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ABSTRACT

The Craig-Bampton approach for component mode synthesis in structural dynamics has been widely used to
reduce the order of large, detailed finite element models made from linear elastic materials. This methodology
separates the full order model into smaller subcomponents and reduces the equations of motion with a truncated
set of fixed-interface modes and static constraint modes. A drawback of this approach is that the model has one
constraint mode for every interface degree-of-freedom, which may result in a large and prohibitively costly
superelement. Previous work has addressed this issue via characteristic constraint modes, which reduces the
number of interface degrees-of-freedom by performing a secondary modal analysis on the interface partition. The
current work extends the Craig-Bampton approach with interface reduction to include subcomponents with linear
viscoelastic materials modeled using a Prony series. For substructures containing materials such as foams or
polymers, the viscoelastic constitutive law more accurately represents the material energy dissipation compared to
traditional viscous or modal damping. The new approach will be demonstrated on the assembly of two composite
plates with fixed boundary conditions along one edge.
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1. Introduction

Component mode synthesis (CMS), or dynamic substructuring, has long been used as a model reduction
technique in structural dynamics. The idea is to separate a large scale finite element model into smaller, more
computationally manageable subcomponents and reduce them with a set of component mode shapes. These lower
order subcomponent models are then coupled to provide an efficient and accurate reduced order model of the
original structure. Many techniques have been developed over the past 60 or so years and the interested reader is
directed to the review papers in [1, 2]. Some variations of the substructuring approaches include the use of free- or
fixed- interface modes (or other hybrid methods), dual or primal assembly, and frequency or physical domain
coupling. Many of the common CMS strategies are for linear, undamped structures with linear elastic constitutive
laws, but fewer works have been developed for models incorporating nonlinear or time-dependent materials.

The focus of this research is to develop a fixed-interface substructuring approach using primal assembly in the
physical domain for finite element models with linear viscoelastic constitutive laws modeled as Prony series. The
work by Qian et al. [3] presented a substructure synthesis method for the second-order form of finite element
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models with general forms of linear viscoelastic damping models. The CMS approach is formulated in the
physical domain for the solution to transient problems, and each subcomponent is reduced using a Rayleigh-Ritz
approach with a set of real, admissible trial vectors obtained from the eigensolution of the undamped equations.
A frequency response function (FRF) based substructuring approach was developed by de Lima et al. in [4] where
the frequency domain finite element model uses the complex modulus approach and frequency-temperature
superposition to capture the frequency and temperature dependent linear viscoelastic behavior. They are
concerned with modeling strategies to passively control mechanical vibrations of a main, linear elastic structure
connected to linear viscoelastic mounts. The FRF representation allows either of the components to be
represented either numerically or experimentally, however no reduction was performed at the subcomponent
level. An improvement to the classical Craig-Bampton (CB) substructuring was adapted to viscoelastic finite
element models in [5] by computing the fixed-interface and static constraint modes from the frequency
independent stiffness and mass matrix, and enriching the basis with static residues associated with the viscoelastic
damping forces and external forces. The method was developed for frequency domain responses, and uses a
constant modal basis. Tran et al. [6] used a similar method for CMS of vibroacoustic problems, and a free-
interface CMS scheme for viscoelastic subcomponents was proposed in [7].

The research presented in this paper develops a fixed-interface CMS approach using primal assembly in the
physical domain for linear viscoelastic subcomponent models. Many existing approaches deal solely with
frequency based substructuring which can only be solved for steady-state problems. A time domain approach
allows the reduced model to be excited via transient inputs or steady state inputs if needed, allowing more
flexibility in the types of solutions obtained from the model. Each subcomponent is reduced using a set of
linearized complex fixed-interface modes, and a set of pseudo-static constraint modes; this is conceptually similar
to the traditional Craig-Bampton approach in [8]. Since the number of interface degrees-of-freedom (DOF) can be
prohibitively large, the assembled viscoelastic substructures are further reduced by performing a secondary modal
analysis on the assembled boundary. The eigenvectors obtained from this analysis are referred to as linearized
complex characteristic constraint modes, and were originally developed for undamped or proportionally damped
systems [9, 10].

