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ABSTRACT

Operating systems and applications in the built environment have

relied upon central authorization and management mechanisms

which restrict their scalability, especially with respect to adminis-

trative overhead. We propose a new set of primitives encompassing

syndication, security, and service execution that unifies the man-

agement of applications and services across the built environment,

while enabling participants to individually delegate privilege across

multiple administrative domains with no loss of security or man-

ageability. We show how to leverage a decentralized authorization

syndication platform to extend the design of building operating

systems beyond the single administrative domain of a building.

The authorization system leveraged is based on blockchain smart

contracts to permit decentralized and democratized delegation of

authorization without central trust. Upon this, a publish/subscribe

syndication tier and a containerized service execution environment

are constructed. Combined, these mechanisms solve problems of

delegation, federation, device protection and service execution that

arise throughout the built environment. We leverage a high-fidelity

city-scale emulation to verify the scalability of the authorization

tier, and briefly describe a prototypical democratized operating

system for the built environment using this foundation.
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1 INTRODUCTION

Over the past several years, building operating systems (BOS) have

been developed to provide an execution environment for applica-

tions that operate safely on the physical plant of a building, trans-

forming it into a rich cyberphysical system (e.g., BAS [21], sMAP

[13], BuildingDepot [1], BOSS [14], Mortar.io [22], BEMOSS [23],

Niagara [20], VOLTTRON [2]).

While this work has made great strides in supporting energy

efficiency, human comfort, and grid integration of buildings, three

themes emerge that are both outstanding shortcomings of BOS and

critical to extending from buildings (or campuses of buildings) to the

broader built environment – (i) natural delegation of authority and

its enforcement, (ii) federation, and (iii) protection. Furthermore,

each of these are present not just for individuals, but for persistent

computational processes and devices operating on their behalf.

Delegation:Within the building context, organizationally, the

campus facility manager delegates certain authority to building

managers, each of whom may delegate (logically) the control of

certain regions of a building to its tenant organizations, who may

further delegate to individual office occupants. However, little of

this delegation is actually supported by building management sys-

tems. Often the individual does not even have a way to set desired

temperature; she instead makes a request up the chain of authority.

The building manager may be authorized on a central server to

adjust zone setpoints and schedules, but she must issue requests

to facilities managers to make deeper adjustments like supply air

temperature. In a more modern BOS, the occupant may be able to

open a webpage or app to adjust the temperature schedule for their

particular office, but authorization to do so is based on verifying

the identity of the individual (or possibly the identity of a device,

e.g., a touchpad, in the room) used in accordance with an access

control list (ACL). If the occupant loans the office to a visitor, there

may be no way to also ‘loan’ the authority to adjust its temperature

or lighting schedule other than getting the visitor inserted and later

removed from the directory. The delegation problem is amplified as

we consider the lifecycle of the building, operations performed on

common spaces, temporary authorizations for events, etc. These

issues are further amplified across the built environment. The indi-

vidual is delegated different access in their apartment, work setting,

gym, and public space, for example. Furthermore, as we move to

intelligent environments, the individual may want to delegate a

portion of her authority in each of these places to her computational

agents, so out-of-band human communication is not sufficient.

Federation: Evenwithin a building, its subsystems (HVAC, light-

ing, electrical monitoring, security) have typically been discon-

nected, managed by different control systems. Most BOS integrate

these and many will integrate the resulting systems over multiple

buildings in a common administrative domain, say a campus or a

property management company. The challenge is integration across

distinct administrative domains. This arises in settings as simple as

https://doi.org/10.1145/3137133.3137151
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demand response, where the issuer of the critical event (e.g., the in-

dependent system operator) is distinct from the building owner, its

occupants, the utility, or the energy services aggregator. As electric

vehicle charging is incorporated, the set of stakeholders increases,

as with the incorporation of municipal and industrial processes,

especially in conjunction with fluctuating renewable supplies. The

mechanisms to allow agents in one administrative domain to take

particular limited actions in another, say adjusting a temperature

or lighting set-point, is quite ad hoc. We cannot expect all of these

to refer their authorizations to a common central authority, nor

can we expect to deal with many disparate authorizing entities.

Certainly, the vendors of each of the different devices cannot be

the authorizing entity (as we see today with Nest, Amazon Echo,

Google Home). Nor can we expect all the parties to be on-line and

participating whenever a delegation is performed.

