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Glass is Used to Bond/Join Materials
Sandia’s Interest

Glass-Bonding/Joining Applications 

 Glass-Bonded Composites 
• Glass bonded alumina 
• Low temperature co-fired ceramic (LTCC) electronic packaging

 Seals
• Hermetic glass to metal (Gtm) seals

 Air bag motors
 Medical implants
 Microelectronics

• Energy Conversion
 Solid oxide fuel cells (SOFCs)
 Concentrated solar
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Filled Glass Composite (FGCs)
Glass Processability with Properties of a Ceramic

Glass
 Processability
 Materials Compatibility
 Low/Fixed CTE
 Low Toughness/Crack Tolerance

Glass-Ceramic (GC)
 Toughness/Crack Tolerance
 High/Tunable CTE
 Process Sensitivity
 Reactivity/Instability

Filled Glass Composite (FGC)
 Process Robustness
 Toughness/Crack Tolerance
 Low to High/Tunable CTE
 Chemical/Structural Stability

Related Sandia Presentations
Kevin Strong  May 24th 11 AM: “Characterizing and Predicting Stress and Structural Relaxation in Glass”
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Sample BaO SiO2 Al2O3 B2O3

BAS-1 25.0 75.0 0.0 0.0
BAS-8 33.3 66.7 0.0 0.0
BAS-3 25.0 60.0 15.0 0.0
BAS-5 25.0 46.0 23.0 6.0
BAS-6 25.0 42.0 21.0 12.0
BAS-7 25.0 38.0 19.0 18.0

Characterization and Modeling of 
Chemistry-Structure-Property Relationships

Initial Studies on Simple Boron-Aluminum Modified Barium-Silica Glass
xBaO-yAl2O3-zB2O3-(100-x-y-z)SiO2
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Characterization – 27Al MAS NMR

 Predominantly AlIV coordination (> 98%).

 Distribution of local environments reflected in 
27Al EFG tensor.

 No significant change in local coordination 
with variation in modifier and network former 
concentration.
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Characterization – 11B MAS NMR

 Trigonal BIII coordination (> 90%).

 Slight increase of BIV with increasing 
B2O3 concentration.

 No significant change in local 
coordination with variation in modifier 
and network former concentration.
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Characterization – 29Si MAS MMR

 Changes in the local SiO4 coordiantion 
with different Qn speciation.

 Not well resolved and a gradual shift in 
diso with increasing Al2O3+B2O3

concentrations.

 Al and B in 2nd coordination sphere 
producing a chemical shift change.

 Low resolution seen in other Ba and Ca 
silicate glasses.

Motivation for to incorporate results from 
MD simulation to understand and extract 
some of these trends. 
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Connecting MD Simulations and NMR

 Goal is to calculate NMR parameters from MD simulations.

 Experimental test of MD simulations.

 Allows assignment of NMR results for different nuclei.

 Can ask question about specific next nearest neighbor interaction (Al-O-B, Al-O-Si).

 Explore unique conditions and predict NMR (experimental changes?).

 Possibility to provide feedback for development of force-fields. [1]

[1] Gambuzzi et al. Geochimica Cosmochimica Acta (2014) 125, 170-185. Combined CASTEP feedback for MD simulations of 
Ca-SiO2-Al2O3 glasses.

BAS-3
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Approaches: Empirical NMR Correlations

• Prediction of chemical shifts based on local structural
parameters: bond lengths, bond order, bond angles,
coordination number (CN).

• Original correlation developed from crystalline model
compounds.

• Example include 17O, 23Na, 29Si, 27Al NMR chemical shift
calculations.

• 29Si NMR correlations well developed (many different
examples), and used to extract Bond Angle Distributions
(BAD) in amorphous SiO2.

• Many not expandable to different cation, CN, or Qn!
• Require development of multiple correlations!

• How do you treat the impact of low concentration 
species?

• Is it possible to develop a more empirical relationship?
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Approaches: Quantum Calculations - Clusters

T. M. Alam “Ab Initio Calculations of 31P NMR Chemical Shielding Anisotropy Tensors in 
Phosphates: Variations Due to Ring Formation”, Int. J. Mol. Sci., 3, 888-906 (2002).

T. M. Alam and J. M. Segall, “Structural Perturbations on the Bridging Oxygen 17O NMR EFG 
Parameters in Ultraphosphates: An Ab Initio Study”, J. Molecular Structure, 674, 167-175 
(2004).
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Approaches: GIPAW Calculations - Periodic

P1 Cell

• GIPAW (Gauge Including Projector Augmented Wave)
method allows direct calculation of NMR tensors in periodic
systems. Really developed for crystalline materials – but can
be extended to include primitive P1 cells like MD
simulations.

• State of the art for NMR of glass simulations! No need
for model systems, no needs for cluster extractions – direct
quantum level calculations of ALL nuclei.

• Most commonly Implemented in CASTEP program ($$, UK).

• Computational expensive – as MD cell size (limited)
increases calculation becomes very time consuming
(impacts on averaging).