In Section 2, the fixed-interface CMS theory is developed for linear viscoelastic subcomponents along with the
system-level interface reduction. Section 3 presents the results from a numerical example of two sandwich plates
assembled at a shared interface. The results for the viscoelastic CMS models with and without interface reduction
are presented and show how the results evolve with various bases. The final section draws conclusions from the
theory and results.

2. Theoretical Development

A substructuring approach for large scale finite element analysis (FEA) begins by separating the semi-discretized
model into smaller subcomponent models. The spatially discretized, N DOF equations of motion for a single
subcomponent have the form,
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The coupled integro-differential equations have real, symmetric N x N matrices M, K., K;, K, , which
correspond to the respective mass, viscoelastic bulk stiffness, viscoelastic shear stiffness, and elastic stiffness. The
N x1 vectors x and f,, (t) represent the physical displacements and externally applied forces, respectively,

while the overdot is the time derivative. The integrals in Eq. (1) are separated into contributions from the shear
and bulk relaxation functions whose constitutive law is represented by an exponential Prony series. The kernel
function for the bulk relaxation modulus is written as
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where the leading coefficients must sum to unity
NK
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The time-dependent function ¢, (t) is a summation of N, exponential functions that contain an amplitude
coefficient K corresponding to a particular time constant r, ; . The shear relaxation kernel function, ¢ (t),

coeff ,i
has the same form as Eqns. (2) and (3), with the exception that the coefficients (G . ; , 75 ; ) Will be different and
the Prony series may contain a different number of terms (N ). In general, £, (t) and £, (t) are restricted to be
continuous and monotonically decreasing, thus requiring that the coefficients and relaxation times be positive
(e.9. Ky i and 7y ;). The integral terms have a simple functional form, such that the kernel functions are simply
a constant matrix multiplied by a series of exponential functions.

Following the classical CB approach, the viscoelastic model in Eqg. (1) is partitioned into interior and boundary
DOF, respectively corresponding to x; and X, .
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These subcomponent equations appear conceptually similar to the undamped CB models with the exception of the
two integral terms corresponding to the viscoelastic internal forces. The following subsections develop the
reduction bases for each subcomponent, the primal assembly step and the interface reduction applied at the
system-level.

2.1 Linearized Complex Fixed-Interface Modes

Due to the additional damping terms from the viscoelastic material, the dynamic, fixed-interface modes are
obtained by formulating a linearized quadratic eigenvalue problem (QEVP) from the subcomponent model fixed
at the entire set of boundary DOF. This is accomplished by retaining only the interior portion of the equations of
motion in Eq. (4) as,
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Taking the Laplace transform of this equation produces the QEVP,
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The complex scalar 4, is the eigenvalue while ¢; . is the complex eigenvector. As proposed in [11, 12], an

iterative approach is used to solve for each complex eigenvector by linearizing the Prony series in Eg. (6) about a
prescribed complex value, 4,
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By linearizing the Prony series about a fixed frequency, A, =ia,, Eq. (7) is iteratively solved for the r™ linearized
complex fixed-interface (LC-FI) mode until the residual between computed frequency and linearized frequency is
sufficiently small (e.g. [Im(4,)— ay|/|e| <10°%). Due to the frequency dependence of the viscoelastic forces, this

process is repeated for each fixed-interface mode of interest. Although there is additional upfront cost to solve the
QEVP, the advantage to this approach is the fact that the imaginary part of the eigenvalues exactly corresponds to
the oscillation frequency, so the number of fixed-interface modes can be truncated based on a cut-off frequency.



The typical rule of thumb for substructuring is to include modes up to 1.5 to 2.0 times the frequency range of
interest, and that rule is recommended for linear viscoelastic models as well.

