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Abstract— A method for tracking streaking targets (targets
whose signatures are spread across multiple pixels in a focal
plane array) is developed. The outputs of a bank of matched
filters are thresholded and used for measurement extraction.
The use of the Deep Target Extractor (DTE, previously called
the MLPMHT) allows for tracking in the very low observ-
able (VLO) environment common when a streaking target is
present. A definition of moving target signal to noise ratio
(MT-SNR) is also presented as a metric for trackability. The
extraction algorithm and the DTE are then tested across several
variables, including trajectory, MT-SNR, angle and dropped
measurements (dropped frames). The DTE and measurement
extraction process performs remarkably well in this difficult
tracking environment on these data features.
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1. INTRODUCTION

The problem we are addressing in this paper is the tracking of
targets in an image set where they are streaking in each image.
By this, we mean that the target’s signature has an elongated
or extended spread across several pixels in a frame. This type
of imagery arises in situations including those for fast moving
targets and those for targets with very low SNR. In the former
situation, a streaking target can be created by a target that
moves fast relative to the sampling rate of the sensor. This
would cause a target to move across several focal plane array
(FPA) pixels during a single image (frame) integration period.
In the low SNR situation, the integration time may need to
be extended in order to observe the signal at all, in which
time the target may move across several pixels by the time
the integration is completed. In either of these situations (or
a combination of the two) a streak will appear in the imagery,

978-1-5090-1613-6/17/31.00 (©2017 IEEE

making the target difficult to track using standard tracking
approaches.

In Section II, we review previous works that compare several
tracking and data association algorithms for effectiveness.
Next, we present relevant background research on streaking
targets in images. Much of the literature presents techniques
that require a priori knowledge of the target, which we will
not assume is available when designing our algorithm. In
Section III, we describe a method to generate streaking target
data. We assume a Gaussian point spread function due to
the sensor optics and additive Gaussian noise in the FPA.
We also define two target SNRs appropriate for streaking
targets and show some examples of this generation technique,
so that the streak can be easily seen. The measurement
extraction is discussed in Section IV. Finally, in Section V,
we describe our technical approach: the DTE (deep target
extractor, also known as the MLPMHT) which, in addition to
its excellent estimation performance seems especially well-
suited to a streaking target.

2. BACKGROUND

While the characteristic of the data we are focusing on is
the undersampled nature of the image frames, our tracking
and data association algorithm also takes into account the
characteristics of very low observable (VLO) data. These
characteristics include high clutter, sporadic periods of low
signal to noise ratio (SNR), and an indeterminable number of
targets in each image frame. In order to select a tracker that
will best track targets subject to this type of environment, we
reference the work presented in [2]], [9], [10], [11fI, [12]], [13].

The paper [13] discussed the application of three different
algorithms for tracking VLO data. These algorithms were the
Maximum Likelihood Probabilistic Data Association tracker
(MLPDA), the Maximum Likelihood Probabilistic Multi-
Hypothesis Tracker (MLPMHT), and the Interacting Multiple
Model Probabilistic Data Association using Amplitude Infor-
mation (IMMPDAFAI). The last of these was possibly the
best at data association of a single target in a single frame,
but fell short when it came to tracking, with only the highest
amplitudes being accepted for tracking.

The other two data association and tracking algorithms per-
formed significantly better at tracking the VLO test data
in [13]]. These two trackers operate on the premise that a
target’s trajectory is deterministic given a kinematic model
and certain parameters (usually initial position and velocity
of the target). These trackers also have a lower “bandwidth”



osf |

04f -

contacts -

norh-south (m)
o
T

[ 0.2 0.4 0.5 08 1
east-west (m) 4

Figure 1: Example DEMUS data from January 2004 sea trial.
For purposes of plotting only the top 1% (in ampli-
tude) of the contacts are shown.

(in the sense of greater structure in the targets sought) and
thus are less affected by high amounts of clutter. or false
alarms due to sensor noise.

