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ABSTRACT 

 

Six degree of freedom (6-DOF) subsystem/component testing is becoming a desirable method, for field test data and the 

stress environment can be better replicated with this technology. Unfortunately, it is a rare occasion where a field test can be 

sufficiently instrumented such that the subsystem/component 6-DOF inputs can be directly derived. However, a recent field 

test of a Sandia National Laboratory system was instrumented sufficiently such that the input could be directly derived for a 

particular subsystem. This input is compared to methods for deriving 6-DOF test inputs from field data with limited 

instrumentation. There are four methods in this study used for deriving 6-DOF input with limited instrumentation. In addition 

to input comparisons, response measurements during the flight are compared to the predicted response of each input 

derivation method. All these methods with limited instrumentation suffer from the need to inverse the transmissibility 

function.  

 

Keywords: Multi-Input Multi-Output (MIMO), 6-DOF Vibration, Multi-axis Vibration, Environmental Test Specification, 

Input Derivation 

 

1. INTRODUCTION  
 

During typical field tests of systems, it is rare to have sufficient instrumentation to measure or derive the six degree of 

freedom (6-DOF) inputs to either a subsystem or component. These tests are designed to subject an instrumented system to 

environments such as transportation, handling, and flight as would be seen in its final operating environment. Subsequently, 

the results of these tests can be used to gain an understanding of the system’s behavior during these environments. Multi-axis 

vibration testing is gaining popularity as a method to simulate these environmental conditions in a lab setting. It has been 

shown that when compared to other lab test methods, full 6-DOF testing produces a more realistic stress state in the 

subsystem or component [1].  

 

A key element to the successful simulation of a field environment with multi-axis shaker systems in the laboratory is the 

input specification which is used to define the desired dynamics of the test. This paper explores four different methods of 

deriving these inputs for a 6-DOF shaker system given the absence of a direct measurement of the 6-DOF inputs in field data. 

Each method requires the development of a transmissibility function, which will need to be inverted during the derivation 

process. In addition to numerical errors caused by this inversion, there may be additional errors encountered due to the use of 

a different unit in the field and laboratory tests, as well as a change in boundary conditions between the two test 

environments. By construct, the different derivation methods try to match responses at key locations during the laboratory 

test to those in the field. Accordingly, the inverse methodologies which were implemented may potentially correct some of 

these errors. 

 

An accompanying paper discusses the experimental set-up and results of the laboratory tests conducted [2]. Given that the 

ultimate goal of these tests is to recreate the field environment, the response of the system in the lab is compared to that 

measured in the field. A close agreement between these two datasets is used as an indication of the performance of each 

specification derivation method explored. This paper uses the transmissibility function and the derived inputs obtained from 

each method to make predictions of the dynamic responses of the system under investigation. Subsequently, these responses 

are compared to those originally obtained in the field. Each method was explored for two distinct test cases: (1) a full 6-DOF 

input consisting of three translations and three rotations and (2) a 3-DOF input of consisting of only the translations. In the 
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results presented, it will be shown that the 3-DOF input under-drives the responses, the Smallwood-Cap method [3] produces 

the least amount of predicted error, and that scaling has very little effect on the error. The fact that the scaling has little effect 

on the error is important, because it has been shown that the input spectral density matrix may not be positive semidefinite, 

and scaling will correct this problem [4]. 

 

1.1 Overall Concept 

 

Ultimately, in this work, it is desirable to reproduce the response of a system’s internal dynamics (as measured at key 

positions with an accelerometer) during a single field test in the laboratory with the use of 6-DOF shaker table.  The 

following process was used as the framework for this investigation: 

1- Provide an estimated flight level input to the system on the 6-DOF shaker table. Using the responses measured to 

this input, derive a transmissibility function, 𝑯(𝜔), from the input to the response locations. The details of this step 

are discussed in Section 2.  

2- Using actual flight test responses and the transmissibility function, 𝑯(𝜔), develop a set of inputs, 𝑺𝑥𝑥(𝜔), in terms 

of the power spectral density matrix that will, as best as possible, replicate internal response from flight if used as 

input for the 6-DOF shaker table. This is discussed in Section 3. 

