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Polymeric Syntactic Foams ) .

= Heterogeneous composite materials—hollow particles
embedded in matrix material

\ R/

Applications:
*Deep sea vehicles
*Aircraft radar
encapsulation
*Blast mitigation
*Potting/protective
layers

Images: Gupta et. al., JOM, Vol. 66, No. 2, (2014)

= Sylgard Elastomeric Matrix + Hollow Glass Microballoon Fillers
= Why add Glass Microballoons (GMBs)?

= Lower thermal expansion coefficient

= Lower cure shrinkage (mismatch strains)
" |ncrease specific modulus

= |ncrease energy dissipation




Macroscale Response of Sylgard/GMB &

Macroscale compression
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Hydrostatic Pressurization
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Time Dependent Damage Observed

= Need understanding of microstructure behavior to identify

role of damage mechanisms and inform macroscale

constitutive model
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Possible Damage Mechanisms ) .

(Images courtesy Helena Jin, Jay Caroll)

Observations:
1. Some GMBs completely crushed, others mostly intact
2. A few GMBs are debonded
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Research Objectives

= What are the macroscale effects of each damage mechanism?

= First order homogenization to study macroscale elastic properties of
materials with each type of damage

= Analytic Composite Theory

= Develop numerical modeling platform that can be used to

study microstructural behavior of Polymeric Syntactic Foams

= Explicitly resolve local stresses in components of the microstructure
under various loading conditions

= Small strain and finite deformation regimes
= Supplement experimental efforts to understand role of various damage
mechanisms

= Use knowledge gained to inform engineering length scale
constitutive models
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Approach to Study Microstructure ) .

= How do GMB delamination and breakage affect the macroscale elastic constants?

How to represent‘various damage states?

| 1

FEA Analysis f
Generate Synthetic nalysis for
Mesh

suite of

AN Elastic

boundary value Constants
problems

Microstructure

Model (SVE) Generation

Repeat over many SVE Realizations to find
effective properties

Bonded Intact GMBs:
» determine equivalent

solid sphere properties HN l(\:n?giztrigiigmcs
Composite Theory i Constants

Fully Broken GMBs:
» approximate as voids




Microstructure Model Generation ) e

= Generate Stochastic Volume Element (SVE) models of

Sylgard/GMB microstructure GMB Thickness: 1 um

* Average GMB Diameter: 60 um

Estimate Manufacturer’'s (3M®)
Characteristic ook ] Cumulative Distribution
GMB Thickness: |~ Data for A16/500 GMB

0 50 100 150 200 250
—— Diameter (um)




Microstructure Model Generation ) o,

= Automated Meshing with SCULPT mesh tool:
= Sylgard 184 Matrix: 8-node hexahedral elements

— Linear viscoelastic material model
— Adopted from [M. Lewis et al, LA-UR-07-0298, (2007)]

= Borosilicate glass GMBs: 4-node quadrilateral shell elements
— Linear Elastic material model

— Properties estimated from (http://www.engineeringtoolbox.com/modulus-rigidity-
d_946.html)

(b) (c)
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Mesh Design for GMB/Matrix Interfacd® .

= How to represent various damage mechanisms?

Perfectly Bonded: Fully Debonded: Fully Broken:
(a) Shared Nodes ()  Duplicate Nodes () Omit GMB elements

\

GMB shell
elements

GMB shell
elements

IKA,
g




First Order Homogenization of Elastic
Constants

= Generate Stochastic Volume Element (SVE) models of
Sylgard/GMB microstructure

gl

15 Realizations of
ﬁ SVE with VF = 20%
20 GMBs each

= Six Independent Boundary Value Problems to recover elastic

stiffness tensor

= KUBC: Specify Displacement BC to achieve known, uniform macroscale
strain (&) {u} = [El{x}, 1

= Recover volume average stress response from SVE = Q, Jo,

= Stiffness Tensor recovered from Hooke’s Law (@) = C(&).