The differences between the two MLP algorithms (MLPDA
and MLPMHT) are described in detail in [9], [13]] but the
main difference is in how each models the measurement gen-
eration from each target. The MLPDA makes the assumption
that each target generates a single measurement (contact)
every scan. On the other hand, the MLPMHT assumes each
contact in the frame is independent and, a priori, equally
likely to have been generated by a target. The MLPMHT
is therefore more advantageous, as the concept of a frame
is hard to maintain with long exposure times, something we
anticipate to be true with the problem of streaking targets.

Overall, the MLPMHT was chosen to be the best tracker in
[13] when it came to several different criteria. When exposure
time is long, the tracker’s assumptions on data do not become
more questionable; and indeed we propose that it is even more
desirable. With VLO data, during periods of low SNR, the
MLPMHT had more detections than the MLPDA and held
tracks on as true tracks for a longer period of time making the
tracking performance better. Finally, the MLPMHT tracks
were generally the cleanest and the most accurate compared
to the true trajectory out of the algorithms tested for VLO
data. The imagery in Figures 2 and 3 show the application
of these trackers in situations tested in [1], specifically the
test on NURC’s DEMUS (deployable multistatic sonar) data
from its March 2003 Mediterranean Sea trial. The images
show thresholded contacts, taken from an active sonar sweep,
over several pings from the sonar as black dots. The blue lines
show the true trajectory of the target and the green lines show
the estimated track based on the associated contacts. The
beginning and ending pings are marked as the target moves
from the bottom right of the frame to the top left of the frame
in the presented orientation. We will use the name of this
tracking algorithm as ”Deep Target Extractor”, or DTE for
conciseness. This is the algorithm which we shall use since
it is the most effective at data association, target detection,
and tracking with appropriate extensions to handle streaking
targets.
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Figure 2: The track detected by MLPDA that corresponds to the
true trajectory. The dots indicate measurements asso-
ciated to this track. In this case the peak-amplitude
contacts were used.
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Figure 3: The track detected by MLPMHT that corresponds
to the true trajectory. The dots indicate measure-
ments associated to this track. In this case the peak-
amplitude contacts were used.

3. STREAKING TARGETS

There has been very little research done on the topic of streak-
ing target tracking. The research that was done seems to focus
more on being able to discern the difference between the fea-
tures in an image, and less on how to effectively estimate the
motion that caused these features. The most recent research
directly related to the problem we are addressing was done
in 1998 [8]. This paper developed a processing technique
which allows for detections based on Poisson statistics and
a known starting position and velocity. When the initial
position and velocity were unknown, the processing tech-
nique required a “bank” of velocity-matched filters to create
a two-dimensional likelihood mapping for the target position
and velocity. These likelihood maps would then need to be
resolved to find the best match for target position and velocity.
This process predates the MLPMHT, which would avoid the
need for these numerous matched filters using multi-frame



log likelihood ratios (LLRs) in the algorithm. Also, the
unresolved multi-target problem is similarly resolved by the
MLPMHT LLRs. According to [8] the Poisson statistics
accurately reflect the underlying physical processes that cause
the streaking target phenomenon, but the Gaussian statistics
(which we will be using) better match the field data. For
this, he cites the reasoning that the Gaussian modeling lends
itself better to data containing arbitrary offsets and scaling,
something often found when dealing with real sensor data.

More recently, there was a study done in [[7] on how to
extract a satellite streak from an image with common signal
degradation and sensor artifacts (bloom, dropped pixels, etc.)
as well as high intensity clutter, such as a star. This work
presented a technique using matched filters to automatically
remove the sensor artifacts, noise, and high intensity clutter.
The paper then goes on to explain how to design a matched
filter to extract a streak from an image by multiple iterations
of convolving a generated streak with the processed data and
thresholding. The process was even shown to successfully
extract a streak when a star (high intensity clutter) was
superimposed behind the streaking target. This work showed
that the streaking target can be extracted from each frame in
most situations in a time efficient manner. With appropriate
data association, the streaking target should be able to be
tracked. One limiting factor of this algorithm, however, is that
one must have a priori information about the movement of the
target (i.e. the direction of the streak) in order to design the
matched filter. This information is often not available when it
comes to real time target tracking and the present work does
not assume it.

