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ABSTRACT

One of the most intriguing aspects of ammonium perchlorate (AP) decomposition is its incomplete
decomposition at low temperatures, in which the decomposition halts at a level of approximately 30%.
Various theories have been proposed to explain this observation based on physical and chemical
arguments. Here we consider the notion that geometry itself might contribute to this limiting value.
Percolation theory involves the “connectedness” of a geometric lattice, and a network is said to percolate
if it is connected continuously end-to-end. It has been demonstrated that in a cubic lattice, percolation
occurs at a site density of ~31.1%, remarkably similar to the limiting void fraction in AP. A Monte Carlo
(MC) algorithm using simple rules has been developed and applied to particle decomposition. The MC
simulations result in porosity evolutions that are reminiscent of actual AP behavior in terms of the overall
limiting porosity which is developed, the effect of particle size, and the sigmoidal time response.

INTRODUCTION

Ammonium Perchlorate.

The thermal decomposition of ammonium perchlorate (NH4CIO,4, a.k.a. AP) has been investigated
for many decades. It may be one of the most well-studied energetic materials in history [1]. Yet its
decomposition behavior is not yet completely understood. There are two basic processes by which AP
breaks down, and these processes generally occur in tandem. First is the dissociative sublimation
process whereby AP changes into gas phase NHz; and HCIO,4. This is a “surface” phenomenon—
sublimation rates are proportional to the particle surface area and sublimation can be suppressed by
increasing the surrounding gas pressure. The second
process is the temperature-driven decomposition /
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size, no decomposition (sublimation still occurs) [2, 3, 4, 5, 6, 7, 8]. Chemical analysis shows that the
residual solid is pure AP [1, 2].

AP has two polymorphs—an orthorhombic crystal phase below ~240°C and a cubic phase above that
temperature. Figure 2 shows a diagram of the orthorhombic state and illustrates the various crystal faces
and their characteristics [9, 10]. The lattice cell includes 4 molecules and has dimensions of a=9.20,
b=5.82, ¢=7.45 A implying a density of p=1.95 g/cm3. The cubic phase has a unit cell length of a=7.63 A
with a density of 1.76 g/lcm®. The low temperature cessation is not associated with the material phase—it
has been observed in both orthorhombic and cubic phase AP. The enhanced reactivity that occurs with
some materials due to increased ion lattice mobility during a phase change (Hedvall effect) does not
appear to occur with AP. On the contrary, there is a drop in reaction rate as AP changes phase: “the rate
of thermal decomposition sharply decreases at the moment of phase transition” [11], although the cause
of this “reverse Hedvall effect” [11] is not clear, it could be because reaction nuclei have been altered by
the phase change, or perhaps due to a drop in material density (lattice spacing increases) or a catalytic
effect which occurs at a higher rate for the orthorhombic form [8].
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Fig. 2: Orthorhombic form of AP crystal with unit cell lengths from Boldyrev [11] and Miller
indices and angles from Tutton [9]; some earlier references had incorrectly listed m face as
index 110, which has occasionally been propagated through the literature as noted in Ref.
[10]. According to Tutton, faces a, b, q, and o are often very small or not present, while
faces ¢, m, and r are typically well-developed. Thus, the m face is often nearly perfectly
rectangular while the c face is arhombus.

There have been a number of theories put forward as to why the decomposition halts. It is
notable that most of these theories are proposed by individuals that have considerable reputation and
experience in the field of solid-state chemistry and thermal decomposition of solid materials. Their
publication lists over the past several decades runs into the hundreds, and the theories themselves have
been published in peer-reviewed archival journals of high standing. It is therefore unwise to summarily
discount any of these hypotheses. Here we will attempt to describe each theory in unbiased terms. With
this perspective, they are not arranged in any particular order. These mechanisms may operate in
different regions of phase space and/or in tandem.

A. Differential Knudsen diffusion in pores.

This theory was developed by Boldyrev and associates several decades ago [12] and has been
reaffirmed in a more recent document [11]. The process is described with two major steps. (1) Firsta
proton transfers within the ionically bonded NH,CIO, molecule resulting in formation of ammonia (NHs)
and perchloric acid (HCIO,) gases. These gases collect inside pores within the crystal. (2) Unequal rates



of Knudsen diffusion within pores (where the smaller NH; molecules can preferentially escape in contrast
to the larger HCIO, molecules which collide with the pore walls), results in a net accumulation of HCIO,
within the pores. The HCIO, then decomposes and its reaction products react with the NH,CIO, on the
pore walls; this action increases the size of the pore. Eventually the pore size become large enough that
the preferential Knudsen diffusion is eliminated and the HCIO,4 no longer accumulates in the pores—
effectively halting the decomposition process. This process does imply that the pores themselves are
open-ended to permit the escape of the ammonia; the requisite separation of the two gases wouldn’t be
expected to occur in blind pores.

