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O2/N2 air separations with MOFs to Increase 
the Efficiency of the ASU

• Oxygen-enriched (oxy-fuel) combustion: burning the fossil fuel in an O2 rich atmosphere results
in a flue gas composed mainly of CO2 and water (little or no SOX and NOX emissions)

• The limiting factor of this technology is the efficiency of the Oxygen Purification Steps:
Cryogenic ASU, a costly and energy intensive process (primarily compression) for 99+% purity,
or zeolites + PSA for ~90-95% purity

• Our study is focused on new highly selective materials to increase the efficiency of this
separation process
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Goal: determine the O2 and N2 uptake dependency with temperature 
in MOFs with coordinatively unsaturated metal sites
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DFT Simulations Provide Molecular-level Details 
Metal-O2 and Metal-N2 Binding Energies and Geometries

• MOFs with coordinatively unsaturated metal centers are promising materials for O2/N2 separations

• Two prototypical MOFs from this category, Cr2(BTC)3 (J. Am. Chem. Soc. 2010, 132, 7856–7857)
and Fe2(DOBDC) (J. Am. Chem. Soc. 2011, 133, 14814-14822) both show preferential adsorption of
O2 over N2

• Plane wave DFT calculations were performed on periodic structures in the Vienna Ab initio
Simulation Package (VASP)

• Binding geometries for side-on and bent O2 and bent and linear geometries for N2 were evaluated

• Static binding energies for O2 and N2 at 0 K

MOF with O2 in pore O2 ready to bind to metal O2 bound to metal
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DFT modeling of of Oxygen Adsorption in Varied 
Metal-Centered MOFs

pplications in the separation of small molecules like oxygen.

MOFs with open metal sites are particularly suited to separatin
M3(btc)2M2(dobdc)

open
metal

site

MOF metal sites = separate O2/N2 by differences in 
bonding & electronic properties

Attention Paid to Bonding GeometriesBonding geometries
Side-on bonding
∠M-X-X 67° - 71°

Bent bonding
∠M-X-X 116° - 159°

Linear bonding
∠M-X-X 165° - 179°

Cr3(btc)2(O2) Mn2(dobdc)(O2) Fe3(btc)2(N2)

Plan wave density functional theory (DFT) calculations were
performed on periodic structures of each MOF in the Vienna ab initio
simulation package (VASP) with the Perdew-Burke-Ernzerhof (PBE) 
functional including dispersion corrections (DFT-D2).  Geometries 
were 
optimized and static binding energies (ΔEO2, ΔEN2) were calculated by

Δ EO2 = E MOF+O2 – EMOF – EO2

The differences in binding energies (ΔΔ E) for oxygen and nitrogen 
were calculated by 

ΔΔE = - (ΔEO2 – dEN2)

Δ
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Transition to Quantum Calculations to Estimate 
Metal-Oxygen Binding Energy 

Binding Energy Calculated as a Function of Metal Site
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Current Study: Parkes, M.; Sava Gallis, D. F.; Greathouse, J.A.; Nenoff, T.M. “Using Ab Initio Molecular
Dynamics to Examine Gas Adsorption on Open Metal Sites of M2(dobdc)” 2016, submitted.



MD Simulation Inspired MOF Synthesis: Sc/BTC/DMF/HCl

Sc-MIL-100

Sava Gallis, D. F., Greathouse, J.A.; Rodriguez, M.A.; Parkes, M.V.; Chapman, K.W.;
Nenoff, T.M. 2016, submitted.
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US  Provisional Patent 2015 tmnenof@sandia.gov

Unique synthesis:

Mixed Sc(NO3)3•xH2O and 
1,3,5–benzetricarboxylic acid
in N,N’-dimethylformamide and 
HCl.

Heated to 373K overnight



As synthesized
After O2 sorption @ 313K
After N2 sorption @ 313K

Sc-MIL-100
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Range and with Exposure to Variety of Gases



BET surface area:    1321.7194 ± 24.4623 m²/g    

Relative Pressure (p/p°)
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Sc-MIL-100: High Surface Area with Accessible Metal Centers 
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Sc-MIL-100: Metal-Center has a role at 77K

Enhanced adsorption of 
O2 vs. N2 at 77K
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How does Sc-MIL-100 behave at more realistic operational temperatures?
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Sc-MIL-100: GCMC Isotherm Calculations at 258K and 298K

10Preferred O2 uptake but O2/N2 selectivity increases between 258K and 298K
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• Grand Canonical Monte Carlo (GCMC) Simulations

• Pure gas (N2 or O2) adsorption over pressure range 0 - 1 bar.

• Temperature range matched with experiment: 258 K, 298 K, 313 K.

• Grand canonical ensemble (constant chemical potential, temperature, volume) using the Towhee 
code (Martin, Mol. Sim. 2013, 39, 1212).

• Gas-gas and MOF-gas interaction energies include van der Waals and electrostatic interactions.