= Sierra Solid Mechanics Finite Element Analysis Software used for all
numerical BVP

o(x)d)



Analytic Composite Theory for Elastic @i

Constants

= Adapt composite theory of Christensen to study Sylgard/GMB
. . [R.M. Christensen, Mechanics of Composite
syntactic foams: Materials, (2005)]

= Calculate elastic constants for solid sphere that has same structural
response at its outer boundary as hollow GMB

= Assume thin shell description of GMB D, >> t,
= Equivalent Solid Sphere Bulk Modulus: ‘
d€yol 4Eto E,v,u Kerr
dpo ot — Ketr = 3D (1 — Hey

= Equivalent Solid Sphere Shear Modulus:

Danielsson et. al.,Mech.of Hetr =1 (1—fp) .
Mater., (2004)
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Analytic Composite Theory for Elastic g
Constants

u Composite Bulk MOdUIUS: N .- Theor)TSoIid EquiYaIentIncIu%ion Phase
= Christensen, composite spheres model g
fi (Kt Y Km) % e
Keomposite = K+ , £ 10
Compostie T T 14+ (1= £i) [(Ki — Km) / (Km + 41im /3)) 3
= Composite Shear Modulus: GMB Radius (microns)
= Match energy associated with deforming single ? o
matrix/inclusion to equivalent homogeneous B e o
medium A
2 S
A(i) +2B(i) +C=0. N
Hm Hrm 5
= A,B,C, are functions of matrix & inclusion o
properties 1075 10 20 30 0 50 60
. . ) . GMB Radius (microns)
[R.M. Christensen, Mechanics of Composite Materials, (2005)] 12



Effect of GMB Radius
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Uniform distribution of GMBs, mean VF = 20%

Each FEA point is averaged from 15 SVE microstructure realizations
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» Bulk Modulus is only sensitive to inhomogeneity size when GMBs are in virgin,

bonded state

» Shear modulus is not sensitive to inhomogeneity size for either bonded or
broken state

13




Effect of GMB Volume Fraction
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= Uniform distribution of GMBs, mean radius = 30um
= Each FEA point is averaged from 15 SVE microstructure realizations
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» Bulk Modulus AND Shear modulus in both virgin state (bonded GMBs) and fully
damaged states (broken GMBs) are sensitive to GMB volume fraction
= Excellent agreement between Composite Theory and FEA 14




Effect of Broken GMBs

450

Uniform distribution of GMBs, mean radius = 30pum

Each FEA point is averaged from 15 SVE microstructure realizations
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» Good agreement between Composite Theory and FEA
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Comparison with Macroscale Data .

GMB VF = 37%

Bulk Modulus (MPa)

10

Comoposite | Macroscale —
Theory Experiment Pa) |
Virgin State 508 2135 T 4
Fully 1.39 8.21 2
Damaged ¥ =521 wra
0 5 10 15 20 25
Ratio 366.1 260.0 —= i (none)

Young’s Modulus (MPa)

— Legacy Data
Comoposite | Macroscale 1£] © e
Theory Experiment o \ e
1 10.7 MPa
Virgin State  7.26 10.7 T
Fully 0.80 1.37 : e
Damaged

Ratio 9.09 7.81 — |
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=  Weibull distribution of GMBs, mean radius = 30um
= Each FEA point is averaged from 15 SVE microstructure realizations
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= Bulk Modulus not sensitive to debonded GMBs but greatly reduced by broken

GMBs

» Shear Modulus noticeably reduced by debonded GMBs and broken GMBs
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Local Matrix Pressures: Uniaxial Strain® .
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Local Matrix Stresses: Shear Strain
Fully Bonded Fully Debonded Fully Broken

y-z plane
at x=0
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WIS
Stress
(MPa)

10.50
7.92
5.35
2.77
0.20

Y
x:
2.5 ; ; ;
¥ BondedFEA | :
3 Debonded-FEA|
& Broken-FEA |
©
[a
=
Macroscale 2
L[] -O L ]
Deformation . = - -
O . L ]
© :
Y ﬁ : i - : ...
J;. X
0.0 5 10 15 20 25

GMB Volume Fraction (%)

30

19



Conclusions )

= Balloon Breakage vs. Delamination Affect Macroscale Elastic
Constants in Different Ways:

= The bulk modulus is greatly reduced by Broken GMBs but not by
debonding

= Both damage mechanisms reduce the shear modulus

= Analytic Composite Theory and FEA homogenization agree

= Future Work: Damage Mechanisms and Time Dependence

under large deformations




Finite Deformation: Uniaxial Strain @k

Additional GMB breakage

* Uniaxial strain to 25% due to matrix relaxation,
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GMB Failure Criteria: Max Principal Stress L
Matrix Properties: Linear Viscoelastic SO0 Mg 20
Sylgard 184 21




Finite Deformation: Uniaxial Strain @ &=.