The set of LC-FI modes are assembled into a complex matrix, @;;. Since the basis for reduction in the physical
domain is restricted to real vectors, the fixed-interface basis used to reduce Eq. (4) is defined as,
®'C _ Re(®;) Im(®;) ®)
' 0 0
Including both the real and imaginary parts of the LC-FI modes essentially doubles the number of shapes, but
results in a very efficient basis due to the fact that these account for the viscoelastic forces.
2.2 Pseudo-Static Constraint Modes

As defined by Craig in [13], a static constraint mode is “the static deformation of a structure when a unit
displacement is applied to one coordinate of a specified set of constraint coordinates, while the remaining
coordinates of that set are restrained, and the remaining degrees-of-freedom of the structure are force-free.” For
viscoelastic models with time-dependent material laws, the definition by Craig has been extended to the so-called
pseudo-static constraint mode (PS-CM). Ignoring the inertia terms in Eq. (4), the frequency domain equations of
motion become
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A unit displacement at each boundary DOF while holding the others fixed is imposed by setting X, =1, where 1
is the identity matrix. The interior DOF response to the unit deflection is computed from the top portion of Eq.
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In order to obtain a solution for the PS-CMs, an appropriate frequency, @, must be chosen. When setting «=0,
the solution to X; results in the classical static constraint mode ( X; = —K_;K,, ). It is recommended using

frequencies w>> 0, which produce a complex-valued, pseudo-static shape X, . The real and imaginary parts of
these vectors form the set of pseudo-static constraint modes,
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2.3 Subcomponent Model Reduction
The reduced transformation matrix assembles the LC-FI modes from Eqg. (8) and the PS-CM from Eq. (11) as,
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The generalized coordinates q, and qL correspond to the amplitudes of the real and imaginary parts of the LC-FI

shapes, respectively, while x; and x:) respectively represent the real and imaginary amplitudes of the PS-CMs.
The basis in Eq. (12) is projected onto the subcomponent model in Eg. (4), producing a lower order model,
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The real transformation matrix produces real reduced matrices.

2.4 Assembly

The reduced order viscoelastic models attach to adjacent models with a common interface using the primal
formulation [2] to satisfy compatibility and equilibrium conditions at the boundary DOF. Without loss of
generality, assume that two subcomponents are being coupled, denoted with superscripts (A) and (B). This is
accomplished by satisfying the compatibility condition at the real-valued partition of the PS-CMs, such that
x{ ™ =x{(®  This relationship enforces the two boundaries to have the same motion. Following standard
assembly methods from finite element analysis [14], a direct coupling matrix L is defined as,
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The vector g, correspond to the unconstrained coordinates of the assembled system. The vectors g and q{®
respectively represent the “interior” portion of the subcomponents (A) and (B) (i.e. those generalized coordinates
not belonging to the real valued partition of the PS-CMs). For example, the interior portion of subcomponent (A)

consists of g =[qt®™" q:®™"  xE®TT Using the coupling matrix in Eq. (14), the reduced order model of the
assembled system becomes,
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The form in Eq. (15) is convenient to solve since the integrals can be evaluated at the subcomponent level rather
than at the assembly level.

2.5 System-level Interface Reduction

In order to formulate the derivation for the reduction at the interface, Eq. (15) is rearranged such that the
unconstrained coordinates, g, , enter into the integral functions of the viscoelastic forces,
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This equation is exactly the same as Eq. (15). The interface reduction corresponds to a secondary modal analysis
applied to the boundary DOF partition of the assembly,
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Using the same iterative procedure to compute the LC-FI modes in Section 2.1, the complex modes computed
from Eq. (17) produce a set of linearized complex characteristic constraint (LC-CC) modes, denoted as ¥ .. As

with the fixed-interface modes, these are also truncated based on frequency, although there is not a well establish
rule for an appropriate cut-off frequency. This will be evaluated later in the results section. The LC-CC modes are

used to reduce the number of boundary DOF, xj, in Eq. (16) via the transformation,
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Projecting the transformation matrix, T,

« » Onto Eq. (16) results in the reduced order model of the assembly with
interface reduction,
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3. Numerical Results: Composite Plate Assembly

The substructuring approach is now applied to a numerical example of the assembly of two sandwich plates with
viscoelastic foam at the core. Figure 1 shows a schematic of the mesh along with the boundary conditions and
interface location. Each plate is modeled with three layers of 20-noded hexahedral elements: the two outer layers
correspond to elastic Aluminum 6061-T6 while the interior layer is a viscoelastic PMDI 20 foam. Subcomponent
(A) has dimensions of 16 inches by 12 inches by 0.19 inches and a total of 4830 elements (73,605 DOF);
subcomponent (B) has dimensions 8 inches by 12 inches by 0.19 inches and a total of 3780 elements (57,855
DOF). For reference, the assembled plate model has a total of 8610 elements or 130,305 DOF. Along the shared
interface between the two sandwich plates, there are a total of 1155 DOF. As indicated in Fig. 1, the plates have
fixed boundary conditions along the bottom edge and a point load is applied at the free end of the collinear
interface.