• Framework atoms kept at their crystallographic coordinates.

tmnenof@sandia.gov
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Simulations of Competitive Gas Adsorption:
based on GCMC data, 298K

Ideal Adsorbed Solution Theory (IAST) used to calculate mixture adsorption 
and O2/N2 selectivity for 20:80 mixture (O2:N2).

tmnenof@sandia.gov
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O2 vs. N2 @258K O2 vs. N2 @298K O2 vs. N2 @313K

Sc-MIL-100: Enhanced Quantity of O2 vs N2 Adsorbed 
over Wide Temperature Range (at least to 313K)
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Isotherm trends mimic those predicted by GCMC
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O2 vs. N2 @258K O2 vs. N2 @298K O2 vs. N2 @313K

Sc-MIL-100: Enhanced Quantity of O2 vs N2 Adsorbed 
over Wide Temperature Range (at least to 313K)
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Isotherm trends mimic those predicted by GCMC
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Higher Binding Energy in SMOF-8 for O2 vs N2
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Sc-MIL-100 Performance: 
O2 adsorption and Desorption over 10 cycles, 298 K, 1 

atm
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What about the structure is making Sc-MIL-100 O2 strongly sorbing?



Structure-Property Relationship Understanding of Sc-MIL-100 
Oxygen Selectivity
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tmnenof@sandia.govSava Gallis, D. F.; Parkes, M.; Greathouse, J.A.; Nenoff, T.M. 2015, submitted.
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Reduced Sc-MIL-100
Crystallinity is important.
Reitveld Refinement not successful to date.

High Energy Synchrotron X-ray, APS/ANL



The structure factor, S(Q), is related to coherent part of the diffraction 
intensity

Apply corrections for background, absorption, Compton & multiple scattering

G(r) = 4r 0[g(r)-1] = (2/)∫Q[S(Q) – 1]sin(Qr)dQ

probability structure factor

S(Q) = 1 + [Icoh(Q) - ∑ci|fi(Q)|2]/ |∑cifi(Q)|2

diffraction intensity
(corrected)

The PDF, G(r), is related to the probability of finding 
an atom at a distance r from a reference atom. 

It is the Fourier transform of the total structure factor, S(Q).

Structure-Property Analysis: 
Pair Distribution Function (PDF) Analysis

Use of high energy X-rays and large area detectors key to structure resolution

tmnenof@sandia.gov
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Does it matter which synchrotron?  

Yes. Only higher energy storage rings produce
significant fluxes of high energy X-rays 

High energy X-rays are a unique strength
of the Advanced Photon Source 
(in the western hemisphere)

 3 dedicated high energy beam lines

 1 dedicated PDF beamline

11-ID-B/C

1-ID

6-ID

13-ID

5-BM

Dedicated HEX 
facilities:

1-ID, 11-ID-B, 11-ID-C 

Dedicated PDF 
facility:

11-ID-B

APS 11-ID-B: Dedicated PDF facility
- 58 or 90KeV high energy X-rays
- typical wavelengths = 0.1 - 0.2Å

For our experiments: 
Q  > 20Å-1; CuK to 2 = 180 results in Qmax = 8Å

PDF measurements: APS/ANL Collaboration
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Structural
Modeling

PDF: Insight Into Short Range Structural Order 
eg.,  Amorphous SiO2 (Glass)

- a weighted histogram of ALL atom-atom distances

G(r) = 4r[(r)-0]

Application to Nanoporous Materials to Examine Short Range Interactions
tmnenof@sandia.gov
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Sc-MIL-100: Structure-Property relationship evaluated.

20
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Bond NN distance (Å)        Area FWHM (Å)

Sc-O 2.11 1.5 0.19
O-O 2.81 0.3 0.22
Sc-C 3.08 0.8 0.26
Sc-Sc 3.53 0.5 0.24 

NN distance (Angstroms)
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US provisional Patent 2015

d-PDF peak analysis

• Oxo-centered trimers at nodes of 
MIL-100 framework inferred from 
M-O and M…M distances

• Narrow Sc-O peak = narrow
Distribution of bond lengths

• Single M-O bond length (M-O(3)
or M-O (carboxylate)), suggests
M-O-M angle of 113°
<< 120° of a planer trimer

Peaks shifted to longer distances 
Consistent with larger Sc incorporation 
(vs. Cr-MIL-100)
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Sc-MIL-100: Structure-Property relationship evaluated.
Preferred O2 sorption – Large Sc Distorts Cluster

Sc Fe

US provisional Patent 2015

Large size of Sc atom requires out of plane distortion in the ozo trimer of the O(3) atom.

Resultant “puckering” of trimer and “bending” of ligand is 
probable route for enhanced O2 sorption / insertion in Sc-MIL-100

“tulip opening”

Rietveld refinement unit cell for Sc-MIL-100: a = 74.518(31) Å, R = 10.7%



Sc-MIL-100: Probable Sc-O binding sites
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Tetrahedral cage in the MIL-100 framework
and adsorbed O2 molecule (large spheres). 