Ground Truth Data Generation Model

In order to better understand the nature of the streaking
phenomenon, and to have a wider range of data on which to
test our algorithms, we created a procedure to generate data of
streaking targets. In our data model, the streak is generated by
a target which moves across several pixels during the frame
integration time, 7'. Some assumptions made to generate this
data are first that the position of each target in the focal plane
is known (this is the ground truth, which is not known to
the tracker). Second, we assume that the amplitude of the
target’s signature in the focal plane gets spread by the sensor’s
optics’ point spread function (PSF) is known, and that the
PSF is a two dimensional circular Gaussian in the focal plane.
Thirdly, we assume that the data generation interval (A) for
the position of the target in the focal plane (r(t)) is small
enough such that the data generation can be done with r(t) =
r(nA) with a small enough error that is negligible. Finally,
we assume that the target’s velocity is, on average, such that
more than a single pixel is traversed during the integration
period, T', ensuring a streak.

To develop this model, we denote the target’s position in
the focal plane as x(¢) and y(t), with ¢ = 0 being the
time that taking measurements began. The focal plane is
of length w, x w,. The integration time for each sensor is
T. In order to allow for the generation of these images, we
sample the position functions by sampling every A seconds,
with A < T. Overall, the total time of observation, W,
consists of M frames with integration time 7', during which
the target moves [N times at increments of time A, thus
U = MT = MNA. During the (small) intervals A, the
target is assumed to be at a fixed location, which allows a
quick (but still accurate) calculation of the energy deposited
in each pixel via the PSF.

Denote the amplitude of the target’s Gaussian PSF at each

sampling increment as A. The target’s PSF also has a
“covariance” (spread) matrix that is diagonal and identical in
x and y to create a circular Gaussian. So the time varying
(moving) position of the PSF center of the target is:

o= 5 | 2w =50 ]

The PSF value at location p in the focal plane when the target
is located at r(n) (short for r(nA) in (I) is:

PsF(r) = AN [prmaie (§ F)] @

Here, N(p; p, X)) is a two dimensional Gaussian with mean p
and covariance X [1]] and opsr = 0.59, where each pixel has
size § x §. Next we use this PSF to populate the pixels of
our data frames. We do this by integrating the amount of the
spread in each pixel for each time step during an integration
period and adding them together. This is done for each pixel
and the value obtained is the pixel’s value, which we will call
(2, 7). This is implemented in the following way:

for n = 1:T/Delta
forj=0:w_y
fori=0:w_x

pi+ 1,7+ ) =plE+1,7+1)

(i+1)6  p(F+1)6 1 0

With the assumption that the PSF is a circular Gaussian,
this computationally intensive integral operation in (3) can
be simplified via a product of Gaussian Q-functions, in the
following way:

for n = 1:T/Delta
forj=0:w_y
fori=0:w_x
if(pixel 1,j shares a row or column with target’s
position at time k)

Remove absolute value from inside Q-Function of the
corresponding row and/or column terms in the following

else

p(i+1,j4+1)=p(i+1,5+1)+2rA

Jo((52) o (1)

_ ’Q < j —Gly)gl)é> 0 (Ij + 1U;sf(n)l5>‘

The if...” statement prior to (@) prevents an error in calculat-
ing the amplitude when the Q-function is used.