Protection: As more of the built environment is connected and

intelligent, the danger arises that more attack surfaces and threats

are presented. Embedded devices tend to be particularly sensitive

to DOS attacks because of limited processing power, often limited

connection bandwidth, and largely unattended operation. Several

examples in the literature [12, 24] show current vulnerabilities to

these threats and modern BOS have not fundamentally changed the

picture. They typically apply modern network security, sit behind

firewalls, avoid open ports, and may use VPNs to cross LANs.

Execution containers: Lying beneath these issues is the simple

fact that the building blocks of cyberphysical systems are numerous

persistent computational processes – drivers, gateways, controllers,

and so on. Each of these resides in some execution container and

needs to be managed (initiated, monitored, controlled, restarted,

etc.), as does the container itself. In building a foundation for del-

egation, protection, and federation in higher level services these

principles can be utilized internally in the support for these services.

To address these issues in the expansion from intelligent build-

ings to intelligence throughout the built environment, we explore

incorporating delegation, protection, and federation into the com-

munication substrate of the syndication layer. The idea is that in

any attempt to publish to a resource, the entity making the attempt

must present a proof of authorization (over multiple levels of dele-

gation, across administrative domains) that can be easily verified

by the router forming the syndication layer and by the recipient

subscribers. Entities can delegate rights to access resources to other

entities without engaging any central authority, in fact without any

communication with any entities whatsoever, i.e., no assumption

that the parties involved are on-line. We implement these using

the Wave system (contributed by a separate paper) which enforces

them cryptographically via blockchain smart contracts.

The design is rooted in three concepts: entities, namespaces, and

delegation-of-trust (DoT). In Wave, an entity is simply a key pair,

identified by its (public) verifying key, that may represent any par-

ticipant: individuals, devices, services, applications, components of

the system implementation, and so on. A namespace is a hierarchy

of resources that is identified as and owned by its authorizing entity,

which has full access to all resources within it. Each resource is

identified by a path rooted in the namespace identity, i.e., names-

pace/path.... Rights include the ability to publish to a resource or

subscribe to a collection of resources (described by a subtree ex-

pression) in a namespace. Thus, each resource is logically a stream

of messages. It may also provide a persistent message, i.e., state. In

general, a sensor device publishes to the resource that represents

it; an actuator subscribes to a resource expression representing its

interface. An entity may delegate a permission to a resource in a

namespace to another entity. Doing so places a delegation-of-trust

edge from granter to grantee in the global permission graph. Such
action does not involve any interaction with the namespace, the

resource, or the entities involved. It may not even be valid at the

time it is created (which in practice is essential). When an entity

publishes (subscribes) to a resource (resource tree) it must present a

proof of authorization consisting of a valid DoT path in the permis-

sion graph from the authorizing entity of the namespace to itself

encompassing the resource (tree). These concepts are realized in a

set of microcontracts on an Ethereum blockchain [28], an Agent

daemon that abstracts this from applications and a Router daemon

that performs overlay routing and syndication.

2 BUILDING OPERATING SYSTEMS

BACKGROUND

Where traditional Building Management Systems (BMS) in commer-

cial buildings provide a central point of supervisory control that is

connected to and providing set-points for many dedicated direct

controllers and provide a limited set of services (status screens,

schedules, logging, trending, alarms), Building Operating Systems

(BOS) seek to provide richer functionality, flexibility, extensibility,

and federation. Rather than a separate system for HVAC, lighting,

etc., these are integrated in a common BOS. New systems, such as

electrical usage monitoring [13], environmental or CO2 sensing

[27], or appliance control [11], are often further integrated with

these conventional building subsystems to support new operating

modes, such as demand response or demand controlled ventilation.

Over the past few years, building operating systems have con-

verged on an architecture similar to that shown in Figure 1. This

has a set of services acting as a hardware presentation layer for a

heterogeneous set of hardware accessed over a variety of interfaces.

The HPL serves to promote different devices to a common commu-

nication format on a single bus. Higher level services, including

archivers for time-series data, metadata stores, query processors,

controllers, arbiters, and schedulers attach to the bus (as additional

persistent processes) and support portable applications, includ-

ing occupant-centered conditioning, energy analytics, diagnostics,

prognostics, model predictive control, and so on. These applications

are also essentially persistent processes dropped into the cyber-

physical building distributed system, where they can be accessed in

turn by services performing data analysis, automation and storage.

Despite the convergence at other layers, there has not been an

agreement on how security and authorization are implemented.