B. Pressure / Lattice Strain Effects

In contrast to the previous theory, the idea here is that decomposition reactions occur inside the
crystal within blind pores below the surface of the particle. The decomposition reactions are initiated at
crystal defects (pores, inclusions, etc.) within the crystal. The reactions are also presumed to be
pressure-dependent. And since within the blind pores, material changes from solid to gas at near
constant volume, the resulting gas pressure can become very high (some measurements have inferred
gas pressures of 2 MPa within pore spaces [13], though this is likely low if the gases form at the original
solid density). The high pressures induce stresses on the surrounding crystal lattice, resulting in localized
lattice strain and the development of additional lattice defects which act as sites for reactions to occur.
However, once the expanding pores have reached the particle surface, the gases vent, dropping the
pressure and the reactions stop within that pore. Eventually possible reaction sites are depleted and the
overall reaction ceases. The end result is a highly porous structure. This concept has been described by
Behrens, Kay, and co-workers at Sandia, as well as Kraeutle at China Lake, and Raevskii in the former
Soviet Union (see References [4, 5, 7, 14, 15]). Descriptive words such as “blisters” which “tended to
break open” [14] and “spallation fragments” [15] are used to indicate that “subsurface reactions are
responsible for the decomposition” [14].

C. “Wormholing” by a Fluid/Liquid Reactive Intermediate.

This theory was proposed by Galwey and Mohamed in the mid-1980s [1, 16]. The theory says
that there is a reactive intermediate, namely liquid nitronium perchlorate (NO,CIlO,, a.k.a. nitryl
perchlorate, melting point 135°C) that is formed in some small quantity from AP decomposition. That
liquid then catalyzes decomposition reactions of the AP at the bottom of ca. 0.2-0.5 ym diameter pores,
producing final products. The nitronium perchlorate largely remains intact and continues to catalyze
reaction at the bottom of the pore. It eats its way through the particle in a pseudo random fashion
consuming AP in its path and leaving behind a “labyrinthine network of interconnected channels” [1] and
larger (~5 ym) holes where individual channels combine. The decomposition of NO,ClO, yields products
which oxidize ammonia (or NH," ions) from the AP forming NO," ions which react with ClO, (also from
AP) to re-form NO,CIO4 and maintain the catalyst’s presence in the pore. Eventually the catalyst itself
disappears (if the NO,ClO, decomposes completely prior to reacting with additional AP) and at that point,
the reaction rates essentially cease. The authors assert that cessation of reaction at ~70% mass
remaining is probably due to the removal of the more reactive, imperfect surface regions which are
susceptible to nucleation. Evidence supporting this theory includes these observations: (a) contact with
various nitrate compounds significantly increases the decomposition rate of AP, (b) trace amounts of
oxidized nitrogen compounds including NO,CIO,4 have been detected in partially decomposed AP, (c) the
activation energy for AP decomposition is similar to that reported for NO,CIO, decomposition, and (d) the
smoothly, rounded internal surfaces of the pores that formed by decomposition are indicative of liquid
participation [16]. A key concept of this theory is that the reactions begin at the surface of the particle, not
in the interior.

D. Nucleation Site Depletion

The basic idea is that the decomposition of ammonium perchlorate must begin at an appropriate
nucleation site within the crystal lattice. These preferred nucleation sites might be dislocations, crystal
defects, voids, or impurities, which disrupt the regularity of the crystal lattice. These nuclei grow as
reactions progress. Decomposition would stop when (a) the existing nuclei stop growing (for whatever
reason) and (b) no sites for additional nuclei formation are available. Some quotations from literature
(mainly Khairetdinov and Boldyrev) relating to this are:



“. . .nucleus formation takes place under the surface of the AP crystal. The germ formed
first grows up to 2 um and then stops” [8]

“[Chlorine] oxides may initiate the formation of a new germ 3-5 um from the old one. The
new germ cannot arise at a shorter distance for the same reasons as an old germ ceases
to grow, i.e. due to H,O accumulation” [8] (note: The authors of ref. [1] dispute that water
is the cessation-inducing quantity, based on experiments in which the material was
continually dried.)