3- Perform a forward problem to predict the responses in the lab using the transmissibility functions and the calculated 

inputs and compare those to the flight data.  This comparison is discussed in Section 4. 

4- Perform the 6-DOF shaker test with these inputs and compare the results to actual flight test data. The laboratory 

results will be discussed in the companion paper [2]. 

 

2. DERIVING THE TRANSMISSIBILITY FUNCTION 
 

When deriving the transmissibility function from both the input and output responses of the system on a 6-DOF shaker, a 

mathematical model is constructed. The model derived from this experimental data is known as an experimentally derived 

model (EDM), 𝑯(𝜔)𝐸𝐷𝑀. For the remainder of this paper, the subscript EDM is assumed on all transmissibility matrices. A 

bold variable is used to represent either a matrix or a vector. Like all mathematical models, the EDM has certain limitations 

and assumptions. One assumption is that the system will remain linear. In an effort to reduce the error associated with the 

linear assumption, it is best to derive the transmissibility function with inputs as close to the environment that is being 

replicated as possible.  

 

As previously mentioned, all methods used in this work require the use of a transmissibility function. Typically, this 

frequency dependent function is defined in a simple input/output system as 

 

 𝒀(𝜔) = 𝑯𝑥𝑦
′ (𝜔)𝑿(𝜔), (1) 

 

where 𝒀(𝜔) is a column vector representing the Fourier transforms of the output responses, 𝑯(𝜔) is the transmissibility 

matrix, and 𝑿(𝜔) is a column vector representing the Fourier transform of the inputs. When using random vibration data, the 

transmissibility matrix can be found using the following form [5]. 

 

 𝑯𝑥𝑦(𝜔) = 𝑮𝑥𝑥
−†(𝜔)𝑮𝑥𝑦(𝜔), (2) 

 

where 𝑮𝑥𝑥(𝜔) is the input spectral density matrix, 𝑮𝑥𝑦(𝜔) is the input/ouput cross-spectral density matrix, and the 

superscript [ ]−† represents the Moore-Penrose generalized inverse of the matrix. Equation (2) requires an input autospectral 

density matrix that is found from three translational accelerations (𝑥̈, 𝑦̈, 𝑧̈), and three rotational accelerations(𝑟𝑥̈, 𝑟𝑦̈, 𝑟𝑧̈). The 

method to determine these six inputs is discussed next.  

 

It has been found that these six inputs can best be replicated by using a set of tri-axial accelerometers located at the corners of 

the fixture [6], as seen in Fig. 1, and referred to as the fixture gages. The six inputs are found at a virtual location by 

assuming the fixture remains rigid in the frequencies of interest.  

 



 

 
Fig. 1 Experimental set-up with fixture gages and a virtual input gage used to derive the transmissibility function 

 

The input at the virtual location is found using an inverse method given the responses of the fixture gages. The forward 

problem is written as seen in Eq. (3). 
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(3) 

 

Equation (3) can be written in compact form as 

 

 𝒂𝒇 = 𝑹𝒂𝑥, (4) 

 

where 𝒂𝒇 contains the fixture gage responses, 𝑹 is a geometric relation matrix with 𝑟 being the moment arm from the virtual 

location to the fixture gage, and 𝒂𝑥 contains the desired translational and rotational inputs to the system. A least squares 

solution is found for 𝒂𝑥 = 𝑹−1𝒂𝑓. The virtual input accelerations and rotations in conjunction with internal responses are 

then used to find 𝑮𝑥𝑥(𝜔), 𝑮𝑥𝑦(𝜔), and ultimately 𝑯𝑥𝑦(𝜔). 

 

In the experimental results reported in this work there were ten internal responses (as depicted in Fig. 2). Although an optimal 

set of internal response gages could have been found for the development of 𝑯𝑥𝑦(𝜔), all ten responses were used in the 

current research due to time constraints on the work conducted. Therefore, the transmissibility matrix was 10 ×  6 ×  𝑛𝑓𝑟𝑒𝑞, 
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where 𝑛𝑓𝑟𝑒𝑞 is the number of discrete frequencies used for analysis. This paper presents 𝑯𝑥𝑦(𝜔) as a 2D matrix with the 

knowledge that it is solved at each frequency. 