Some systems implement security in the broker/archiver (e.g., Mor-

tar.io [22], Sensor Andrew [25], HomeOS [15]), some have distinct

security models for sensing vs actuation (e.g BOSS [14]), some as-

sume applications are fully trusted (e.g VOLTTRON 2.x [2]) and

many simply rely on the applications to implement security.

Here we provide a stronger foundation for authorization within

and across administrative domains of the built environment along
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Figure 1: Common Building Operating System Architecture

with DDOS protection of all the components while preserving this

converged architecture and its constituent components.

2.1 Hardware Presentation

The many distributed sense and control points in the built environ-

ment are on a variety of different interconnects (RS485, BACnet,

Ethernet, WiFi, LoWPAN, etc.) with a variety of different access

methods and protocols. To unify these, BOS wrap these devices

with persistent processes acting as a hardware presentation layer.

This layer of abstraction, which centers on the common notion of

a persistent process acting as a device driver, has taken a number

of similar forms in prior work. For example, HomeOS [15] features

service interfaces, Beam [26] has adapter modules, and BOSS [14]

has sMAP drivers [13]. In all these cases, the drivers communicate

over a common syndication layer for device and service discovery,

data reporting, and actuation.

Unlike application services, these drivers usually have restric-

tions on where they can run. For example they may need to be in a

particular location that is either physically connected to existing

building communication media (e.g., BACNet), or inside a local

network (e.g., to connect to a local smart thermostat that exposes

an insecure HTTP interface).

2.2 Syndication

The syndication tier is the backbone in Figure 1 that connects all

services, drivers and applications. The majority of BOS have con-

verged on the publish/subscribe resource-oriented communication

paradigm within this syndication tier as it offers advantages such

as location transparency, easy multicasting of messages between

arbitrary and dynamic collections of producers and consumers, and

a clean abstraction for event-based programming. In BOSS [14]

and sMAP [13] the pub/sub broker is strongly coupled with the

data archiver, and is used for sensing but not all forms of actu-

ation. Similarly HomeOS [15] and Beam [26] both have a single

server performing message dispatch and archiving, although the

semantics of the communication channels differ. Sensor Andrew

and Mortar.io use XMPP [29] which is closest to Figure 1 as the

broker performs purely syndication and authorization, leaving data

archival as a distinct service.

Note that in all of the above systems, the syndication mechanism

is also a centralized authorization authority, a pattern this work is

engineered to avoid.

2.3 Storage

Most building operating systems gather and store sensor data for

applications, such as energy data analytics and occupancy-based

environmental control. Storage of and access to this data is typically

managed by a central authority, normally the building administra-

tors. To deploy a sensor that reports building data or an application

that consumes sensor data, one has to obtain permissions from the

central authority. This pattern is present in BuildingDepot [1] and

in BOSS [14] for example. Some approaches distribute the data (e.g.,

Mortar.io [10, 22]) but employ a centralized authorization system.

It is necessary, as we expand from the building to the built en-

vironment, to have an architecture supporting multiple archivers

and storage systems, owned and managed by different people.

2.4 Applications

Much of the functionality of a building operating system is derived

from the set of persistent services and applications it hosts. Some

of these perform analytics on data to create new streams of infor-

mation (e.g., anomaly detection [17] and occupancy sensing [3]),

some of these perform control of building processes (e.g., demand

response [3] and model predictive control [19]), and some provide

miscellaneous services (e.g., visualization services).

3 BOSSWAVE

The vast majority of authorization systems used today rely on a con-

nected central authority. If we consider the situation of a participant

wanting to show another participant that they are authorized for

an action, the prover and recipient must contact the authorization

authority to verify each interaction, any changes to authorization

must be done via the authority, and the authorization authority

must be completely trusted.

For example in XMPP, the server forwarding messages is also

the authorization authority (or an external LDAP server). Managing

permissions (e.g., to grant permissions to a new device) requires con-

tacting whoever manages that server. If the server is compromised,

many new accounts and permissions can be created, or existing

ones deleted, thus the server must be trusted.