FEA Experiment
Uniaxial Compressive Strain Uniaxial Compression
6.5
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o

= Qualitative Similarity to Macroscale Experimental Response
» Time-dependent breakage of GMBs as viscoelastic matrix relaxes

locally
22
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Thank You!
QUESTIONS?

We would also like to acknowledge Dr. Joe Bishop for his help with FEA
homogenization methods.




Mesh Convergence Study

= Governing features:
= How well are GMBs resolved?
= How many elements between GMBs?

e Ul
-e U2
a—a U3

Shear Modulus (MPa)
\
Bulk Modulus (MPa)

Nominal Element Size
GMB radius
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Nominal Element Size

GMB radius = 0.066

= Results for Fully Bonded GMB Interface i

oo4 008 cos

Nominal Element Size

GMB radius 24




Representative Volume Element Size @

= GMB VF = 20%, Weibull distribution of GMBs, mean GMB

radius = 30um
= Average over 5 realizations at each SVE size (5 — 30 GMBs)
1.554 ' 780+ - - g
* + Average Shear Modulus * + Average Bulk Modulus
I Standard Deviation of Sample Il Standard Deviation of Sample
_31.50
3
0 1.45
2 1.40
5

1.35

5 10 15 20 25 30 5 10 15 20 25 30
Number of GMBs Number of GMBs

1 T .




Constituent Material Properties:
Borosilicate Glass
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= Glass microballoons (GMBs): Borosilicate Glass
" Young’s modulus E .. = 10.2 GPa

= Shear modulus W, = 4.2 GPa

= Max principal stress at failure (estimated) = 100 Mpa
= Properties estimated from

(http://www.engineeringtoolbox.com/modulus-rigidity-d_946.html)
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Constituent Material Properties: i,
Sylgard 184

= Linear Viscoelastic Material Model used in FEA

Master tan delta curve at 30 C for 184-99/1

G'and G" at-10C

0.0por  o0.dor  o.p1 oft " 160 1000 1I 100000 1009000 ) "
h 250806
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e
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= Prony series fit (22 terms) and detailed material properties available in
[M. Lewis et al, LA-UR-07-0298, (2007)]]

= Elastic Properties used for composite theory:
=  Young’s Modulus = 1.84 MPa

=  Shear Modulus =0.61 MPa
27




Comparison with Macroscale Data .
Bulk Modulus (MPa)

GMB VF =24.5% GMB VF =37%
Comoposite | FEA Macroscale "
Theory Homogenlzatlon Experiment (MPa) N
Virgin State 2135 .
Fully 2.513 3.858 8.21 2
Damaged ¥ =521 wra
Ratio 238.4 144.6 260.0 T R e
Young’s Modulus (MPa)
GMB VF = 24.5% GMB VF = 37% s
Comoposite | FEA Macroscale MP - o
Theory Homogenization | Experiment ( a) {10.7 MPa
Virgin State 4.424 6.229 10.7 PE
Fully 1.072 1.681 1.37 . e
Damaged 00 02 04 06

Ratio 4.127 3.705 7.81




Local Stresses: Bonded GMBs

Matrix von Mises Stress--Macroscale

Uniaxial
Strain in x-
Direction

e

Shear in x-y
Plane

.
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Matrix von Mises stress in
y-z plane at x=0

Y

vmstress

1.050e+01
7.925e+00
5.350e+00
2.775e+00

1.997e-01

vmstress

1.050e+01
7.925e+00
5.350e+00
2.775e+00

1.997e-01



Local Matrix Stresses: Uniaxial Strain ™=

Y

Fully Bonded Fully Debonded Fully Broken |
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Deformed shapes amplified by 5x104 for visualization 30