Furthermore, the process in (@) is applied to only those pixels
within a relevant neighborhood of the target, for instance



Data Generation of Streak w/o Noise

Data Generation of Streak with SNR = 3.0373
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Figure 4: A point target with a large o,ss = 10 generated by the
method used above. There is no noise added to this 512
x 512 image. The bottom subfigure is a zoomed image
of the left.

within 30p¢, in order to lessen the number of computations
needed. This process is then repeated for each integration
period for which we are observing the target trajectory, with
each integration period yielding a single frame.

Finally, add zero-mean Gaussian random noise, N (1,05 .. ),
to every pixel of each frame independent of every other frame
(i.e. no temporal noise correlation) and pixel. Figures 4 and 5
illustrate the results of this data generation, with an extremely
bright point target moving a large distance during frame
integration time. The target intensity and o,s; is constant and
the trajectory of the target is a straight line. The stated SNR
is the ratio of the target’s peak amplitude to the r.m.s. noise

intensity opoise-

If one wishes to test algorithms even more robustly, one can
add background clutter to the images fairly easily as well,
but the process to do so will not be discussed here because
it is too scenario specific. We believe the data generation
process described above will give valuable insight as to the
behavior of these types of targets when it comes to estimation
and tracking of streaking targets.

SNR Definitions

Defining the SNR in the case of this type of generation for
streaking targets proves difficult. We can define a stationary
target SNR (ST-SNR) as what the target’s SNR would be if
the target was not moving during an integration time (T).
In this stationary SNR case, the calculation can be done by
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Figure 5: The same streak generated above, however these im-
ages show the effects of different additive Gaussian
noise levels on the streak. The image is normalized
to the noise so the target shown is weaker in the lower
SNR case.

multiplying the number of time steps (of length A) within
an integration time (%) by the target intensity (assuming a
constant target intensity during each A) and dividing by the
noise intensity (r.m.s. value, gpeise). This number would be
larger than the SNR of a moving target because the peak of
the PSF would be moving. The SNR would be a function
of the overlap of the PSFs during an integration time. The
overlap depends on the target velocity and path through the
focal plane. In order to approximate the moving target SNR
(MT-SNR), we divide the stationary target SNR (assumed to
have a fixed intensity A, the deposited energy during A in
the FPA) by the length of the streak in a single frame in pixel
units, L. These two definitions are summarized below.

. TA A
Stationary Target SNR = =ST —-SNR (5
Onoise
. TA A
Moving Target SNR = T = MT — SNR  (6)
Onoise

In the algorithm evaluations, we will use the MT-SNR (]§[)

4. TARGET MEASUREMENT EXTRACTION

We have discussed how we generate the data to model
streaking targets, and now we will discuss how data will be



extracted from image frames. We begin by recognizing that
the streaks will be elongated along the direction of motion.
We would like to extract these shapes and minimize the
artifacts from noise and clutter. We recognized that there
are an infinite number of directions that a straight line streak
can travel when projected on a two dimensional image plane.
However, because of how the image is represented as pixels,
we decided that attempting to identify streaks in one of 16
directions and with 8 different lengths would be sufficient to
extract the majority of streaks that can exist. The directions
of streaks that we chose to focus on extracting were those
that started at a point and extended outwards at an angle
¢ = 75,0 < n < 15. The 8 lengths of these streaks that
we considered were those that were between a length of 2
pixels and 16 pixels, at an interval of 2 pixels. In order to
perform the extraction, the shapes of the matched filters were
generated (with no noise) by the same process as described
in Section III.1 and then normalized so that the sum squared
of the terms in all Np;r = 128 filters is the same. The oy,
of these shapes was the same as in (Z) . Once these shapes
were generated, they were used to extract measurements from
the noisy image frames. The generated shapes are used as
a bank of matched filters to convolve with the noisy image
frames. The outputs of these matched filters, denoted Y (4, 7)
for matched filter s and pixel address (4, j), will produce a
relative large output at points where there is a streak and a
relative small output where one does not exist.