We have built enterprise solutions in this paradigm for long

enough that we no longer think of it as onerous within a single

administrative domain, but if we take a step back and consider the

natural path of applications and operating systems for the built

environment – moving from systems concerning a small number of

people within single buildings to large numbers of people in collec-

tions of buildings and physical resources owned by different parties

– it becomes evident that this model is overly restrictive. Every

trust relationship is mediated by some implicit trust of an authority

per administrative domain who records it (and could change it at

will). There is no singular objective truth but rather a fragmented

set of views of trust with no guarantee of consistency. Basic dele-

gation requires transitive trust relationships, but at present it is a

prohibitively complex and manual process to construct these across

administrative boundaries. Confidence in the security of the system

as a whole requires complete trust of so many distinct authorities

that it could never be practically attained.

Recently, advances in cryptography and distributed computing

in the form of blockchains have offered a game changing primitive:
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the smart contract. Briefly, this enables a piece of code to manage a

piece of globally visible state without requiring any trust, authority
or coordinator. Applied to the built environment, this means that

we can take some logic governing permissions, rules about how

they can be granted or revoked, and a table of all the permissions in

existence, and put that in a contract on the blockchain. At this point

it becomes self-sufficient: there is nobody who can compromise

it and nobody who must be trusted for it to continue functioning.

Furthermore, the blockchain is monotonic. If someone uploads a

revocation, she can be sure that it becomes a persistent part of

the global state and is not “forgotten” as part of an attack. This

guarantee is remarkably hard to achieve and the authors are not

aware of any other authorization system providing this.

As an implementation of this idea, Bosswave is a fully democ-

ratized and decentralized publish/subscribe communication and

authorization platform that uses smart contracts on an Ethereum

blockchain to store a consistent global graph of permissions, avoid-

ing the reliance on any centralized authorities.

3.1 Wave Background

A full treatment of the design and implementation of Bosswave’s

authorization layer, named Wave, is beyond the scope of this work

and will be described in a dedicated paper. Here, we sketch the

primary concepts and their application to the built environment.

Traditionally, authorization systems work with principals such

as an email address or username. This works because there is an

authority that can attest that the individual possesses the given

email address. In an authority-less system we need a principal that

is self-proving. In Wave this is an entity. Every person, device,

service or intermediary (e.g., a security group) will possess an

entity. Concretely, it is a keypair identifying a principal that can

give permissions, receive permissions and sign messages. An entity

does not have an identity, rather it represents whatever or whoever

holds the secret part of the keypair.

Authorization concerns controlling access to a set of resources.

In typical systems the central authority is the root of permissions;

it begins with all permissions and every participant receives them

from that root. In an authority-less system we need a similar way to

bootstrap permissions but in a democratized manner. The solution

is to strongly couple the source of permissions with the resource. In

Wave, a resource is identified by a Uniform Resource Identifier (URI).

A URI in the World Wide Web begins with a host name, which is

the authority for that URI. Similarly, in Wave a URI begins with a

namespace which is the root of permissions for that resource.

Any entity can create a namespace and become the root of per-

missions for it (achieving the democratized goal). No coordinator

or authority governs this process. Any URI beginning with the

namespace identifier is considered as being within that namespace.

Importantly, due to the nature of the cryptography involved, it

is impossible for namespaces to collide, so there is always only a

single entity as the root of permissions in a namespace possessing

complete and unrevokable permissions to all resources within it.

Resources are used for communicating, so we need a mecha-

nism for other entities to obtain permissions on resources. While

a traditional access control list maintained by the namespace cre-

ator would work, Wave uses a more powerful mechanism. Instead
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Figure 2: Aportion of the delegation of trust graph.Different

lined arrows are DoTs on different namespaces

of a list of absolute permissions (if an entity is in the list it has

permissions), Wave uses delegated permissions which relates the

permissions of one entity to those of another. The primitive here is

a Delegation of Trust which states that the granter gives a grantee
a set of permissions on resources matching a pattern. This tuple of
granter, grantee, permissions, and pattern is then signed by the

granting entity and stored in the contract as part of the globally

consistent and visible state. This mechanism has important proper-

ties:

(1) The granter and grantee do not communicate (so the grantee

can be offline).

(2) No authority or coordinator is involved (not even the names-

pace creator).

(3) The granter need not have the permission it is granting at

the time it creates the DoT, allowing out of order granting

(4) The granting entity can grant permissions on any resource,

in any namespace, not just namespaces they create.

In essence this creates democratized authorization: all entities
having a permission on a resource are equally capable of delegating

that permission to others. Note that the ability to delegate is itself

a permission, so if required it is possible to grant the ability to

interact with a resource, but not the ability to further delegate it.