“If the nucleation takes place on the AP surface it will cease immediately since the
catalysts of LTD [low temperature decomposition]—intermediate products of HCIO,
decomposition—will escape out of the crystal” [8]

“highly dispersed specimens of AP (d <4 um) are stable under LTD conditions since the
nucleation process can only take place on no less than 3-4 um depth of an AP crystal” [8]

“The nucleation process cannot take place deep in the volume of the AP crystal due to
the cell effect, i.e. steric difficulties . . . Itis on the subsurface where the nucleation
process proceeds most readily” [8], (emphasis added).

“the nuclei of the decompositional reaction do not have a legible boundary, and consist of
a large number of spherical seeds (@ 1-2um). The formation and growth of the nuclei
occur by means of a fusion of the seeds which originate close to the growing nucleus. . . .
after generation, the seeds are in continuous motion until they fuse with the basic core of
the nucleus” [15]

The above theories, while not completely agreeing in every aspect as to the fundamental
explanations (“the why?”), yet provide some consistency into the observed behaviors. Nucleation, and
the subsequent growth of those nuclei seem to be essential elements of the decomposition process.
Nucleation must originate at or near the particle surface, preferentially at lattice defects. Growth of nuclei
occurs for a time, but then self-limits due to physical or chemical effects (e.g. pressure venting or loss of
reaction catalysts or accumulation of inhibiting products). Additional nuclei tend to form near existing
reaction nuclei, possibly owing to reaction-induced lattice strain effects. The void space produced in
partially decomposed AP is largely connected porosity.

Our goal here is to reproduce, (quantitatively, if possible) the low temperature decomposition
behavior observed in ammonium perchlorate particles using numerical simulation. One aspect to be used
is percolation theory. It is hoped that this will give additional insight into the decomposition behavior and
promote additional thoughts, experiments, and models that may improve our understanding and ability to
predict AP’s behavior.

Percolation Theory.

Percolation theory deals with the “connectedness” of an array of objects such as the molecules in
a crystal lattice or the wires in a window screen. There are various forms of percolation. In describing
them, two important concepts are defined: “sites” and “bonds.” A “site” is a location of an object, a “bond”
is the path or connection between two sites. The number of nearest neighboring sites that are connected
to a given site is referred to as the “coordination number.” A standard window screen is an example of a
square lattice where the “sites” would be the intersections where the vertical and horizontal wires meet; it
would have a coordination number of 4 with connections in the up, down, left, and right directions.
“Percolation” itself refers to the situation when sites or bonds are fully connected from one end of the
domain to another.

A bond percolation situation might deal with the bonds or connections such as the grid of wires in
a window screen, whereas site percolation might deal with a regular stack of balls or blocks. Hunt [17]
gives a couple of relevant examples that one might ask in describing percolation. For instance, a bond



percolation problem might be: if the wires in a window screen are cut one at a time, what fraction of them
would need to remain so that the screen does not fall apart? (It turns out to be 50%.) Similarly, a site
percolation problem might be: if a box is filled with balls (i.e. sites) of two types, plastic and metal, what
fraction of the balls have to be metal so that the two ends of the box would have a continuous electrical
pathway from one end of the box to the other? And because it depends on the number of continuous
pathways, the electrical conductivity will be a function of the fraction of metal balls within the box.
Percolation theory can represent this type of behavior.

The critical percolation limit (p.) is the fraction of sites or bonds which just allows connection from
one end to the other. In the window screen example above (2-D square lattice, bond percolation) p is
exactly 0.5. For many lattices, an analytic formula for p. is not available; it must be estimated numerically.
Hunt [17] tabulates critical percolation values for various lattices; some of his values are reproduced here
in Table I. In the table, graphical representations of the various lattices are given with dots representing
the sites and lines representing the bonds (note: for the BCC lattice, the unit cells are plotted using dotted
lines, with the 8 bonds as solid lines; for FCC, the unit cells are plotted, but for clarity, the bonds between
the central site and the 12 neighboring sites are not shown, instead the central and neighboring sites are
shown as solid dots). The coordination number, Z, represents the number of nearest neighboring sites to
a given site. A similar number of nearest neighboring bonds to a given bond is listed as Z,,ng. The critical
percolation limits for site percolation and bond percolation are given. Note that the p. values for bond
percolation are generally lower than for site percolation; this phenomena is related to the number of
nearest neighbors being higher for bonds than for sites.