The technique used on the matched filter outputs we call the
“top output" technique. There is no way to tell which streak
is exhibited in the image before these filters are applied, the
output of each is weighed evenly and we threshold the filter
outputs of each by taking the mean and standard deviation (o)
of the frame’s output from every filter. We then eliminate all
measurements from these frames that are less than a certain
number & of standard deviations above the mean. The number
of o is a design parameter of the extractor and the best
number to use will change depending on the data and also will
depend on the SNR. The selection of this number is based on
the maximum number of false measurements per frame that
the DTE can handle. For each pixel, if the matched filter
output is above the threshold in at least one matched filter,
then that pixel is considered a detection. The set of binary
pixel detections for each frame is given to the DTE for use
in extracting a track. We call the set of binary detection
measurements passed to the DTE, Z(m), where m is the
frame’s index in the batch. The measurements contained in
Z(m) are the detections of the center point of the streak. The
”top output” technique is defined mathematically next.

Define hy = s—th Match Filter Impulse Response,

s=1,2,...,128 0)
x(4,j) = observed intesnsity of pixel(i, j);
i= 1, W j o= 1,...,W, 8)
and the indicator function

1 cond = True
I(cond) = {O cond = False

The output of the s-th matched filter when centered at pixel
(i) is
}/ijs = hs *x(la.]) 9
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Figure 6: Extracted streak using the second technique from data
with MT-SNR = 1.24, o,ss = .50, and streak length
1.946. The target is circled in red. The green circles
show false alarms.

A detection is declared in pixel (i,j) if there is at least one
output with intensity at least 7

g =10 1(Yigs > 1) > 1) (10)
If n;; =1, then n € Z(m,n) (11)
The mean intensity of all matched filter outputs is
_ i Yigs 12
B Nur W, W,

and their variance is

2
2 2ijmYigs o

_ - 13
o NurWa IV, 1% 13)
These are then used to define the threshold 7 in (I0)
TI = [+ Ko (14

We set the maximum number of measurements per frame to
pass to the DTE as 80. The data seen in Figure 6 has a
majority of the extracted measurements as a component of
the streak (the red cluster), with the rest resulting from high
intensity noise or random “streak like" collections of noise.
The latter yielded the green clusters (false measurements) in
Figure 6.

5. DEEP TARGET EXTRACTOR TRACKING
(MLPMHT)

As discussed before, the measurements that were extracted
from the data will be given to the DTE in order to track
the target. For this formulation we assume the target is
moving in a constant velocity trajectory. If this is not the
case, the trajectory can be taken in segments small enough



that a straight line approximation is close enough to track
accurately and apply the DTE on batches. We also have
assumed from the target extraction phase that the streaks can
be considered to be in a constant velocity motion.

Overall, the DTE algorithm creates a track likelihood func-
tion (LF) based on extracted measurements, which is the pdf
of the measurements conditioned on the parameter vector
related to the target position and motion [1]. We chose to
use the starting and ending pixel positions as the parameters
to maximize over, namely,

Lstart

Ystart
Fend (15
Yend

>
I

We will then use the conditional pdf of each of the measure-
ments in the set of measurements for the batch. The batch
comprises M frames and each frame in the batch there are
N,,, measurements. This density function will be conditioned
on the parameter vector Z defined in (I0). We will then
multiply these likelihood functions together and maximize
the total likelihood function of the parameter vector, yielding
the estimate of (I3) as

M N,
%= arg max < H H P(z(m, n)x)) (16)

m=1n=1

In order to allow for simplicity and better computation speed,
we can similarly maximize the log-likelihood function (LLF).
This reduces to the following:

M Nmnm

x= arg max (Z Z In(P(z(m, n)|x))> (17

m=1n=1

Next define the pdf of each measurement conditioned on the
parameter vector. We do this by summing the multiplication
of the a priori and conditional probabilities that each measure-
ment comes from clutter (or noise) and that it comes from the
target. This is defined, according to the MLPMHT [9]], as