GCMC-equilibrated configurations:
Cage and pore occupancy
as determined at 298K and 1 bar
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Conclusions and future work

23

• Successfully synthesized partially substituted
Co-, Fe- and Mn- analogues of Cu-BTC

• Assessed the effect on metal substitution on the O2 and N2 adsorption
capacity at both cryogenic and close to room temperature ranges

• For the Co-, Mn- and original Cu-BTC, O2 preferentially adsorbs over N2 at
77K. However, the trend is reversed at 298K, where N2 preferentially adsorbs
over O2

• Based on predictive modeling, we studied early transition metal metal-center
MOFs for enhanced O2 sorption.

• Sc-MIL-100: Early transition metal MOFs show preference for O2 vs N2 over
wide temperature range (up to at least 313K), as confirmed by isosteric heats
of adsorption.

• On-going Steps: Data transfer to Technoeconomic Analysis and Burner
Design for Oxyfuel combustion applications; higher TRL testing
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Extra slides
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CST, Cs+ removal from
water to Pollucite Waste Form
US Patents 6,479,427; 6,110,378

JACS, 2010, 132(26), 8897
J Phys Chem Letters, 2011, 

2, 2742   

Ag-MOR 
I2(g) capture & 
mechanisms

I2/ZIF-8, Isolation
to Waste Form
JACS, 2011,133(32),12398
US Patent filed 2012
JACS 2013, 135, 16256 

R&D100 1996
JACerS, 2009, 92(9), 2144
JACerS, 2011, 94(9), 3053
Solvent Extr. & Ion Exch, 2012, 30, 33

Fundamental Research to
Applied to Commercial Products

Design the Separation Material 
To Develop the Waste Form

MOF Amorphization for Gas Storage
JACS, 2011,133(46),18583 

Cu-BTC: I2 from 
Humid Gas Stream
Chem. Mater. 2013, 
25(13), 2591 

Universal  Core-Shell Iodine 
Glass Waste Form & Getter

JACerS, 2011, 94(8), 2412
US Patent 8,262,950; 2012

Binder Free MOF
Pelletization

US Patent 2015
9,117,560

As 
made

I2

loaded

T. M. Nenoff, tmnenof@sandia.gov 25

Novel SNL Separations and Waste Forms: Technologies for 
Environment and Energy Applications

MOFs
White Light PL 
JACS, 2012,
134 (9), 3983 

SOMS, Sr2+ getter, 
1-step to Perovksite WF  
JACS, 2002,124(3), 1704
US Patent 7,122,164 
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Coupling of Burner design and Oxy-fuel 
Combustion to Radiant Heat Transfer

LDRD calculated/predicted flame heights when 
using a 1/8”, 0.020 wall stainless steel tube to 
deliver methane to the Dunn burner. 

The volumetric flow of methane is always equal to 
½ the flow of oxygen, to maintain stoichiometric 
combustion conditions.

-Newly designed and constructed burner with
smaller diameter inside tube for CH4 into oxider jet flow

- Allows either premixed or non-premixed methane-air flame

- Designed specifically for pure O2 and enriched O2 stream
as determined by gas separations data from MOFs and economic 
life cycle analyses
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Preliminary Investigation of Oxygen-Enriched NG Flames

Performed preliminary testing performed with oxidizers of pure 
oxygen and with 50% O2 in N2, using an overall equivalence ratio 
of 1, with a constant methane flow

- Velocity (Re) of oxidizer flow is 50% lower when using 
pure O2, making for taller flame (slower mixing)

- Soot formation is enhanced when using pure O2 (higher 
temperatures, slower mixing)

50% O2 in N2 100% O2

Radiant emission measurements have been performed 
along the flame centerline

- Data for 100% O2 shows significantly more 
thermal radiation

- Flame temperatures are higher when using 
pure O2 (more radiation from flame products)

- Some soot is formed in the 100% O2 flame



Systems Analysis of MOF-based Air Separation

Construct and 
validate model of 

PSA process

Adjust PSA model 
parameters to yield 
desired O2:N2 ratio

Estimate energy 
consumption based 
on PSA parameters

Optimal O2:N2 ratio     
for combustion             
(from combustion team)

MOF adsorption 
isotherms (N2 & O2)                  

(from MOF team)

PSA model reference: 
Beeyani et al., Polish J Chem
Technol, 12, 2, 18-28, 2010

Key PSA model 
parameters: 
• Vessel dimensions
• Operating pressures
• Cycle time
• Feed rate

PSA energy consumption is 
dominated by compressor(s)
 Operating pressures and 

flow rates are primary 
drivers

Can MOF-based 
PSA reduce energy 
consumption by 5% 

vs. conventional PSA 
air separation?

Can MOF-based 
PSA reduce energy 
consumption by 5% 

vs. conventional PSA 
air separation?

tmnenof@sandia.gov