The security and distributed manageability properties of the system

are derived from this mechanism.

Proving Authorization. A grant says “you can have this subset

of the permissions that I have” so the existence of a DoT giving

permissions to a grantee is not sufficient to prove that the grantee

has those permissions. A proof for a resource in a namespace must

show that there exists a path from the namespace creator (which has

unalienable permissions to all the resources) to the proving entity.

Furthermore the intersection of the permissions granted by all the

traversed DoTs must be greater than or equal to the permissions

being proven. Consider Figure 2 showing a portion of the global

permissions graph. A company namespace has granted permissions

to a building entity. The building entity can now autonomously

manage access to all the resources within that building without

communicating with the company namespace creator. It grants a

subset of permissions to an HVAC service entity and to an employee

labeled Boss, who in turn grants an even narrower subset to Alice.

Alice’s entity has permissions on multiple different namespaces,

and she can interact with resources across these namespaces using

the same entity.
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When Alice wants to interact with a resource (for example ob-

serving real-time conference room occupancy) she uses the chain

of delegations of trust beginning with the namespace creator and

ending with her entity as a proof that her interaction is authorized.

This proof is self-standing, objectively correct (no honest party

would refute the proof) and can be verified by anyone.

The autonomy that this delegation confers is the key to the de-
mocratization of authorization in Bosswave. Alice can now delegate

the access she has on resources from multiple namespaces to a third

party application (e.g., a dashboard) that she wishes to use, and she

can do so without requiring anything from the various people and

organizations that gave her access.

While simple, this example captures many of the problems that

are difficult to solve in existing systems: Alice can delegate to an

application some permission to access resources spread across mul-

tiple administrative domains and fully manage the lifecycle of this

delegation. In a traditional system this would not be possible to do

both securely and efficiently; she would either have to convince

the subsystem administrators to make multiple accounts for her

application on the various authorization servers (an overhead cost),

or share her usernames and passwords with the application which

then renders Alice and the application indistinguishable (a security

cost). In wave, this delegation can happen without merging the

application and Alice’s digital identity, but also without any effort

on the part of anyone else. Furthermore this delegation is fully

auditable: the entities in the various namespaces are aware that

these delegations exist.

Giving the ability to manage delegations to the stakeholders is

critical for addressing lifecycles: if Alice uninstalls the application,

she can revoke its permissions to resources across a wide set of

namespaces without asking the various admins to delete accounts.

Furthermore she can be sure that that access is fully gone, a guar-

antee she would not have had if she shared her password with the

application (and implicitly its vendor).

3.2 Syndication tier

While the authorization system described above can work in iso-

lation, to fully solve issues of device protection and resource ve-

racity it is necessary to rework the publish/subscribe syndication

mechanism around which BOS are constructed. We have developed

Bosswave as a syndication system that integrates the authorization

primitives of Wave.

Coupling between the authorization and syndication tier is done

by the namespace creator. After a namespace has been created, it is

bound to a designated router. This is an entity belonging to a server

(perhaps on premises or in the cloud) that will perform syndication

on the namespace. The router independently manages the binding

from its public key to an IP address and port to contact. Both of

these bindings are managed in a contract on the blockchain, similar

to the delegations of trust and entities described above.

Communication between devices, services, applications and peo-

ple is done by publishing and subscribing to resources. Concretely,

the entity wanting to interact with a resource forms a message

containing the resource URI, a proof as described above, and an

action like subscribe or publish. This message is signed by the en-

tity, providing authentication, and sent to the designated router

Persisted msg DB

Proof generationProof verification

Event 
watcher
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Block chain contracts

Aliases Router/NS Affinity

Blockchain state DB   DEVP2P Ethereum network

Entity
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Crypto libs
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Blockchain interface - modified Ethereum geth client

Remote 
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Figure 3: The Bosswave router/agent daemon. Shared parts

are solid, dashed boxes are in agents only and the dotted box

is in the router only

for the namespace. Because the sender learns the router’s key in

advance from the blockchain, the session can be secured against

eavesdropping and man-in-the-middle attacks without trusting ei-

ther DNS (which can be poisoned) or SSL certificate authorities

(which regularly
1
issue unauthorized certificates “by accident”).