P(z(m,n)|x) = 1o P(z(m, n)|clutter)
+II; P(z(m, n)|target) (18)

where Iy and II; are the prior probabilities that the mea-
surement comes from clutter or the target, respectively. We
further define the pdf of the clutter locations in (I8) to be
uniform over the area of the FPA and for the target to be
Gaussian with a covariance matrix £. We can then rewrite
(I8) as

1Ty
WW,

P(z(m,n)|x) = + I N(z(m,n);zm, R)  (19)

where z(m,n) = (i,j) is the pixel corresponding to measure-
ment n in frame m, xy, is the putative location in the FPA of
the target in frame m (in the middle of the integration interval,

T), and R is the covariance matrix of the measurement error
between the pixel with the detection and the actual target
location.

This finally allows us to rewrite (I6) as:

X = arg max
X

M N, I
T

m=1m=1

The covariance matrix, R, is determined as follows. The
location of a target originated measurement is

Z(m7 n) = T + Winn + G+ 2D

where x,, is the putative location of the target at the middle
of the current frame in the batch, w,, 1S a zero-mean, white
Gaussian noise (2-D) with identity covariance matrix, a,,
is a uniform random variable on -.5 to .5 (1-D), and [ is the
putative streak length. More specifically, [ = |0], where ¥/ is
the putative velocity in pixels/frame and M is the number of
frames in the batch.

We can then define the covariance matrix R as

o Ty (10
R = E(Zmnzmn) - ( 0 1 )

Zend —Tstart
M

1
+—

5 :| [ -'Kendj_\jcstarc yend]_\}Jstart }52 (22)

Yend —Ystart
M

In order to perform the maximization of (20), we encounter a
non-convex, constrained, global optimization problem. Fur-
thermore, the optimization process must be carried out with
respect to the vector (I3), i.e., in four dimensions. This
type of optimization is computationally costly, so an efficient
algorithm must be used to obtain results in a reasonable
amount of time. We use a fast global search to obtain an
initializing point for a local maximization algorithm to work
on.

The global optimization method that we used was a Dividing
Rectangles method devised in [|6] and included in the NLOPT
optimization package in the C programming language written
by [5]. We use the output of this optimizer to start a local
search for the maximum closest to this initialization. The
local search that we use is the Matlab command “fminunc",
implemented in [3|] and [4]]. In order to use this function,
we chose to minimize the negative of the log-likelihood
function in our optimization. We then take the output of this
optimization to be the estimated starting and ending potions
of the target.

6. RESULTS AND DISCUSSION

This section shows the results of the DTE track extraction, us-
ing the “top output only" measurement extraction technique.
We will present how the tracker works under various SNR,
streak length, and trajectory (velocity). All tests were con-
stant velocity trajectories for the entire duration of the batch.
This is a good enough approximation for an appropriately
short part of any trajectory.



First, we will look at the effect of varying the SNR, namely
the MT-SNR. The DTE performs remarkably well at low
SNR. Even when the target is indistinguishable from noise
by a human eye, the MLPMHT is able to extract a streaking
target track with low RMSE. The following test situation was
generated with a 60 frames batch, £ x = 20, opst = 0.56,
Zstart = 100, Ystart = 500, Tena = 490, Yend = 227, and
Onoise = 100. We also assume the inter-frame-integration
time to be zero, for simplicity. To change the SNR, we have
varied the signal amplitude as A = 50, 30, 20, and 10. The
thresholding on target extraction was taken such that the DTE
receives approximately 80 measurements per frame. Results
are shown in Figure 7.The streak length is given in units of J,
the RMSEYV is given in and the RMSEP is given in §
from the streaks’ center.

Frame ’

The next test looks at the effect of varying the trajectory
direction. While we vary the initial positions and velocities of
the generated targets, the SNR and streak lengths will remain
constant. The target is tracked when moving at any constant
velocity trajectory. The situations tested here are horizontal
and Vertical trajectories, as well as trajectories at angles of
¢ = %,—%, in the FPA. The followmg test situations were

generated with a 60 frames batch, L X = 20, opst = 0.59, and
Onoise = 100. The Results are seen in figure 8.