Figure 1. Schematic of finite element mesh for composite sandwich plate with fixed boundary conditions.

3.1  Substructuring with Pseudo-Static Constraint Modes

This first subsection explores the substructuring approach without any reduction at the interface in order to
demonstrate the method with the entire physical interface DOF included in the model (i.e. no interface reduction).
The driving point FRF is computed for the point load shown in Fig. 1 over the range of 10 to 500 Hz with a

frequency step of 1 Hz. These results are shown in Fig. 2. Each subcomponent was reduced with LC-FI modes up
to 1000 Hz, two times the frequency bandwidth of interest. The three cases explored are as follows:

1.) Each subcomponent preserves all real and imaginary parts in the reduction basis such that the
transformation matrix in Eq. (12) remains as T{Re(q)“) |m(c<)1>“) 'mgxi) RT(X‘)} .
bb

2.) The imaginary portion of the PS-CMs are removed from the transformation in Eq. (12) such that
T _|:Re(q)ii) Im(@;) Re(X; )}

0 0 Ip

3.) The imaginary portion of the PS-CMs and LC-FI modes are removed from the transformation in Eq.
(12) such that T={Re(§)") Re(xi):|'

Ipp

The legend in Fig. 2 labels these three cases respectively as “Full ROM”, “No Im(¥)”, and “No Im(¥) Im(®)”.
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Figure 2. Comparison of driving point FRFs for sandwich plate assembly.



In comparison to the direct FRF computed from the full order model, the “Full ROM” and “No Im(¥)” ROM
agree very well at the resonances and anti-resonances. It is interesting to note that the imaginary part of the PS-
CMs do not significantly improve the results and can be removed from the subcomponent’s bases. On the other
hand, further removing the imaginary part of the LC-FI modes (“No Im(¥) Im(®)”) drastically worsened the
accuracy of the ROM. Table 1 shows the order of the models used to compute the FRFs in Fig. 2, along with the
required computational time in Matlab to obtain the results. The “No Im(¥)” ROM had 1155 fewer DOF than the
“Full ROM” and cut the computational time down from 1,070 sec down to 70.4 sec, which was one and three
orders of magnitude less than the full model, respectively. As evidenced by the results in Table 1, the solution
time does not scale linearly with model size due to the computational effort required to invert larger, dense

matrices.

Table 1. Model order and solution time for FRFs in Fig. 2.

Model Number of DOF Solution Time
Full FEA Model 130,305 24,050 s
Full ROM 3,495 1,070 s
No Im(¥) 1,185 70.4s
No Im(¥) or Im(d) 1,170 67.8's

3.2 Substructuring with Interface Reduction

This subsection investigates the interface reduction technique applied to the “No Im(¥)” ROM from the previous

subsection since this model accurately predicted the driving point FRF with the fewest number of DOF. A total of
13 LC-CC modes were computed from the boundary partition of the assembly in Eq. (17), with the largest natural
frequency being 3,993 Hz. This was eight times the frequency band of interest, and was significantly higher
compared to the two times frequency rule for the LC-FI modes. Several ROMs with an increasing number of LC-
CC modes (keeping both the real and imaginary parts) were created and used to compute the driving point FRFs.

The left plot in Fig. 3 shows the convergence of the FRFs when reducing the interface with the following: 3 LC-
CC modes up to 500 Hz, 5 LC-CC modes up to 1000 Hz, 6 LC-CC modes up to 2000 Hz and 13 LC-CC modes
up to 4000 Hz. The results from the ROM with 3 LC-CC modes predicted the response well below 300 Hz, but
the resonances and anti-resonances were not captured above this frequency. The rest of the ROMs agree quite
well with the full order model (“Direct FRF”’) within 500 Hz, except at some of the anti-resonances. In fact,
adding LC-CC modes to the subcomponent bases produced results that converged slowly at these frequencies. At
least 13 LC-CC modes up to 4000 Hz were needed to obtain very good agreement between the ROM and the full
order model.
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Figure 3. Comparison of driving point FRFs for sandwich plate assembly with interface reduction for (left)
varying number of LC-CC modes and (right) 13 LC-CC mode ROMs with and without the imaginary part.