 

 
Fig. 2 Notional depiction of internal accelerometers 

 

The first step in the verification process is assuring that the 𝑯𝑥𝑦(𝜔) matrix is of proper rank and well-conditioned. This is 

performed throughout each derivation method in this study. A large condition number is a good indicator of an ill-

conditioned matrix. “As the condition number increases by a factor of 10; it is likely that one less digit of accuracy will be 

obtained in the solution” [7]. Generally, a double precision matrix provides 15 significant decimal digits [8]. Thus, a 

condition number of 1 × 1015 would indicate a singular matrix. In this study, any condition number below 5 × 103 is 

considered appropriate.   

 

3. DERIVING THE 6-DOF SHAKER TABLE INPUT GIVEN FLIGHT DATA 
 

Once a transmissibility function is found for the test hardware (see Section 2), the various methods can be used to derive a 6-

DOF input that is applicable for the test equipment. The 6-DOF input is in the form of an input spectral density matrix, 

denoted as 𝑺𝑥𝑥(𝜔), which is specified with coherence and phase for the off diagonal terms. It is imperative that 𝑺𝑥𝑥(𝜔) 
remain positive semidefinite, and checks are applied to assure this in each method. The four specific methods explored are 

discussed in the following subsections. 

 

3.1 Method 1: PINV 

 

The PINV method uses the typical input-output relation for linear systems, Eq. (1), but solving for the inputs as follows: 

 

 𝑿(𝜔) = [𝑯𝑥𝑦
𝑇 (𝜔)]−† 𝒀𝑓𝑙𝑖𝑔ℎ𝑡(ω), (5) 

 

where 𝒀𝑓𝑙𝑖𝑔ℎ𝑡(𝜔) is the Fourier transforms of the acceleration responses from the field test data, 𝑿(𝜔) is the Fourier 

transforms of the inputs, 𝒂𝑥, and the superscript [ ]𝑇  is the transpose of the matrix. The frequency spacing of 𝑯𝑥𝑦(𝜔) was 

interpolated to be the same as 𝒀𝑓𝑙𝑖𝑔ℎ𝑡(𝜔), since 𝑯𝑥𝑦(𝜔) originally had a coarser frequency spacing. Once 𝑿(𝜔) was found, it 

was used to calculate 𝑺𝑥𝑥(𝜔).  
 

3.2 Method 2: ZINV 

 

The input spectral density matrix can also be found from the following equation [5]: 
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 𝑺𝑥𝑥(𝜔) =  𝒁𝑥𝑦
𝑇∗(𝜔)𝑮𝑦𝑦(𝜔)𝒁𝑥𝑦(𝜔), (6) 

 

where 𝒁𝑥𝑦(𝜔) = 𝑯𝑥𝑦
−†(𝜔), and the superscript [ ]𝑇∗ is the complex conjugate transpose. As was done with the previous 

method, the response spectral density matrix of the field data, 𝑮𝑦𝑦(𝜔), was interpolated to match frequency spacing of 

𝑯𝑥𝑦(𝜔). As seen in the expression for the input spectral density matrix, this method also requires the inverse of the 

transmissibility function; however, for this particular approach two of such inverses are required.  

 

3.3 Method 3: Scaling 

 

This method explores the effect of scaling the results from Method 2: ZINV. Smallwood [4] developed a scaling method that 

assures the input matrix is positive semidefinite. In this study, all methods found a positive semidefinite input spectral density 

matrix; however, if straight-line specifications were developed from the inputs then scaling would be necessary. Therefore, 

scaling by Smallwood’s method is explored to understand if there is any additional error introduced. 

