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Energy Storage Safety/Reliability Issues ) i
Have Impact Across Multiple Application Sectors

‘-:"5\
_*‘m
——— - 2011 NGK Na/S Battery
2006 SOhy/DE” battery reca” , § Explos|on Japan (two weeks
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2013 Storage Battery Fire,
The Landing Mall, Port
Angeles, (reignited one week
after being “extinguished”)

2012 Battery Room Fire at ' b2 GM Test Facility
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By nature, stored energy can be hazardous (oo

e Potential hazards associated with stored energy couple with
inexperience regarding safety and mitigation practices.

e What are ignition characteristics?
e What are hazards, both thermal and chemical?

e What mitigation is appropriate?

e Other stored energy: IP-8

e Chemical energy in fuels. pool fire

e Pumped hydroelectric storage.

e Safety characteristics need to be evaluated; standards and best-
practices need to be developed.
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The Problem of Scale Notonal

Field failures of single cells are G
gle Cell
relatively rare ~0.5-5 Ah

= Failure ratesaslow as 1in _
Strings and large

Several m|“|0n format cells
~10-200 Ah

The number of cells used in the

transportation and energy '
1000s cells

huge (billions)
EV and PHEV batteries: 10-50 Stationary storage

system 1000s or more

kWh individual cells

MwWh+

storage industries is potentially \ 10-50 KWh

Batteries for stationary storage
applications: O(MWh) WWW.nissan.com

. . www.internationalbattery.com
A single cell failure that WWW.Samsung.com

propagates through the pack www.saft.com
could lead to an impact even
with very low individual failure



http://www.samsung.com/
http://www.internationalbattery.com/
http://www.nissan.com/

The Grid Energy Storage Safety Challenge @i

Variety of technologies
Proximity to population
Use conditions

Scale and size

Design considerations
System complexity

Us‘Marine Carps FOB, Afghanistan

Key Challenges:
Utility safety incidents have highlighted the need for a focused effort in safety




Much has been done to address potential failure S
modes

Development of
Inherently Safe Cells

fective Response to
off-normal Events
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Safer cell chemistries
Non-flammable electrolytes
Shutdown separators
Non-toxic battery materials
Inherent overcharge protection

Cell-based safety devices

« current interrupt devices

» positive T coefficient

« Protection circuit module
Battery management system
Charging systems designed

Suppressants
Containment

Advanced monitoring and
controls
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Battery Abuse Testing Laboratory (BATLab)

= Comprehensive abuse testing platforms for safety and reliability of cells,
batteries and systems from mWh to kWh

Mechanical abuse
=  Penetration
= Crush
= |mpact
"  |mmersion

Thermal abuse
= Qver temperature
=  Flammability measurements
= Thermal propagation
= Calorimetry

Electrical abuse
= Qvervoltage/overcharge
= Short circuit
= Qverdischarge/voltage reversal

Characterization/Analytical Tools
X-ray computed tomography
Gas analysis
Surface characterization
Optical/electron microscopy
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12 Ah (~50 Wh) Cell Overcharge Abuse

Thermal runawa
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15 Key Challenges:

Time (min)

—Current —Voltage —TC2 = Potential heat release can

- . exceed stored energy.
(Internal temperature limited due to ejection of cell contents) gy

Potential cascading failure to
50 Wh cell in 8’ containment other cells

50 kWh battery failure -- 50 MWh battery failure? )




Thermal runaway is associated with anode reactions Sanda
. Laboratories
followed by cathode reactions

MCMB Anode\LiMn,0, Spinel Cathode

DSC
measurements
from Pete Roth
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DSC and ARC results suggest that the first step involved in thermal abuse
is the breakdown of the SEI layer, exposing Li/C to the solvent.

Further heating leads to oxygen release from cathode and reaction with
electrolyte.
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Changing Cathode Chemistry s

ARC of cells with different cathode chemistries
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EC:EMC
1.2M LiPF,

Changes in material
properties: potential
to mitigate runaway

LiFePO,

| 100% SOC

300

Temperature (C)

Differences in runaway enthalpy and reaction kinetics are related to
oxygen release from the cathode and the electrolyte combustion




Characterizing Thermal Runaway
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Full Cell Exotherm

i \
High Rate Region

——

A 18650

50 100 150 200 250 300 350 (Ah)
Temperature (C)