Table I: Critical percolation thresholds for selected 2-D and 3-D lattices. Adapted from Hunt [17].

Lattice Type | Honeycomb | Square | Triangular | Diamond |Simple Cubic BCC FCC
<\ . o o
|
Graphic | } ° <
i o
| Q ol .c
""""""""" o o
Coordination
Number, Z 3 4 6 4 6 8 12
p. (site) 0.6962 0.5927 0.5 0.4299 0.3116 0.2464 0.199
Zpond 4 6 10 6 10 14 22
1-2sin(11/18) 2sin(11/18)
p. (bond) ~ 06527 0.5 — 03473 0.3886 0.2488 0.1795 0.119

Of particular interest for this work (and highlighted in the table), is the critical site percolation
threshold for a simple cubic lattice (with six neighbors: up, down, left, right, front, back) which has an
empirically determined value of 0.3116, or about 31%. This says, in essence, that for a structure
consisting of stacked blocks, if blocks are randomly removed one at a time (each leaving a hole) then
once about 31% of the blocks have been replaced by void space, there will be a continuous path of void
space from one end of the structure to the other. This 31% level is reminiscent of the limiting void fraction
resulting from the low temperature decomposition of ammonium perchlorate.

Our hypothesis is that the continuous network of voids produced in decomposed AP is a
percolating network and that we can use percolation theory to examine its behavior. Of the seven lattice
structures listed in Table |, we believe that the simple cubic structure most closely resembles AP. The
low temperature orthorhombic structure can be considered a “stretched” cubic lattice with neighbors in the
up, down, left, right, front and back directions. Naturally the high temperature cubic polymorph also fits
this geometry. Our goal here is to develop a percolation theory-based Monte Carlo representation of
decomposition to discover whether the notion is sound.




MODEL

A Monte Carlo (MC) algorithm was developed to test the hypothesis formulated above. In so
doing we have liberally applied concepts from the very efficient Newman-Ziff algorithm [18]. But instead
of simply assigning a spatially randomized once-and-for all insertion order for decomposition order as a
the original Newman-Ziff MC approach might employ, we have used a somewhat more complex set of
rules which are designed to mimic some of the observed behavior from AP decomposition as described in
the introduction. Here we list the steps or rules that were applied.

Monte Carlo Algorithm Rules

1. A 2-Dor 3-D domain is chosen; we allow rectangles or ellipses in 2-D and parallelepipeds or
ellipsoids (including spheres) in 3-D. The domain is divided into uniform boxes (squares in 2-D,
cubes in 3-D). The domain is initially all filled. Locations within the domain are chosen at random
to “decompose” (change from solid to gas, forming a void).

2. A “zone of reactivity” near the outer edge of the domain is the only place where reactions can
initially occur.

3. Insertion of a void induces a “stress” or “defect” in surrounding material, which extends the zone
of reactivity around the void location (in all our examples, the zone of reactivity will extended by 2
boxes in every direction from an inserted void).

4. Voids cannot be inserted adjacent to the outer surface or adjacent to voids that are connected to
the outer surface UNLESS they are also adjacent to another, unconnected (blind) void. This is to
mimic the observed phenomena that decomposition begins at the subsurface (near the surface,
but not on the surface), and that the gas pressure within a blind void can push its way out.

5. “Adjacent” for purposed of connecting voids is only at the box faces (baseline 2-D has 4
neighbors: left, right, up, down; baseline 3-D has 6 neighbors: left, right, up, down, front, back).
Boxes that are touching only at corners are assumed to not be connected in the baseline
configuration, though this assumption will be relaxed later on.

6. The algorithm stops when no more voids can be inserted and all voids are connected to the
outside. Statistics such as void fraction as a function of number of MC steps are reported.

Two simple examples of the above algorithm are shown in Figs. 3 and 4. Each of these has a
12x12 square array that is initially filled. The zone of reactivity is defined (indicated by squares with a “+”)
initially in the first two interior layers; the surface layer is not included. Voids are placed at random
locations within the zone of reactivity. Blind (unconnected to outside) are shown as squares with an “O”
and voids connected to the exterior as empty squares. Disallowed (unreactive) regions are indicated by
solid gray (far in the interior, away from any void sites) or “X” (adjacent to either the outside or to voids
connected to the outside but at the same time NOT adjacent to an unconnected, blind void). As the voids
are placed, the zone of reactivity is altered to mimic the condition where preferential nucleation sites exist
near existing nucleated sites by replacing the deep interior material (gray goes away). Eventually as
voids continue to be inserted, the algorithm reaches a state where the zone of reactivity itself goes away
(no potential nucleation sites exist) leaving only non-reactive material and porosity which is connected
with the exterior.