 

The scaling concept is done has follows. A new field response spectral density matrix is found by: 

 

 𝑮𝑦𝑦,𝑠𝑐𝑎𝑙𝑒𝑑(𝜔) =  𝑺𝒔(𝜔)𝑮𝑦𝑦(𝜔)𝑺𝑠(𝜔), (7) 

with 

 

 

𝑆𝑠,𝑖𝑖(𝜔) = √
1

𝐺𝑦𝑦,𝑖𝑖(𝜔)
 , 

(8) 

 

where 𝑺𝑠(𝜔) is the scaling matrix that only has values on the diagonals, 𝑆𝑠,𝑖𝑖(𝜔), that are found from the diagonal of the 

original response spectral density matrix of the field data, 𝑮𝑦𝑦(𝜔). Then a scaled input spectral density matrix, 𝑺𝑥𝑥,𝑠𝑐𝑎𝑙𝑒𝑑(𝜔), 

can be found. 

 

 𝑺𝑥𝑥,𝑠𝑐𝑎𝑙𝑒𝑑(𝜔) =  𝐙𝑥𝑦
𝑇∗(𝜔)𝑮𝑦𝑦,𝑠𝑐𝑎𝑙𝑒𝑑(𝜔)𝒁𝑥𝑦(𝜔). (9) 

 

This now needs to be scaled back to obtain correct values, and this is accomplished as follows: 

 

 𝑺𝑥𝑥(𝜔) =  𝒁𝑥𝑦
𝑇∗ (𝜔)𝑺𝑠

−1(𝜔)𝑯𝑥𝑦
𝑇∗(𝜔)𝑺𝑥𝑥,𝑠𝑐𝑎𝑙𝑒𝑑(𝜔)𝑯𝑥𝑦(𝜔)𝑺𝑠

−1(𝜔)𝒁𝑥𝑦(𝜔). (10) 

 

3.4 Method 4: Smallwood-Cap 

 

The final method explored in this work is a modified version of the one developed by Cap et al. [3]. This method has two 

interesting features. First, and most importantly, is the feature that it modifies the response spectral density matrix of the field 

data, 𝑮𝑦𝑦(𝜔), such that it does not use the off diagonal terms of the matrix, but it assures that the phase and coherence is 

compatible with the transmissibility matrix and through an iterative process the input spectral density matrix, 𝑺𝑥𝑥(𝜔). The 

second interesting feature is that it uses Tikhonov regularization. Tikhonov regularization is a simple and commonly used 

method for ill-posed problems.  

 

Typical Tikhonov regularization for solving the equation 𝑨𝒙 = 𝒃, is conducted by solving 

 

 𝒙 = [𝑨𝑇𝑨 − 𝜆2𝑰]−1𝑨𝑇𝒃. (11) 

 

In this work, it is desired to solve 𝑯𝑥𝑦
𝑇∗ (𝜔)𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔) =  𝑮𝑦𝑦(𝜔) for 𝑺𝑥𝑥(𝜔). This is accomplished with Tikhonov 

regularization in a two-step process. First in the typical Tikhonov form, Eq. (11), set 𝑨 = 𝑯𝑥𝑦
𝑇∗(𝜔), 𝒙 =  𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔), and 

𝒃 =  𝑮𝑦𝑦(𝜔), then solve for 𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔)  

 

 𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔)  = [𝑯𝑥𝑦(𝜔)𝑯𝑥𝑦
𝑇∗ (𝜔) − 𝜆2𝑰]

−1
𝑯𝑥𝑦
∗ (𝜔)𝑮𝑦𝑦(𝜔). 

(12) 

 

For clarity assign the following: 



 

 

 𝑫(𝜔)  = [𝑯𝑥𝑦
∗ (𝜔)𝑯𝑥𝑦

𝑇∗ (𝜔) − 𝜆2𝑰]
−1
𝑯𝑥𝑦
∗ (𝜔)𝑮𝑦𝑦(𝜔). 

(13) 

 

Thus, Eq. (12) can be rewritten as follows: 

 

 𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔) =  𝑫(𝜔)  → 𝑯𝑥𝑦
𝑇∗ (𝜔)𝑺𝑥𝑥

𝑇∗(𝜔) = 𝑫𝑇∗(𝜔). (14) 

 

Then the second step is another Tikhonov regularization on 𝑯𝑥𝑦
𝑇∗ (𝜔)𝑺𝑥𝑥

𝑇∗(𝜔) = 𝑫𝑇∗(𝜔), where 𝑨 = 𝑯𝑥𝑦
𝑇 (𝜔), 𝒙 =  𝑺𝑥𝑥

𝑇 (𝜔), 

and 𝒃 = 𝑫𝑇(𝜔). 
 