The signed, proof-carrying message is opportunistically vali-

dated by the router and dropped if unauthorized. While not re-

quired for the security model (any recipient will independently

validate the message, not trusting the router) this does provide a

useful property while the router is uncompromised: unauthorized

messages do not get forwarded. In the built environment it is typ-

ical for devices to be resource constrained, so they can easily be

overwhelmed by unauthorized traffic even if they are aware it is

unauthorized. This denial of service (DOS) attack is very common

in the modern internet. The magnitude of a layer 7 DOS attack

is bounded by the blockchain use in Wave, and even at the upper
bound, the impact is negligible (end-to-end latency remains within

the standard error), an immensely useful property not present in

syndication platforms like XMPP or MQTT.

While a designated router performs a similar role to the broker

present in systems like XMPP or MQTT, there are some important

differences:

(1) The router is not an authority for the namespace. It cannot

grant or revoke permissions

(2) The router is not fully trusted. It cannot create messages

associated with resources and it cannot read messages
2

(3) The designated router for a namespace can be changed with-

out affecting the resources and the services interacting with

them

The designated router should be thought of as a service employed

by the namespace that can be replaced at will, rather than a piece

of trusted infrastructure that must be carefully controlled.

3.3 System implementation

Bosswave is implemented in Go [16] and consists of two daemons:

a router which typically runs on a server-class platform with a

persistent internet connection, and an agent which runs on every

platform using Bosswave resources such as IoT devices, servers,

laptops, phones etc. An overview of the software is shown in Figure

3. This software is fully open source and available to download [8].

1
e.g., http://thehackernews.com/2017/03/google-invalidate-symantec-certs.html

2
The feasibility of hiding resource contents from the router has been proven theoreti-

cally but not implemented in the version of the system presented here.

http://thehackernews.com/2017/03/google-invalidate-symantec-certs.html
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The authorization tier from Wave is implemented as four smart

contracts on an Ethereum blockchain: the Registry contract stores

the Delegations of Trust, as well as the public parts of Entities (such

as their expiry date). DoTs and Entities are revoked by storing the

revocation in the contract. The Alias contract stores a mapping

from a sequence of human readable characters (e.g., “alice19”) to a

32 byte blob, usually the public key of an Entity in the registry. The

contract ensures these aliases are globally unique and immutable.

The Affinity contract stores the binding between a namespace

and the designated router entity, as well as the binding from the

designated router entity to a server’s IP address and port. The

Encoding/Decoding contract is a library used by the other three

contracts that can validate Entity, DoT and revocation objects by

checking they are well formed and the signature is valid.

To interact with Bosswave an application uses a language bind-

ing that connects to the agent (Figure 3 with dashed boxes). As the

cryptographic libraries are embedded in the agent, the language

bindings are trivial to generate. To allow the agent to perform

Bosswave operations on behalf of the application, the entity object

is transferred by the application to the agent upon startup. The

application can send high level commands like “publish this pay-

load to this resource” and the agent takes care of generating the

proof, serializing the message, signing it, resolving and verifying

the designated router and transferring the proof-carrying message.

Similarly for subscription, the agent verifies every message and

only forwards valid messages to the application. As a result of this

architecture, applications or services using Bosswave are no more

complex than those using legacy syndication (e.g. MQTT or XMPP).

Note well that there is no blockchain server. The blockchain exists
without any server, authority or coordinator by consensus among

the body of clients, all of whom are equal. So while, for example,

the registry contract code is acting as an authority, it is autonomous

and cannot be tampered with. This is trivializing a highly complex

and fascinating system, please consult [28] for more information.

4 XBOS

Bosswave provides security and communication primitives, but by

itself does not act as an operating system. XBOS, the eXtensible

Building Operating System, is built on top of Bosswave and fulfills

the role of a building operating system by usingmicroservices: small

single-purpose persistent processes. The notion of a microservice

architecture for large scale distributed system design is already

well known and well proven. The contribution here is the synergy

between microservices and the communication and authorization

model of Bosswave.

4.1 Containerized, Persistent Services

Underpinning XBOS is a solution to an oft overlooked issue in

microservice architectures, and in building operating systems in

general: where do these services run and how are they managed?

Concretely, this equates to six questions, driven by service lifecycle:

(1) How does a service obtain permissions to consume its input

resources and produce its output resources?

(2) How does a service obtain its initial configuration?

(3) How does a service get scheduled to run?

(4) How is the service isolated such that failure does not couple

to colocated but unrelated services?

(5) How is a service monitored and how is authority to monitor

it obtained?

(6) How is a service retired?

