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High Temperature Falling Particle Receiver  (f) &=
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(DOE SunShot Award FY13 — FY16)
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Goal: Achieve higher temperatures, higher
efficiencies, and lower costs 3
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Advantages of Particle Receivers  @k=.

" Direct heating of particles

= Higher temperatures than conventional molten salts
= Enable more efficient power cycles

= Higher solar fluxes for increased receiver efficiency

" Direct storage of hot particles

= Reduced costs

—> particle. Power

CARBO ceramic particles (“proppants”)




History ) &=,

Particle Receiver Research at Sandia

= 1980's

= Feasibility study, modeling, bench-scale testing

= 2007 -2008 ’
Jill Hruby

= First on-sun particle receiver test at Sandia Sandia President

= Batch run — no continuous operation
= “Low” temperatures (up to ~300 °C)
" Low thermal efficiency (~50%)
= Goal of current work (2013 — present)
= Higher temperature (> 700 °C particle outlet)
= Higher thermal efficiency (> 90%)
= Continuous on-sun operation at 1 MW,
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Particle Receiver Designs — Free Falling ~ [H&z.
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Particle Receiver Designs — Pachinko
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Particle Flow over Chevron Meshes [@&.

Pros: particle velocity
reduced for increased
residence time and heating

Cons: Mesh structures
exposed to concentrated
sunlight (~1000 suns)




Prototype System Design

Work
platforms

Water-cooled
flux target

Open space for
1 MW particle
heat exchanger

Top of tower

Olds
Elevator

Top hopper
(two release
slots)

Receiver
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Bottom ~45 ft

hopper




Lifting the system to the top of the @i,

tower




On-Sun Tower Testing ) 2.
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Over 600 suns peak flux on receiver
(July 20, 2015)




On-Sun Tower Testing ) .

Particle Flow Through Mesh Structures
(June 25, 2015)
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July 24, 2015 — Nearly 700 suns () 5.
o ,




SS316 Mesh Failure Analysis 1) ..

Mesh located far from failed region Mesh located within failed region
(ceramic particles sintered on mesh)




Non-Uniform Particle Mass Flow




Particle Discharge Plate ) S
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Particle Discharge Plate Potential Solutions

= Low thermal expansion silica-based
RSLE plate

= Particle-wall friction still increases
with increasing temperature

= Use elevator or other device for
mass flow control
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Findings ).

= Achieved average particle outlet temperatures > 800 °C
= Peak particle outlet temperatures > 900 °C

= Particle heating up to ~200 — 300 °C/(m of drop); 1 — 3 kg/s
= Thermal efficiency up to ~70% to 80%
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Lessons Learned

= Mesh materials (55316) showed signs of wear
= Evaluate alternative alloys or ceramics
= Particle mass flow was reduced at higher

temperatures

= Two reasons:
= Narrowing of discharge slot
= Higher particle/wall friction coefficient

= Need active particle mass flow control and
monitoring
= Particle loss was 0.06% of mass flow rate
" 60% from loss through aperture (5.8 kg/hr)
= 40% from attrition due to abrasion (3.6 kg/hr)

S-4800 10.0kV 24.5mm x40 SE(M)

= Mitigations
= Deeper cavity; particle release further from Particle loss
aperture from aperture
during on-sun

test

= Use low-particle-friction elevators
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Questions? )

Clifford K. Ho
ckho@sandia.gov
(505) 844-2384




BACKUP SLIDES
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Free-Fall vs. Obstructed Flow i) ttors

1.2 Master_FPR_tests_CorrectedMassFlow_v9_ckho.xlsx

M Free Fall

M Obstructed Flow

Thermal Efficiency
o
(@)

0.4 -
0.2 -
0 _
1 2 3 4
Comparable Tests with Similar Mass Flow, Irradiance, and Inlet
Temperature



SS316 Mesh Failure Analysis 1) ..
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$S316 Mesh Failure Analysis ) .

Cross-sectional view of oxidized wire mesh; wire ruptured and “leaked” molten steel out of
oxidized shell (white is stainless steel, rough gray area is oxidized mesh)




Sandia
Multi-Material Mesh Insert @&%";z?éﬁes




SEM Analysis of Multi-Mesh Materials

SEM Image of
Damaged Interwoven

Mesh Sample Pulled from
Material Insert (left edge faced
incident irradiation)
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