Figure 3 gives the baseline results—the case where the neighbors of a site for connection
purposes are only those sharing the four faces (left, right, up, down). In this example, the algorithm
completes when 64 of the 144 sites are converted to void (44% porosity). We expect that the results for a
small, coarse problem such as this 12x12 example to be highly variable; if several runs were made,
results would likely vary significantly. A larger domain should give a more consistent set of results. It
should also be pointed out that while there are similarities, the algorithm we have implemented here is not
exactly the same algorithm for which the site percolation limits were derived in Table | (e.g. 0.5927 void
fraction for site percolation on the square lattice). We have included various limiters to mimic the
behavior of the AP crystal decomposition. In addition, our algorithm does not guarantee that voids are
completely connected end-to-end, just that every void is connected to the outside somewhere, and that
no additional voids can be inserted.



Figure 4 shows a repeat of the algorithm but this time with the definition of “neighbor” adjusted
such that the stencil includes the corners as well as the left-right-up-down faces so there are 8 neighbors
instead of 4. In this instance, because the inclusion of diagonal neighbors, it is easier for pores to
become connected to the outside. The result of this is that the total porosity at completion is lower. In the
example, 43 of the 144 sites are converted to void, representing ~30% porosity. This second case is to
illustrate the effect of including more neighbors.
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Fig. 3: Example of algorithm application on a 2-D 12x12 grid. 4 neighbors are included in stencil
(faces at up, down, left, right). In this case, the algorithm terminates at 64/144 voids (44%).
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Fig. 4: Example of algorithm application on a 2-D 12x12 grid. 8 neighbors are included in stencil
(faces at up, down, left, right plus corners). Final state at 43/144=30% voids.

The number of neighbors can also be adjusted in a 3-D model. The standard cubic stencil would
include 6 neighbors associated with the cube faces (left, right, top, bottom, front, back). But possible
additional neighbors also exist including 12 at the edge locations and 8 at the corners for a total of 26



Figure 5 shows these three possibilities 6, 18, or 26 neighbors. In addition to these discrete levels one
might also imagine the scenarios in which not all neighbors are “created equally.” For instance, since it
has been observed that nucleation seems to preferentially progress in the [010] direction (i.e. long axis of
the rhombus) [8,15] one might imagine a case in which only some pairs of the corners or edges were
included instead of all. The algorithm described above is agnostic to the number of neighbors; the only
requirement is that it must be symmetric from one block to its neighbor. For instance, if the upper right
side edge is included in the stencil, the lower left side edge must be also so that the neighbor can “reach
backward” as the original block “reaches forward.” So this allows pairs of neighbors to be included; we
used as number of neighbors: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26 in this work. Others have
considered more than 6 neighbors; reference [19] gives a critical percolation limit for a 26 neighbor case
as ~9.7% in contrast to the 31.17% for the 6 neighbor stencil.

(@) (b) (c)

v

N/

Fig. 5: Possible neighbors surrounding the center cube: (a) 6 neighbors at the cube faces;
(b) 6 cube faces + 12 edges = 18 total; (c) 6 cube faces + 12 edges + 8 corners = 26 total.

The Newman-Ziff MC algorithm uses a tree technigue to track clusters efficiently. Details are
given very clearly in Ref. [18] and a version of their code has been published on the internet, so here we
will not describe in detail the methodology used. But as a short description, some of the important
concepts are:

e Each site within the domain has an integer “pointer” variable attached. The pointer has three possible
values which indicate various states: “empty” = site is in initial state, positive = site is part of a cluster,
negative (but non-empty) = root of a cluster.

¢ Positive values of the pointer refer to the index location of another site in the connected cluster whose
pointer, in turn, points to another (recursively) until finally it arrives at site known as the “root” (i.e. twig
pointing to small branch pointing to large branch to trunk to root).

e The pointer at the root site of the cluster itself contains a negative number (the negative of the cluster
size) so the recursive pointer-checking routine knows when to stop looking.

