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Sealing Glass Introduction ) .

= UUses

= Hermeticity === hermetic connectors

= |nsulation

= |mportant properties
= Bulk & shear moduli
= Glass transition = CTE
= Material history
= Relaxation functions

= Why?
= Residual stress
= Structural relaxation
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The SPEC Model ) o,

The Simplified Potential Energy Clock Model* allows for:

Stress/strain during cooldown

= Structural relaxation

= Creep

The SPEC model was calibrated for Schott 8061 sealing glass?
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SPEC Calibration ) e

@ e Shear master curve
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FE Model of Simplified GTMS ) .

Concentric seal geometry

« Quter diameter = 16.1 mm

* |nner diameter = 10.8 mm

« Glass thickness = 3.1 mm
Processing

* Cool from 600 °C to 20 °C
Materials

« Glass: Nonlinear Viscoelastic

« Stainless Steel: Elasto Viscoplastic

Stainless
Steel

\ Symmetry
Plane

1 Section A-A 5




Model Response ) s,

Radial Stress (MPa)
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=3 exists on surface of glass
60 3 Hoop Stress
80 ? Hoop Stress(MPay © Low stress on the surface
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Indentation Technique ) i,

o glass
Simplified Glass-to-Metal Seal metal

Indentation 0006000 5 00050004
Locations L %0

K; Stress Intensity Factor

K;. Stress Free Fracture Toughness
¢ Crack Length

_ —(K = Kp)

- 1.12(mc) V2
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Measured Crack Lengths ) .

( Radial Direction\ Tangential Direction
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Calculated Radial Stress ) i,

20

Set #1
Set #2
0 S Crack lengths measured on
four samples
= 20
s
é 40
@
& -60
-80
-100
0 1 2 3 4 5

Radial Distance from Center (mm)

Set Polished Oxide

#1 Yes Yes
#2 Yes No
#3 Yes Yes
#4 No Yes




Analysis of Radial Stress Data ) .

Radial Stress (MPa)
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Radial Distance from Center (mm)

Data analysis process

« Only considered data from

polished samples

« Data in the range of

0.25 > x> 5.0 considered
outliers




Thermal Strain Uncertainty ).

Thermal Strain (%)
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The mean of the maximum
radial stress is 0.73 MPa with a
standard deviation of 0.40 MPa

500
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Uncertainty exists in the
calibration of the prony series
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e 1 +10%

c Bx10%

0 1 2 3 4 5 6
Radial Distance from Center (mm)

11




Shear Master Curve Data ) i
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Shear Master Curve Uncertainty @&

20 * Results of 10 simulations

compared to the indentation

residual stress measurements
« Experimental results bound

model results at highest stress
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 Mean model response over
predicts compression — limitation
of experimental method?

« At location of highest stress,
model and experimental results
exhibit similar level of confidence ~100
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Conclusions )

= Uncertainty in model inputs of nonlinear viscoelastic
properties for sealing glass evaluated

= |ndentation technique used to infer residual stress in simple
glass-to-metal seal (GTMS)

= Residual radial stress on surface of GTMS showed little
sensitivity to prony series calibration terms (t & [3)

= 10 shear master curve measurements completed, models
calibrated, and uncertainty propagated through model

= The variation in the model response at the peak stress
captured 95% of experimental data with 90% confidence

= Need to further investigate behavior towards the center of
GTMS
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Shear Master Curve Uncertainty @&
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FE Model of Simplified GTMS ) .

Stainless
Steel