Full Cell High Rate

Region

LCO 18650* 1.2
Full cell runaway enthalpy shows

Sandia
National _
Laboratories

+ Runaway Enthalpy (kJ/Ah)
l Cell Type Capacity Peak Heating

Rate (W/Ah)

a significant amount of heat NCA 18650* 1.0

generation from even an LFP NMC 18650* 0.95

18650 cell -
But that heat is generated at LFP 18650 0.9

much different rates for the LFP 26650* 2.6

different cell types LFP 26650 2.6

*AH based on dT (exotherm)
*AH based on dT/dt (exotherm)

Data provide a quantitative measurement of the runaway enthalpy
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Improving Runaway Response s

NMC/Graphite cells
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Materials choices can be made to improve the runaway response in cells
Reducing runaway enthalpy and kinetics has direct implications in battery system safety




Failure Propagation Testing

Sandia
National _
Laboratories

Pack Negative

2.2 Ah CoO 18650
cell packs

Short Cell
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Cell 1 Cell2 =—Cell3 Cell 4 Cell5

Celle Cell 7 Cell 8 Cell 9 Cell 10

Limited propagation of the single point failure in the 10S1P pack 13
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Propagation Testing — Series vs Parallel ) faor
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Temperature (C)

Comparing cells in parallel with cells
in series (previous slide):

Opportunity to discharge cell
energy through failed cell leads to
cascading failure through entire
pack.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell B Coll 9 =Call 10

Successful initiation at Cell #6

Propagation to adjacent cells first, followed
by outlying cells

Cascading failure to entire battery over 450s
Some thermocouples (K-type) saturated
during test

14
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Thermal runaway occurs if S
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heat release exceeds heat losses

" [—=-=-Mn204, Tinf=150 C ii 4
Mn204, Tinf=240 C i .
X /i Chemical heat
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* Predicted heating rates based on ARC measurements.
« Higher environment temperature leads to thermal runaway.

« Low temperature degradation occurs in both cases.




Thermal runaway occurs if St
heat release exceeds heat losses

Laboratories
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Increasmg battery scale
reduced heat losses, lowers
|gn|t|on temperature

40 60 80 100 120 140 160 180 200 220
T[C]

Predicted heating rates based on ARC measurements.




Thermal runaway occurs if St
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heat release exceeds heat losses

" —-‘—-Mn2‘04, Ti‘nf=150‘C | | | | 4

Mn204, Tinf=240 C i .
/ { Chemical heat
"/ release

But, if the temperature

dependence is strong,

sensitivity to scale and
losses  peat josses is small.
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-- Active mitigation
- increases heat losses, | Focus mitigation on
| ;_“‘_ralses ignition temperature | shallow-sloped regions!
46 éO éO 160 150 140 1é0 150 260 250

T[C]

* Predicted heating rates based on ARC measurements.
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Predicting thermal environments in fire scenario M=,

Ventilation _
(flow out) Object heat

Tl up
400 800 1200 1600 2000
e
! I
298 2.17e+403

~_Inner
pressurizing
Fluid (buoyant)

Outer

. Heat flux
entilation —

(flow in)

Time: 139.505814

Fire modeled as a combustible hydrocarbon




Models allow parameter study for large-scale scenarios

Help determine pack thermal environment.

Time: 134.448446

Time: 139.595814

Time: 46.683046

Three ventilation comparison still shot
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Other hazards of energy storage: Taum Sauk reservoir () i,

= Alesson in our reliance on sensors and apparently simple systems.

= A depth sensor became unmoored from reservoir bottom, giving false depth
readings, leading to overfilling reservoir.

Upper Reservoir Water Level Overtopped the Dam
Jpper Reservoir Dam Failed on December 14, _2_00& .
T, : Yoo -‘",r " v __

o %f\.l

Taum Sauk — Upper Reservoir Full Taum Sauk Upper Reservoir Breached



Battery Safety — Moving toward large-scale storage Son
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Materials R&D to date: Materials R&D needs:
Non-flammable electrolytes * Viable flow batteries
Electrolyte salts * Aqueous electrolyte batteries
Coated active materials * High specific heat suppressants
Thermally stable materials * Vent gas composition

Testing
Electrical, thermal, mechanical abuse testing
Failure propagation testing on batteries/systems
Suppressants and delivery with systems and environments
Large scale thermal and fire testing (TTC)

Simulations and Modeling
Multi-scale models for understanding thermal runaway
Validating failure propagation models
Fire dynamic simulations to predict the size, scope, and
consequences of battery fires

Procedures, Policy, and Regulation

* UL 1973-13 Batteries for Use in Stationary Applications
* ANSI/UL 9540-P (ESS Safety)

* UL 1974 (Repurposing)

* IEEE 1635-12 (Ventilation and thermal management)