¢ |Initially each site’s pointer is set to a value of “empty” (defined as the negative of the [total number of
sites+1] ) which indicates that the site is in its initial (i.e. unreacted) state.

o When a site is chosen, if all neighbors are “empty” then the site’s pointer is initialized with a value of -
1, indicating it is a root site and that the cluster size is 1.

e Otherwise, if there is one non “empty” neighbor to a chosen site, the site is joined to that neighbor’s
cluster. This is done by setting the site’s pointer such that it points to the index number of the
neighbor site’s root site. The pointer at the root is adjusted to reflect the size of the expanded cluster.

o If a chosen site is neighbor to two or more clusters (say the new site is a bridge between clusters),
they will be combined into a single cluster. This is done by finding the largest of the clusters and
reassigning the root pointers of all the other clusters to point to the largest cluster’s root then
adjusting the overall root to reflect the size of the combined cluster.

¢ In determining connectivity to the outside, we define an extra site which represents the outside and
assign the first layer of sites as having that extra (“outside”) site as a neighbor. Once interior sites
become connected to the outside site, they share a common root and hence connectivity can be
easily checked.



Since our overall algorithm induces a changing set of sites available for inclusion (e.g. see the
boxes with “+” symbols in Figures 3 and 4 which change as sites become voids), we cannot use the a
priori randomization method proposed by Newman and Ziff in which each site is assigned an order in
which it will be included. Instead we simply choose random numbers associated with the i, j, and k
indices associated with the three coordinates of each site within the domain. If the chosen i, j, k
coordinates are associated with a site that is not available for reaction (outside the “zone of reaction”) we
simply skip that set of numbers and choose another (although each time a set of coordinate index
numbers is chosen, we do include that attempt in an accumulator variable so we can keep track of the
temporal evolution). If the chosen i, j, k is one within the “zone of reaction” it is included and clusters are
included using the Newman and Ziff tree structure approach.

RESULTS

Monte Carlo simulations were run to examine the effects of number of neighbors and particle
size. Most of the simulations were performed with spherical particles, though rectangular parallelepipeds,
cubes, and general ellipsoids were also used. Because this approach is based on sites within a
numerical lattice, there is not specifically an associated length scale. Rather, the overall geometry is
defined in terms of “pixel” or “voxel” size (i.e. the size of the constituent cubes). In this respect, the
geometry is dimensionless.

Limiting Void Values at Simulation Completion.

Figure 6 gives some sample results showing run-to-run variations for 100 MC runs of a sphere of
radius 150 pixels. The number of neighbors was varied using values of 6 (faces only), 18 (faces and
edges) and 26 (faces, edges, corners) neighbors. The effect was significant. With a 6 neighbor stencil
the limiting void fraction was 42.34%; with 18 neighbors the void fraction dropped to 18.73%; with 26
neighbors the limiting value was 13.39%. Standard deviations for each of these sets of runs were less
than 0.01%, indicating a remarkable consistency.
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Fig. 6: Total voids at final state for 100 MC runs for a sphere of radius 150 pixels. The sphere had
14,136,576 possible sites [pixels] using: 6 (left graph), 18 (middle), or 26 (right) neighbors.
Average void fractions were 42.34%, 18.73% and 13.39% respectively and standard
deviations were in the 530 to 770 site ranges (0.00375 to 0.00545%)

Figure 7 shows the effect of the number of neighbors on the limiting void fraction for spheres of
various radii. Each of the points represents a series of 100 simulations. The larger sizes show
remarkably similar trends, with barely any difference from radii of 150 down to 50 pixels. However, once
the sphere radius gets down below about 25 pixels, there begins to be a noticeable difference. At a
radius of 5 pixels, the statistics are less well-defined with an appreciable standard deviation occurring.
This results from the small number of possible sites (only 552) in the domain where the statistics of large
numbers does not apply.
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bars) but is smaller than the marker size for each except for the smallest sphere sizes.

Figure 8 (a) shows the overall trend of the MC simulations with respect to particle size and
number of neighbors included. Spheres of radii from 2 to 200 pixels were included in this study. At large

the limiting void fraction is heading toward zero. In fact, the algorithm as described above breaks down
(no voids can be inserted) below a sphere radii of 3 pixels for all cases except 6 or 8 neighbors.
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(a) MC simulation results showing limiting void fraction as a function of sphere radius

(non-dimensional in terms of number of pixels). (b) Same MC results as in (a) but abscissa
is scaled by assuming that each pixel represents 4 um in physical length. Also shown is
the decomposition level data for AP from Refs. [2-8], previously plotted in Fig. 1.



