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Sealing Glass Introduction

 Uses
 Hermeticity hermetic connectors 

 Insulation

 Important properties
 Bulk & shear moduli

 Glass transition CTE

 Material history

 Relaxation functions

 Why?
 Residual stress

 Structural relaxation
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The SPEC Model

The Simplified Potential Energy Clock Model1 allows for:

 Stress/strain during cooldown

 Structural relaxation

 Creep

The SPEC model was calibrated for Schott 8061 sealing glass2
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SPEC Calibration
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Shear master curve 
development

William Watts
Prony series 
calibration



FE Model of Simplified GTMS
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Glass
Stainless

Steel

Symmetry 
Plane

AA

Section A-A

Concentric seal geometry
• Outer diameter = 16.1 mm
• Inner diameter = 10.8 mm
• Glass thickness = 3.1 mm
Processing
• Cool from 600 ºC to 20 ºC
Materials
• Glass: Nonlinear Viscoelastic
• Stainless Steel: Elasto Viscoplastic



Model Response
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Radial Stress
• Glass is largely in 

compression
• A region of tensile stress

exists on surface of glass
Hoop Stress
• Low stress on the surface

of the glass
• Region of tensile stress

in the center of the glass

0.0 1.0 2.0 3.0 4.0 5.0

Radial Distance from Center (mm)

−120

−100

−80

−60

−40

−20

0

20

S
tr

e
s
s

(M
P

a
)



Indentation Technique
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Measured Crack Lengths

8

30

40

50

60

70

80

90

100

0 1 2 3 4 5

SN1-3 oxidized shell

C1 (um)
C3 (um)

C
ra

c
k
 L

e
n

g
th

 (
u

m
)

Radial Position (mm)

Baseline

30

40

50

60

70

80

90

100

0 1 2 3 4 5

SN2-8 no oxide

C1 (um)
C3 (um)

C
ra

c
k 

L
e
n
g
th

 (
u
m

)

Radial Position (mm)

Baseline

40

60

80

100

120

140

160

0 1 2 3 4 5

SN2-8 no oxide

C2 (um)
C4 (um)

C
ra

ck
 L

e
n

g
th

 (
u

m
)

Radial Position (mm)

40

60

80

100

120

140

160

0 1 2 3 4 5

SN1-3 oxidized shell

C2 (um)
C4 (um)

C
ra

c
k 

L
e

n
g
th

 (
u

m
)

Radial Position (mm)

Baseline

Baseline

c1

c4

c2

c3

Radial Direction Tangential Direction



Calculated Radial Stress
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Set Polished Oxide

#1 Yes Yes

#2 Yes No

#3 Yes Yes

#4 No Yes

Crack lengths measured on 
four samples 



Analysis of Radial Stress Data
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Data analysis process
• Only considered data from

polished samples
• Data in the range of 

0.25 > x > 5.0 considered
outliers



Thermal Strain Uncertainty
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�

Uncertainty exists in the 
calibration of the prony series 
representing the thermal strain:
• ± 10%
•  ± 10%

The mean of the maximum 
radial stress is 0.73 MPa with a 
standard deviation of 0.40 MPa



Shear Master Curve Data
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Storage and loss moduli for 
10 samples at 460 ºC

Shifted storage and loss modulus



Shear Master Curve Uncertainty
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• Results of 10 simulations 
compared to the indentation 
residual stress measurements

• Experimental results bound 
model results at highest stress

• Mean model response over 
predicts compression → limitation 
of experimental method?

• At location of highest stress, 
model and experimental results 
exhibit similar level of confidence

Error bars: 90% conf. w/ 95% coverage 



Conclusions

 Uncertainty in model inputs of nonlinear viscoelastic 
properties for sealing glass evaluated

 Indentation technique used to infer residual stress in simple 
glass-to-metal seal (GTMS)

 Residual radial stress on surface of GTMS showed little 
sensitivity to prony series calibration terms ( & )

 10 shear master curve measurements completed, models 
calibrated, and uncertainty propagated through model

 The variation in the model response at the peak stress 
captured 95% of experimental data with 90% confidence

 Need to further investigate behavior towards the center of 
GTMS
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Shear Master Curve Uncertainty
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Model Response
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Radial Stress
• Glass is largely in 

compression
• A region of tensile stress

exists on surface of glass
Hoop Stress
• Low stress on the surface

of the glass
• Region of tensile stress

in the center of the glass



FE Model of Simplified GTMS
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