The final test examines the effect of varying the streak length.
We will keep the polar angle of velocity and target MT-SNR
constant while varying the magnitude of the velocity. This
will change the amount of motion during integration time and,
thus, the length of the streak. This will also change the full
trajectory’s length as well. The target is able to be tracked for
streaks of most lengths. The following test situations were

generated with a 60 frames batch = 20, opst = 0.59,
ZTstart = 100, Ystart = D00, Tena = 197 5; 295 392.5; 490,
Yend = 431.75;363.5;295.25; 227, and oy0isc = 100. The
Results are seen in ﬁgure 9.

7. CONCLUSION

In this paper, we developed a method for dealing with VLO
streaking targets in image frames. We have examined multi-
ple tracking techniques and have decided that the DTE is the
best way to track these targets. We presented an algorithm for
extracting streaking targets traveling in different directions
and at different speeds using a bank of matched filters. Next,
we showed the process by which the Deep Target Extractor
(DTE, previously called the MLPMHT) is used specifically
to track the streaking targets after the measurements have
been extracted. Finally, we showed that streaking targets
of different trajectories, speeds, and SNR can be tracked
accurately by the DTE algorithm developed here. We find
that an MT-SNR > 0.4 is needed for the DTE to successfully
track over 60 frames
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M =60 Track I | Track 2 | Track 3 Track 4
ST-SNR 10 6 4 2
MT-SNR 1.1193 | 0.6716 | 0.4477 0.2239
MT-SNR(dB) | 9789 | -3.4578 | -6.9803 | -12.9989
Streak Length | 8.9343 | 8.9343 | 8.9343 8.9343
RMSEV 0.7047 | 0.6806 | 0.8076 1.2862
RMSEP 277543 | 3.6117 | 4.0235 | 239.7935
3 45 45 45 4

Figure 7: A set of four tracks, with different SNRs, compared to
their ground truth trajectories. The track information
is within the table above. Track 4 shows an inability
to track due to extremely low SNR. The angle of the

trajectory is 0 = —%.
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M =60 Track I | Track 2 | Track 3 | Track 4 M =60 Track 1 | Track 2 | Track 3 | Track 4
ST-SNR 6 6 6 6 ST-SNR 3 49944 | 6.9889 | 8.9834
MT-SNR 0.7434 | 0.7434 | 0.7434 | 0.7434 MT-SNR 1.0055 | 1.0055 | 1.0055 | 1.0055
MT-SNR(dB) | -1.2878 | -1.2878 | -1.2878 | -1.2878 MT-SNR(dB) | 0.0238 | 0.0238 | 0.0238 | 0.0238
Streak Length | 8.071T1 | 8.0711 | 8.0711 | 8.0711 Streak Length | 2.9836 | 4.9671 | 6.9507 | 8.9343
RMSEV 0.7047 | 1.0399 | 0.3622 | 0.3668 VRMSE 0.1380 | 0.3038 | 0.4595 | 0.6817
RMSEP 277543 | 2.7498 | 3.2447 | 3.0103 PRMSE 2.4255 | 2.2531 | 2.3280 | 2.3540
3 45 4.5 45 4.5 K 5.5 55 5.5 5.5

Figure 8: A set of four tracks, with varying trajectories, compared
to their ground truth trajectories. The track information
is contained within the table above.
towards the bottom right (of the frame) at an angle

™

Track 1 moves

0 = Track 2 moves straight upwards. Track 3
moves to the top left at an angle 0 = 7. Track 4 moves
to the straight to the left.

Figure 9: A set of four tracks, with varying streak lengths, com-
pared to their ground truth trajectories.
information is contained within the table above. The
intensity of the object (ST-SNR) was increased to keep
the MT-SNR the same for longer streaks.

The track
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