Figure 8 (b), represents an attempt to relate the dimensionless quantities from the MC
simulations with an actual physical dimension. This is done by making the assumption that the pixel
length scale is 4 ym. The basis for this length scale are some statements from Khairetdinov and
Boldyrev: “characteristic thickness of the walls of this sponge-like structure was 3-5 ym” and “new germs
arise mainly in the nearest neighbour (4-6 um)” [8]. The abscissa of Fig. 8 (b) is also given in terms of
particle diameter instead of radius, for a more direct comparison with experimental results. The
decomposition limit data as a function of particle size previously presented in Fig. 1 has been
superimposed on Fig. 8 (b). For simplicity of comparison, in Fig. 8 (b) the individual data points and error
bars from the MC simulations have been removed; only the overall curves are retained. Note the
similarity between the trends observed in experiment and the results of the MC simulations. The
agreement seems to be best with the MC simulations performed with 8 neighbors (6 cube faces, plus 2
additional edges in one diagonal direction).

Pseudo Time Dependency.

It has been well-established that in most cases (absent special preparation by doping, applying a
catalyst, etc., cf. Refs. [1, 8]), the decomposition of AP has a sigmoidal time-dependency with an
induction period, followed by an acceleratory period up to a maximum rate, then subsequently
decelerating to an asymptotic limit. Figure 9 includes two examples of this behavior from the literature:
Ref. [2] because it was a very early observation (left graph) and Ref. [20] because it is a particularly nice
data set with results even at very small extents of reaction (right graph including insets).
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Fig. 9: Examples of AP decomposition data from the literature. Left: polycrystalline AP data
adapted from Bircumshaw and Newman [2]; Right: single crystal data adapted from
Jacobs and Ng [20].

Strictly speaking, our MC method is not a time-dependent algorithm. However, it can be adapted
to give pseudo time-dependent results by making certain assumptions. For instance if we assume that
since they are done in series, each attempt (referred to here as an “MC step”) to choose a random site for
decomposition represents a certain quantity of time. The number of MC steps will be incremented
whether the attempt succeeds (i.e. the site decomposes) or fails. This may or may not be accurate in
terms of representing reality (for instance, there is nothing to stop multiple sites in a crystal from
decomposing simultaneously), but this serves as a first-cut approach at addressing the time-dependency
in a simple fashion.

Figure 10 gives examples of the pseudo time-dependent evolution of the void fraction for
spherical particles of radius 100 pixels from MC simulations. Shown are the void fraction for pores
connected to the outside; a similar fraction for unconnected, blind pores; and the total porosity (sum of the



two parts). Figure 10 (a) and (b) give the result for baseline cases with 6 and 8 neighbors. Note that the
both the total voids and the outside-connected voids produce a sigmoidal response complete with
induction, acceleration and deceleration, reminiscent of the experimental AP decomposition results.
There are reasons to select either “total voids” or “outside-connected voids” as the most appropriate for
comparison. The total voids would represent the amount of reaction that has occurred. On the other
hand, one might argue that until the voids are connected to the outside, there is no way for the gases to
escape and thereby be registered as a measured quantity such as mass loss or gas accumulation.
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Fig. 10: Pseudo time dependency of MC simulations (time is assumed proportional to number of

MC steps taken), showing evolving fractions of total voids, voids that are connected to
the outside and unconnected (blind) voids for a sphere of radius 100 pixels. (a) baseline
algorithm with 6 neighbors; (b) baseline with 8 neighbors; (c) 6 neighbors with the “zone
of reaction” assumed to cover the entire particle from the beginning (dashed line
represents point where outside-connected voids suddenly increase, occurring at ~31%
void fraction and consistent with traditional percolation theory, cf. Table 1).

Figure 10 (c) shows a 6 neighbor simulation with a slightly modified algorithm. This time, instead
of the zone of reaction only initially applied at the layer right below the surface, it is applied everywhere
throughout the domain from the beginning. This has the effect of eliminating the “induction time” for the
total voids curve, since virtually any site that is chosen (except actually at the surface) will be an
acceptable location. So the sigmoidal shape is modified—the highest rate for total void formation is at the
very beginning of the simulation. Another interesting observation is that there is a specific point during
the simulation in which the outside-connected voids suddenly jump up very precipitously, as indicated by
the dashed line in the figure. It turns out that this peak in “connecting” occurs at the point where the total
void fraction is right about 31%. In essence, the connected void cluster has reached a percolating state;
and this happens right when expected (cf. the critical value given in Table ).