The right plot in Fig. 3 shows a comparison of the driving point FRF for the “No Im(¥)” ROM from the previous

subsection, along with two ROMSs where the interface was reduced with all 13 LC-CC modes. Two cases of these
latter models are as follows:

1.) The “CC ROM: No Im(¥)” case includes both the real and imaginary parts of all 13 LC-CC modes.

2.) The “CC ROM: No Im(¥) or Im(¥,.)” case is the same as (1) but removes the imaginary part of the
LC-CC modes.

The results from the previous subsection showed that removing the imaginary part of the basis pertaining to the
boundary DOF performed very well. This same observation holds true for the LC-CC modes as evidenced by the
fact that the “CC ROM: No Im(¥)” and “CC ROM: No Im(¥) or Im(¥,,)” are practically indistinguishable. No
difference between the models was observed at the resonant frequencies; however the FRF shifted slightly at the
anti-resonances. The results in Table 2 show the size of the models used in Fig. 3b along with the solution time
for each. Reducing the interface DOF gained two orders of magnitude in computational savings from the “No
Im(¥)” ROM, resulting in a total of five orders of magnitude reduction compared to the full order FEA model.

Table 2. Model order and solution time for FRFs in Fig. 3b.

Model Number of DOF Solution Time
Full FEA Model 130,305 24,050 s
No Im(*P) 1,185 70.4's
CC ROM: No Im(¥) 56 0.4s
CC ROM: No Im(¥) or Im(¥,,) 43 0.3s

3.3 Upfront Computational Cost

All model reduction techniques deserve a discussion of the upfront computational cost required to build the
subcomponent models. The Sierra/SD finite element code was only used to compute the LC-FI modes, while a
Matlab script was written to compute the PS-CMs and LC-CC modes. When computing complex modes and
inverting relatively large matrices, Sierra/SD certainly outperforms Matlab in efficiency, so it makes it difficult to
fairly compare the upfront cost. With that comment in mind, the computational effort of each basis is presented in
Table 3. The reported values correspond to each code/solver running in serial. Sierra/SD is a massively parallel



structural dynamics FEA code, so using this capability would reduce the computational burden. The upfront costs
of these models represent the most upper bound and future work will explore ways to directly compute the PS-
CMs and LC-CC modes within Sierra/SD on multiple processors.

Table 3. Upfront cost to compute reduction bases.

Level LC-FI Modes PS-CMs LC-CC Modes
16” x 12” plate 621 s per iteration, per mode 37 minutes N/A
(22x621 s = ~4 hours)
87 x 12” plate 542 s per iteration, per mode 29 minutes N/A
(9 x 542 s =~1.5 hours)
Assembled Boundary N/A N/A 562 s per iteration, per mode
(44 x 562 s = ~7 hours)
Code Sierra/SD Matlab Matlab

4, Conclusion

This research developed a fixed-interface component mode synthesis strategy using primal assembly in the
physical domain to reduce large-scale finite element models with linear viscoelastic materials. The subcomponent
models are reduced using a set of linearized complex fixed-interface modes and pseudo-static constraint modes,
each of which account for the internal viscoelastic forces in the equations of motion. Once the models are
assembled, the boundary partition, which can be quite large for models with detailed meshes, a secondary
complex modal analysis is performed to reduce the number of physical DOF at the interface. The viscoelastic
CMS approach is demonstrated on a numerical example of two sandwich plates joined at a common interface.
The results show that the ROMs without interface reduction are able to accurately compute the driving point FRFs
when compared to the full order model results, as long as the basis includes the imaginary part of the LC-FI
modes. The solution time for these models was reduced by three orders of magnitude. When applying the
interface reduction with a sufficient number of linearized complex characteristic constraint modes, the ROM
preserves the accuracy and lowers the computational cost by five orders of magnitude. It was observed that the
frequency cut-off for the LC-CC modes was about eight times the bandwidth of interest, which is significantly
higher in comparison to the two times frequency cut-off for the LC-FI modes.
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