• More recent examples in glass use smaller P1 cells and
develop empirical relationships….future direction!

Gambuzzi et al. Geochimica Cosmochimica Acta (2014) 125,
170-185, ‘Probing silicon and aluminum chemical environments
in silicate and aluminosilicate glasses by solid state NMR
spectroscopy and accurate first-principle calculations.
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Issues: Extraction of Average 
Chemical Shifts from MD 

Simulations Time and ensemble averaging over the configurations

obtained during MD simulations can provide a more
accurate result in calculation of the NMR chemical shift.

 Typically, need to average the NMR shielding over an
“appropriate” time scale (auto correlation time) for the
NMR observable.

 This time scale is NOT known a priori.

 NMR time scale is NOT the same as the decay time
for the energy auto correlation function.

 May require thousands of calculations to simply
determine the appropriate NMR time scale.

 Long term fluctuations may not be captured in a
simple auto correlation averaging. This may not be an
issue for small molecules, but could represent an issue
for large complexes or surface adsorption.
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Even the ensemble averages (64 Li) vary on starting time slice!

Time period to approach local average chemical shift.

Finally converge on a similar NMR chemical shift.

T. M. Alam, D. Hart, S. L. B. Rempe, "Computing the 7Li NMR Chemical Shielding of Hydrated 
Li+ using Cluster Calculations and Time-Averaged Configurations from ab initio Molecular 
Dynamics Simulations", Physical Chemistry Chemical Physics, 13, 13629-13637, (2011).
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A Solution: Extraction of Chemical 
Shifts from MD Simulations

 Implemented a “halfing” sampling method to
improve the speed and performance of the time
and ensemble averaging of the NMR calculations.

 By monitoring the variation of the standard
deviation it is possible to determine when enough
sampling points have been averaged.

 Sample over the entire time series, incorporates
longer term fluctuations.

Continue to develop this interface to improve the
speed and compatibility with MD simulations from
different sources.

 Still requires calculation from multiple time
slices to obtain a representative chemical shift
prediction.

 Need to consider computational speed
limitations!
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Issues:
Calcualtion Time and Statstics

MD Snap Shot
(Energy Relaxed)

Geometry Relaxed

Plane Wave
Periodic

Structure Calculation

~ 1 week
calculation

GIPAW CASTEP
NMR Shielding

Calculation
(~ 1 day)

Empirical
NMR Shielding

Calculation
(~ 1 s)
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 Larger size MD snap shot
computationally demanding. If
scales as ~N2 a 3000 atom
calculation would require 119
days for NMR calculation and
119 weeks for geometry relaxed
calculation!

 Larger size is required for
improved statistics.

 What can be modified in empirical
relationship to improve
correlation?

 Sampling scheme for MD would
also improve statistics.

75 Si atoms

275 atoms
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29Si NMR Shift Calcualtions: Empirical

BAS-1

SiO2 Al2O3 BaO

75 0 25

Q2

Q3 Q4

 Veryfast! (~1s for 3000 atoms).

The mean chemical shift for each Qn species is
correctly predicted.

Allows for more reliable deconvolution for non-
standard compositions.

 The MD simulation over estimates Q2

concentration, which is essentially not observed
in the experimental NMR.

 MD simulation appears to predict a larger
distribution on Qn resonances than observed
experimentally.

 (Ongoing) Useful in understanding and
deconvolute the 29Si chemical shifts with 27Al
and 11B added (not clearly resolved in the 29Si
NMR line shape).

?

Sherrif et al. (1999) Eur. J. Mineral., 3, 751-768.
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Averaging Over MD Time Series

 Time averaging removes chemical shift of
strained geometries.

 Slight reduction in distribution width for each
Qn species. Needs more averaging?

 Speed of empirical calculation actually allows
for larger averaging set. Could be done over
entire time series. (Future effort).
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SiO2 Al2O3 BaO CaO B2O3 Na2O K2O

BAS-1 75 0 25 0 0 0 0

PC1 50 0 10 0 0 40 0

PC2 50 0 30 0 0 20 0

TRZ04 50 10 10 30

TRZ06 50 10 30 10

Variation with Cation Compositions
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How Large Can We Go?
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z

Vacuum

Simulation of Vacuum Surface



Empirical Correlations

Geometry Relaxed

Prediction Correlations

CASTEP Prediction (ppm)
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 Larger size MD snap shot
computationally demanding. If
scales as ~N2 a 3000 atom
calculation would require 119
days for NMR calculation and 119
weeks for geometry relaxed
calculation!

 Larger size is required for
improved statistics.

 What can be modified in these
empirical relationships to
improve correlation?
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Conclusions and Future Efforts

 Have developed code for the empirical calculation of 29Si NMR chemical shifts
from MD simulation structures.

 Allowed for improved NMR assignments, and identification of unique signatures.

 Reveals some discrepancies between MD predicted structures and experimental
NMR results.

 Demonstrated equivalence with GIPAW plane wave periodic calculations.

 Have been able to address very generalized compositions and larger sizes!

 Continue improvements of empirical relationships based on GIPAW simulations.
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