 𝑺𝑥𝑥
𝑇∗(𝜔)̂ = [𝑯𝑥𝑦(𝜔)𝑯𝑥𝑦

𝑇∗ (𝜔) − 𝜆2𝑰]
−1
𝑫𝑇∗(𝜔). (15) 

 

Iterations can be performed setting 𝑮𝑦𝑦(𝜔) = 𝑯𝑥𝑦
𝑇∗ (𝜔)𝑺𝑥𝑥(𝜔)̂ 𝑯𝑥𝑦(𝜔). 

 

During the Tikhonov regularization, the response spectral density matrix of the field data, 𝑮𝑦𝑦(𝜔) is modified to 𝑮𝑦𝑦(𝜔)̂  as 

follows. First, the diagonals of the original 𝑮𝑦𝑦(𝜔) are copied: 𝐺𝑦𝑦,𝑖𝑖(𝜔)̂ = 𝐺𝑦𝑦,𝑖𝑖(𝜔). Next, the phase and coherence of 

𝑮𝑦𝑦(𝜔)̂  is set to be compatible with the transmissibility matrix, 𝑯𝑥𝑦(𝜔), and the input spectral density matrix, 𝑺𝑥𝑥(𝜔). This 

is done by first setting 

 

 𝑪(𝜔) =  𝑯𝑥𝑦
𝑇∗ (𝜔)𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔), (16) 

 

During the first iteration 𝑺𝑥𝑥(𝜔) is unknown and set to a diagonal matrix with 1 × 10−6 set on the diagonals. Now the off 

diagonals of 𝑪(𝜔) are normalized as  

 

 
𝐶𝑖𝑗𝑁(𝜔) =  

𝐶𝑖𝑗

√𝐶𝑖𝑖𝐶𝑗𝑗
, ∀ 𝑖 ≠ 𝑗. 

(17) 

 

Then, the off diagonals of 𝐺𝑦𝑦,𝑖𝑗(𝜔)̂ = 𝐶𝑖𝑗𝑁(𝜔). Recall that the diagonal is the same as 𝑮𝑦𝑦(𝜔). Then, the off diagonals of 

𝐺𝑦𝑦,𝑖𝑗(𝜔)̂  are scaled to values closer to 𝑮𝑦𝑦(𝜔) in the following manner 

 

 
𝐺𝑦𝑦,𝑖𝑗(𝜔)̂ = 𝐶𝑖𝑗𝑁(𝜔)√𝐺𝑦𝑦,𝑖𝑖𝐺𝑦𝑦,𝑗𝑗 , ∀ 𝑖 ≠ 𝑗. 

(18) 

 

4. COMPARISON METRIC FOR METHODS 
 

The ultimate assessment of the performance of each derivation method is given by a comparison of how well the methods 

reproduce the field data during the actual laboratory experiment. As mentioned, these results are presented in an 

accompanying paper to this work. However, two comparisons can be made at this time. The first is a comparison of the 

inputs to the field recommended input. However, this might be misleading as the field data is from a different unit. It is 

possible that these methods might correct for some unit-to-unit variability and the different boundary conditions found in 

flight and the laboratory. The second comparison is a prediction of the responses from each method.  

 

Each method has a 6-DOF spectral density matrix (SDM) and a 3-DOF SDM. Including the rotational values adds some 

complexity; therefore, this study evaluated if just using translational (3-DOF) values would be appropriate.  

 

4.1 Comparison of Inputs 

 

The autospectral densities of the derived inputs are plotted in Fig. 3 and Fig. 4, for translational and rotational degrees of 

freedom respectively. It is difficult to make any firm recommendations on these values. It does appear that the 3-DOF 

predictions would put in less energy than the 6-DOF, because the translational ASD for the 3-DOF are generally of smaller 

magnitude. 
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(b) Z-Axis 

Fig. 3 Input comparisons of the different methods to the field data recommended input for translational values 

 



 

 
(b) X-axis 

 
(b) Y-Axis 

 

 
(b) Z-Axis 

Fig. 4 Input comparisons of the different methods to the field data recommended input for rotational values 

 

4.2 Comparison of Predicted Responses to Actual Field Responses 

 

Once the desired inputs are formed, the forward problem can be run numerically using the following equation from [9]. 