Structure / Appearance.

One of the hoped-for results of this study was that the porous structures observed in microscopic
images from AP particle decomposition might be reproduced by the MC simulations. Figure 11 shows
some selected images of decomposed AP particles (some single crystals, some composite) at various
stages of decomposition. Note that there are various structures present. Some images, namely (b)-(d),
show very angular-looking pores (square or rhombus cross section), with many of the pores having a size
on the order of 3 um. Others, such as (e)-(g), also from single crystal experiments, seem to exhibit a
significantly different profile. They show a rounder pore cross section, together with long, slender
“fingers” near the surface and at late stages, an almost a coral-like overall appearance.

Figure 12 shows some images from two different MC simulations. Part (a) shows a sphere of
radius 50 pixels with 6 neighbors (41.3% porosity) and (b) shows an ellipsoid of semi-major, semi-minor
axes of 50 x 50 x 100 pixels with 8 neighbors (34.4% porosity). Because of the 3-D nature of the
problem, it is difficult to visually verify the connectedness of the porosity in a 2-D image, but every pore in
the interior of these particles is, in fact, connected to the outside. The inset of Fig. 11 (b) gives some idea
of the structure.



Fig. 11: Electron microscope photographs of
AP particles at various stages of
decomposition:

(a) large particle (polycrystalline) [7]

(b) single crystal [7]

(c) single crystal, m-face [21]

(d) single crystal, c-face [21]

(e) single crystal, early stage, at surface [1]

(f) single crystal late stage, surface and
subsurface [1]

(g9) single crystal late stage, in depth [1]

(Used by permission of authors / publishers.)




Fig. 12: Cut-away images of final states for two simulations: (a) Sphere of diameter 100 pixels
with 6 neighbors in stencil; final porosity is 41.3%. (b) Ellipsoid of size 100x100x200
pixels with 8 neighbors; final porosity is 34.4%. Detail at one edge location is shown.

While there are certainly some areas of agreement in the visual comparisons, other areas are
lacking. The square to rhombus cross section from Fig. 11 (c)-(d) seem to be at least qualitatively
captured by the MC simulation; the shapes are similar and the 3 ym characteristic pore size seems to
match well with the 4 um pixel size which gave the best fit to the data in Fig. 8 (b). In contrast, the coral-
like geometry observed in Ref. [1] as in Fig. 11 (e)-(g) seems to be substantially different, both in terms of
pore surface morphology (much rounder) and the pore size, which appear to be generally <1 uym. At this
point, a resolution of this discrepancy is still elusive; the authors of both Refs. [1] and [21] had used single
crystal AP.

CONCLUSIONS

A Monte Carlo approach has been employed to examine the decomposition of ammonium
perchlorate, with the aim of gaining insight into the peculiar decomposition cessation phenomena. Rules
were developed for the MC approach which utilized percolation theory and algorithms. Thousands of
simulations were performed to investigate the effect of particle size and the number of neighbors in the
lattice stencil on the final limits.

Particle size effects were well represented by the algorithm and experimental data could be
matched quite reasonably if pixel sizes were assumed to have a physical dimension of 4 ym. This
assumption seems at least plausible based on statements from the literature and electron microscope
photographs.

Time-dependency effects were estimated by assuming that the MC attempted steps are
proportional to elapsed time. This results in a sigmoidal shape for the void fraction as a function of
number of steps (pseudo time), which qualitatively agrees with consensus from numerous experiments.



However, quantitative agreement in terms of absolute temporal behavior (including temperature effects
on decomposition rates) is not possible with the current algorithm.

The geometrical structure resulting from the MC method was compared with photographs of
decomposed AP patrticles. Qualitative agreement was observed with respect to characteristic pore
shapes and connectivity with some of the experimental results, but other photographs from nominally
similar tests appeared to be fundamentally different. It is not clear why.

This work has not probed the entire field of ammonium perchlorate decomposition. There are still
conflicting ideas and observations which have yet to be resolved. However, it does appear that
percolation theory in conjunction with appropriate rules can be used to represent much of the observed
phenomena.
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