. Safe points to delete communication logs are completions
of strict CDs, because by definition all communications are contained within one strict CD.

Thus, CDs accumulate logs during forward execution. These logs may grow rapidly and exceed a
reasonable size before a strict CD is reached and logs can be safely deleted. The logs are periodically
pushed out to more reliable media, like a local filesystem or PFS, and the space used for logs is

DEGAS: Dynamic Ezascale Global Address Space programming environments 6

garbage collected to reduce the memory footprint of the communication logs.

Node-level Dependency Tracking

With the logging mechanisms, relaxed CDs can recover by themselves without the need to propagate
recovery to other sibling CDs. However, for some rare cases like memory data corruption or loss of
communication logs, the failures are escalated to the least common strict ancestor CD to recover.
Even though this escalation may be rare, falling back to a strict CD may be quite expensive,
especially for some communication patterns. For example, for the nearest neighbor communication
pattern, a common HPC communication pattern, falling back to strict CDs means global recovery,
which is extremely expensive.

To tackle this problem, we implement a coarse-grained dependency tracking mechanism on top of
communication logging to limit recovery propagation in such escalation cases. Since such escalation
cases are rare, the dependency tracking mechanism only tracks coarse-grained dependencies (node-
level) to reduce the overhead during error-free execution.

Before discussing the design details, we define the criteria identifying a dependence between a
CD to a failing CD:

1. Any CD that is on the same node with the failed CDs.

2. Any CD that remotely write to the node where the failed CDs reside in.
3. Any CD on a node that the failed CDs remotely read.
4. Any CD that remotely writes to the node where the failed CDs remotely read from.

In escalation, instead of reexecuting the whole relaxed group, only CDs that a failed CD depend
on will reexecute with the failed CD. These CDs, that a failed CD depend on, do not need to
propagate the recovery to the CDs that they depend on because they do not suffer failures that
require escalation, and PGAS CD semantics guarantee they can recover in isolation. For example,
for nearest-neighbor communication, only neighbors of failed CDs will be reexecuted with failed
CDs, instead of triggering global coordinated recovery.

To implement coarse-grained dependency tracking, my CD runtime maintains two lists for each
node: a read list to track targets for remote read requests, and a write list to track initiators for
incoming remote writes. The CD runtime either associates the two lists with a node-level CD if
a node-level CD exists, or associates the two lists with the lowest CD level that is coarser than
a node. When a CD on node M remotely writes to node N, the runtime records node M in the
write list of node N, while when a CD on node M remotely reads from node N, the runtime records
node M in the read list of node N. We do not expect the two lists to be large for common regular
communication patterns,” because these communication patterns mainly exchange data with a
limited number of tasks.

In cases of escalation, the CD runtime first pushes all communication logs of non-failed CDs to
reliable media to avoid further log loss, and then recovers: (1) all CDs on the same node with the
failed CD; (2) all CDs that exist on nodes in the write list; (3) all CDs that exist on the nodes in
the read list; and (4) for each node in the read list, all CDs that exist on node in their write list.
Note that (4) propagates recovery one more time to recover all CDs that failed CDs depend on.

Figure 5 gives an example of how dependency tracking can limit recovery propagation. Here
nearest neighbor communication is used as an example. Each CD reads from its neighbor CDs
(depicted with green arrows) and then writes to local data. This is the communication pattern
in many HPC applications, like LULESH [4] and HPGMG [5]. All CDs’ read list contains only
neighbor CDs while their write lists are empty. When CD B fails and triggers escalation, it will
trigger recovery of CD A and CD C, but all other CDs can continue their forward execution.
Without dependency tracking, all CDs have to recover to obey CD semantics.

5Communication targets do not depend on input data values.

DEGAS: Dynamic Ezascale Global Address Space programming environments 7

Strict Least-Common Ancestor

Node 0 Node 1 Node 2 Node 3 oee Node N

Figure 5: Dependency Tracking Example.

It is worth noting that synchronizations do not contribute to dependency lists, because synchro-

nizations are not “actual” communications. We already have event logs to handle synchronizations
for relaxed CDs (logged in forward execution and skipped in reexecution).

1

Bibliography and References

References

1]

M. Besta and T. Hoefler. Fault tolerance for remote memory access programming models. In
Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed
Computing, HPDC 14, pages 37-48, New York, NY, USA, 2014. ACM.

CD Team. Containment Domains API. http://Iph.ece.utexas.edu/users/CDAPI, 2017.

J. Chung, I. Lee, M. Sullivan, J. Ryoo, D. Kim, D. Yoon, L. Kaplan, and M. Erez. Contain-
ment Domains: A Scalable, Efficient, and Flexible Resilience Scheme for Exascale Systems.
In the Proceedings of SC12: the ACM/IEEE International Conference on High-Performance
Computing, Networking, Storage, and Analysis, pages 58:1-11, Salt Lake City, UT, November
2012.

I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates and changes. Technical Report LLNL-
TR-641973, Lawrence Livermore National Laboratory, August 2013.

H. Shan, S. Williams, Y. Zheng, A. Kamil, and K. Yelick. Implementing High-Performance Geo-
metric Multigrid Solver with Naturally Grained Messages. In 2015 9th International Conference
on Partitioned Global Address Space Programming Models, pages 3846, Sept 2015.

DEGAS: Dynamic Ezascale Global Address Space programming environments 8

	Abstract
	Bibliography and References