 

 𝑺𝑦𝑦(𝜔) =  𝑯𝑥𝑦
𝑇∗ (𝜔)𝑺𝑥𝑥(𝜔)𝑯𝑥𝑦(𝜔). (19) 

 

The predicted responses are denoted as 𝑺𝑦𝑦(𝜔) to keep a distinction from the actual response spectral density matrix of the 

field data, 𝑮𝑦𝑦(𝜔). This is of interest to see if, numerically, the desired input can be found such that 𝑺𝑦𝑦(𝜔) is a close 

approximation of 𝑮𝑦𝑦(𝜔). There will be some errors, since there are different units used for the field test as the one for the 

laboratory and that there are more internal gages as compared to inputs. In addition, there will be some numerical error 

associated with the interpolation done on several of the matrices. 

 

In an effort to compare different methods, an error metric is established. First, the ASDs are filtered into 1/6th octave bands. 

Sixth octaves are chosen to attempt to accommodate any unit-to-unit variability. Then, an error in terms of decibels is found 

at each 1/6th octave frequency line, as follows: 

 

 
𝑑𝐵𝑒𝑟𝑟𝑜𝑟(𝜔6𝑡ℎ) = 10 ∗ 𝑙𝑜𝑔10

𝑺𝑦𝑦𝑚𝑒𝑡ℎ𝑜𝑑
(𝜔6𝑡ℎ)

𝑮𝑦𝑦(𝜔6𝑡ℎ)
. 

(20) 

 

Then, given the error at each frequency line in terms of decibels, three statistics can be generated for each method. The first is 

the statistics across each gage at each frequency line that is plotted as seen in Fig. 5. The second is the statistics across each 

gage, which is provided in Fig. 6. Finally, all error values at each frequency for each gage can be used to determine one mean 

and standard deviation for each method as seen in Fig. 7. 



 

 

By comparing the predicted responses, some general trends have been noticed. First, the 3-DOF inputs appear to under excite 

the responses. Second, the Smallwood-Cap method appears to be the best method to choose, because it results in the smallest 

errors. Third, scaling appears to have very little effect when comparing the Scaling method to the ZINV method. This is 

useful information for when scaling is needed to keep the input spectral density matrix positive semidefinite.  

 

  

  

  

  
Fig. 5 Error comparisons in terms of decibels at each frequency line for each method 

 



 

  

  

  

  
Fig. 6 Error comparisons in terms of decibels at each gage for each method 



 

 
Fig. 7 Overall error comparisons among the different methods 

 

5. CONCLUSIONS  
 

This paper explores four different methods of deriving 6-DOF shaker inputs for a particular subsystem using an inverse 

methodology. An accompanying paper discusses the experimental set-up and the results of the actual experiment as 

compared to the flight data. This paper uses the transmissibility function and the recommended inputs to make predictions of 

the responses and compares those to the flight data. Each method explores using a full 6-DOF input of three translations and 

three rotations and only a 3-DOF input of just the translations. The predicted responses show that the 3-DOF input under 

excites the responses, that the Smallwood-Cap method produces the least amount of predicted error, and that scaling has very 

little effect on the error. Having little effect on the error is desirable for it has been shown that the input spectral density 

matrix may not be positive semidefinite, and scaling will correct this problem [4]. 

 

This work focused on potential methods to replicate an actual field test with a 6-DOF laboratory shaker test. Potential future 

work would include derivations of straight line specifications for the subsystem/component that is possible on the 6-DOF 

shaker. Also, the inverse problem could be proposed as an optimization problem and this might potentially derive the best 

input. Using an optimization algorithm could also have the benefit of assuring certain gages responses do not go below or 

above a certain amount, and gages could be given a weight to assure that they are met over others. Additional future work 

would be to explore the sources of error. It would be interesting to note if the inverse methods discussed correct for some of 

the errors. 
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