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Abstract

Trapped lon Quantum Information Processing (QIP) relies on complex microfabricated trap structures to

enable scaling of the number of quantum bits [1]. Building on previous demonstrations of surface-
electrode ion traps [2-4], we have designed and characterized the Sandia high-optical-access (HOA-2)

microfabricated ion trap. This trap features high optical access, high trap frequencies, low heating rates,

and negligible charging of dielectric trap components. We have observed trap lifetimes of more than

100h, measured trap heating rates for ytterbium of less than 40 quanta/s, and demonstrated shuttling
of ions from a slotted to an above surface region and through a Y-junction. Furthermore, we summarize
demonstrations of high-fidelity single and two-qubit gates realized in this trap.

[1] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

[2] S. Seidelin, et al., Phys. Rev. Lett. 96, 253003 (2006). [4] D. L. Moehring, et

al.,

[3] D. Stick, et al., arXiv:1008.0990 (2010).
New Journal of Physics 13, 075018 (2011).
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Trap Fabrication Capabilities
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Five level metallization Low-profile wire bonds
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DC electrodes are routed through lower metal layers
allowing for:
- simplified routing as wiring can cross in different
metal layers
More complex, islanded trap structures, such as
circulators and rings
Trap layouts that are more true to models, since
electrode leads don’t need to be taken into account
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An interposer chip routes control voltages from

the trap to the pads of the standard CPGA carrier.
Trench capacitors are integrated directly into the
interposer to reduce RF pickup
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Microfabricated Traps at Sandia

Y Junction Trap

- Several traps have been conceived and produced

at Sandia

- Just about any electrode configuration can be
realized and the traps are mechanically very
stable

NONE

Switchable Y Junction

HOA-1 Y Junction

SEI 2.0kVv X1,000 10pm WD 16.0mm

Circulator Trap

High Optical Access Trap (HOA-2)

Excellent optical access rivaling 3D traps

- NA 0.11 across surface
- NA 0.25 through slot

High trap frequencies (up to 2.6 MHz with Yb)
Precise control over principal axis rotation
Transition between slotted and un-slotted regions for

2D scalability

Shuttling in and out of slotted area demonstrated

Quantum

Junction

Shuttling

53400 10.0kV 30.1mm x19

3/30/2015

- Very good trap performance

Transition

- Lifetime over 100 h in Yb while taking data

- Lifetime > 5 m without cooling
- Low heating rates approx. 100 quanta/s

Gate Set Tomography

Many repetitions on gates enables high precision
Germs chosen to amplify all possible errors in the process matrix

- No assumptions on gates -
- Self-consistent analysis -
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The GST estimate of the logic gate operations.
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Two-Qubit Gate

Entangled State Fidelity

Molmer-Sgrensen Gate

Entangling gate that takes advantage of bichromatic ;
fields and does not require ground state cooling -
Requires a number of extra calibrations such as gate

detuning and phase, and to balance Rabi frequencies

Standard way of characterizing the MS gate
Measures only the amount of entanglement

along all transitions used in the gate

| 1 bright
M 0 bright

W 2 bright [

We use the tilt mode because of lower heating rates

(<8 quanta/s vs = 60 quanta/s for the COM mode)
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Gates are 200 ps long and are compensated with a
first order Walsh function see b. Hayes et al, PRL 109, 020503 (2012)
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Two-Qubit GST

Provides a process fidelity instead of just the entangled state fidelity
Much more rigorous than entangled state fidelity measurements
typically used for benchmarking the MS gate

Currently limited to the symmetric subspace due to lack of individual
addressing

Requires an extremely stable MS gate to take long GST measurements
without constant recalibration (roughly 4 hours for the
measurements shown)
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Good entangled state fidelity,
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Good entangled state fidelity,
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Best reported process
fidelity of a two-qubit gate
in a scalable surface trap!
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Single-Qubit Gates

The 7Yb* Qubit
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- Clock state qubit is insensitive to magnetic fields

- Trapping time >100 hours with continuous measurements

>5 m without cooling

- T,>5s5,T,=1s

Drift Control

Regular recalibration of control parameters is time-consuming and ideally
intermittent. By interleaving individual experiments with single-shot calibrations,
we obtain slow corrections to control parameters, which shim out slow drifts.

Small
dephasing

Raw GST Data Before Optimization
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638 nm
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used currently

Sideband Cooling

AOM used to fine tune

faubit

frequency of Raman beams

Can be used for sideband

cooling

Also allows for addressing
of motional states

Can be set up in either co- or counter-propagating configurations

Comb Stabilization

- Repetition rate lock used to
stabilize separation of comb teeth
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“Gapless” Pulse Technique

T
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pulse

b0

Finite
turn-on time

d1

P2 b1

BB1 compensation assumes variations in pulse area are scaled proportionally for extra compensation
pulses. Finite turn on-time effects are independent of pulse length and do not scale!
Power stabilization of Raman beams is limited by ADC readout times in feedback loop.

Gapless pulse '
Previous |
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9 Gate |
|
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Discontinuous phase updates are used in place of gaps. Solves issues related to finite turn-on
time and allows for continuous feedback on the driving field power.

Single-Qubit GST

Careful optimization of gates provides the necessary foundation for scaling to N qubits.
GST not only gives an extremely accurate characterization of our gates, which can be used for

debugging

Laser-based single-qubit gates optimized to a level that rivals results from standard traps
First reliable measurements of the diamond norm, which are approaching the fault-tolerance

threshold

Evolution of Gates During Debugging

Experimental Parameters

Infidelity (x107%)

1/2 ¢ Norm (x107%)

Drift Compensated
Control Gates

Beam
Orientation
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Table 1: Summary of laser-based gates.

Beam orientations are indicated by = for co-propagating Raman

beams and = for counter-propagating Raman beams. Gapless pulses all use power-stabilized Raman beams.
The gapless measurement with uncompensated I gates, marked by v'*, is not strictly gapless, but the only

gaps occur during the wait I gates.

While our laser-based gates have significantly

improved, they are still dominated by coherent errors
as evidenced by the diamond norm. These gates can
be compared to our best microwave-based gates,

800 1000

Sequence Index

which were optimized using the same GST approach.

Microwave Gates

1/2 {-Norm
7.9(7) x 107°
7.0(15) x 107>

8.1(15) x 107>
Below the threshold for fault-

tolerant error correction! :
See P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007)

Process Infidelity
6.9(6) x 107°
6.1(7) x 1075
7.2(7) x 1075

Demonstrated performance of a Sandia
microfabricated trap that rivals
performance of macroscopic traps,
showing that surface traps are ready for
cutting edge QIP

Various experimental improvements and
new techniques used to improve our gates
Best characterized gates in a surface ion
trap
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Conclusions

Reliable determination of the diamond
norm afforded by GST

Laser-based single-qubit gates
approaching the fault-tolerance
threshold

Best two-qubit gate in a surface ion trap
System stable for several hours allowing
us to take long sets of data
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LABORATORY DIRECTED RESEARCH & DEVELOPMENT

Microwave Gates

Process Infidelity | 1/2 ¢-Norm

6.9(6) x 10° | 7.9(7) x 107

6.1(7) x 10° | 7.0(15) x 10~°

7.2(7) x 107° 8.1(15) x 10™°

Laser Gates

Process Infidelity | 1/2 ¢-Norm

1.17(7) x 1074 | 5.3(2) x 1074

5.0(7) x 107 3(6) x 10=%

6.9(6) x 107> 4(9) x 107%

Two-Qubit Gate

Process Infidelity | 1/2 ¢-Norm

4.2(6) x 1073 | 3.8(5) x 1072
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