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Overview 
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High Temperature Falling Particle Receiver 
(DOE SunShot Award FY13 – FY16) 
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Goal:  Achieve higher temperatures, higher 
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Advantages of Particle Receivers 

 Direct heating of particles 

 Higher temperatures than conventional molten salts 
 Enable more efficient power cycles 

 Higher solar fluxes for increased receiver efficiency 

 Direct storage of hot particles 

 Reduced costs 
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CARBO ceramic particles (“proppants”) 

particle Power 



History 
Particle Receiver Research at Sandia 

 1980’s 
 Feasibility study, modeling, bench-scale testing 

 2007 – 2008 
 First on-sun particle receiver test at Sandia 

 Batch run – no continuous operation 

 “Low” temperatures (up to ~300 ˚C) 

 Low thermal efficiency (~50%) 

 Goal of current work (2013 – present) 
 Higher temperature (> 700 ˚C particle outlet) 

 Higher thermal efficiency (> 90%) 

 Continuous on-sun operation at 1 MWt 
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Particle Receiver Designs – Free Falling 
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Particle Receiver Designs – Pachinko 
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Particle Flow over Chevron Meshes 
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Pros:  particle velocity 

reduced for increased 

residence time and heating 

 

Cons:  Mesh structures 

exposed to concentrated 

sunlight (~1000 suns) 



Prototype System Design 
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Lifting the system to the top of the 
tower 
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On-Sun Tower Testing 
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Over 600 suns peak flux on receiver 

(July 20, 2015) 



On-Sun Tower Testing 
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Particle Flow Through Mesh Structures 

(June 25, 2015) 
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July 24, 2015 – Nearly 700 suns 
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SS316 Mesh Failure Analysis 
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Mesh located far from failed region Mesh located within failed region 

(ceramic particles sintered on mesh) 



Non-Uniform Particle Mass Flow 
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Back plate 

Front plate 

Simulation shows similar 

aperture reduction as data 



Particle Discharge Plate Potential Solutions 

 Low thermal expansion silica-based 
RSLE plate 

 Particle-wall friction still increases 
with increasing temperature 

 Use elevator or other device for 
mass flow control 
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Findings 

 Achieved average particle outlet temperatures > 800 ˚C 
 Peak particle outlet temperatures > 900 ˚C 

 Particle heating up to ~200 – 300 ˚C/(m of drop); 1 – 3 kg/s 

 Thermal efficiency up to ~70% to 80% 
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Lessons Learned 

 Mesh materials (SS316) showed signs of wear 

 Evaluate alternative alloys or ceramics 

 Particle mass flow was reduced at higher 
temperatures 

 Two reasons: 

 Narrowing of discharge slot 

 Higher particle/wall friction coefficient 

 Need active particle mass flow control and 
monitoring 

 Particle loss was 0.06% of mass flow rate 

 60% from loss through aperture (5.8 kg/hr) 

 40% from attrition due to abrasion (3.6 kg/hr) 

 Mitigations 

 Deeper cavity; particle release further from 
aperture 

 Use low-particle-friction elevators 
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Questions? 

23 

Clifford K. Ho 

ckho@sandia.gov 

(505) 844-2384 



BACKUP SLIDES 
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Free-Fall vs. Obstructed Flow 
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SS316 Mesh Failure Analysis 
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Top left:  cross-

sectional view of intact 

wire mesh 

 

Top right: cross-

sectional view of 

oxidized wire mesh 



SS316 Mesh Failure Analysis 
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Cross-sectional view of oxidized wire mesh; wire ruptured and “leaked” molten steel out of 

oxidized shell (white is stainless steel, rough gray area is oxidized mesh) 



Multi-Material Mesh Insert 
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SEM Analysis of Multi-Mesh Materials 
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