Resolving these questions at a low level can drastically reduce

the complexity at higher layers. The status quo, even on embedded

devices, is to have a Linux device on a trusted network and create

accounts for each administrator allowing them to run processes

that are then managed over SSH.

This works well at a small scale, but quickly adds complexity. If

a single admin is compromised, that account has full access to all

resources on the local network. Services can use too much memory

or CPU time, affecting other services. Remnants of old services

accumulate and dependency conflicts (e.g., versions of python li-

braries) complicate new service deployment. Integration is done

by sharing SSH credentials obscuring who and what has access at

any given time. These problems, while individually insignificant,

as a whole contribute to a high management overhead and limit

the scalability and usefulness of the overall system.

Spawnpoint is a ground-up solution to these problems. Its pur-

pose is to deploy, run, and monitor the microservices, which to-

gether form an instance of XBOS, within managed execution con-

tainers. Thus, Spawnpoint can be thought of as the “proto-service”

combining Docker and Bosswave upon which all other microser-

vices are built. It begins with the realization that the resources

required for persistent processes (e.g., CPU time) are the same as

any other resources (e.g., sensor data) and can be managed using

the same Bosswave primitives. The ability to deploy and manip-

ulate microservices is tied to the ability to publish commands on

certain Bosswave URIs, while the visibility of execution containers,

as well as the computational resources that back them, is contingent

on the ability to subscribe to messages on certain Bosswave URIs.

Spawnpoint enforces isolation between running services and also

performs admission control to ensure that resources do not become

oversubscribed.

A microservice to be deployed into a Spawnpoint is described

declaratively in a manifest that encompasses:

(1) What code to run

(2) What environment it needs (libraries and version etc.)

(3) The configuration parameters

(4) The isolation parameters (CPU time, memory, network ac-

cess, etc.)

(5) Placement restrictions (requiring a particular architecture,

or particular network)

The microservice is then instantiated simply by publishing this

manifest to a Bosswave URI representing a Spawnpoint instance

that satisfies the necessary placement constraints. This instance

is responsible for managing a specific collection of computational

resources (e.g., an on-premises server or a cloud-based virtual ma-

chine). Note that the publication of this manifest is no different

from any other Bosswave operation. Upon receipt of a new ser-

vice manifest, the Spawnpoint daemon builds a docker container

with the correct environment and code. It injects the configura-

tion parameters (including the Bosswave Entity that represents
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the microservice) and launches the container, using cgroups to en-

force the isolation parameters. Various monitoring metrics such as

CPU usage, memory usage and program output are streamed to

a Bosswave URI representing that microservice. Monitoring and

logging of microservices is thus accomplished through Bosswave

subscriptions.

This approach borrows heavily from microservice systems such

as Kubernetes [18], but is distinguished by the use of Bosswave

for the protected control interface (rather than a REST API as in

Kubernetes). Spawnpoint makes creating, manipulating, and moni-

toring a microservice no different from any other operation on a

Bosswave URI. Therefore, Spawnpoint inherits all of the permission

verification and delegation benefits of Bosswave without any com-

plexity added to its own implementation. In particular, this gives a

user the ability to independently and locally delegate partial access

to the services they control and manage that delegation. In addition,

it adds transparent and effective DDOS protection to services, a

problem usually poorly mitigated by costly over-provisioning.

This ability to partially trust services (with fine grained control

over what they have access to and what resources they use when

running), allows us to run third party applications that we do not

fully trust. This is a critical feature provided by computer operating

systems for decades, but is often ignored in the built environment

context. One could imagine that building monitoring and alerting

would be an off-the-shelf third party application that you install on

your building. You vaguely trust the application to do its job, but

that does not mean you should be forced to trust that it will not

attempt unauthorized actions or that you must audit the application

yourself (e.g., in VOLTTRON [2]).

4.2 XBOS services and interfaces

While Bosswave permits resource URIs to have any form, we have

found it convenient to create a set of conventions on URI format

as shown in Figure 4. These conventions then permit service and

interface discovery, as well as metadata propagation.

A service, in the abstract overlay sense, is a logical grouping of

interfaces. A single physical device, such as a thermostat, would be

a service. A controller or scheduler would also be a service.

Within a service, there are multiple interfaces. A service may

implement multiple interfaces and these may offer overlapping

functionality. For example a thermostat may offer a temperature

sensor interface alongside a generic thermostat interface and a ven-

dor specific thermostat interface. This allows applications designed

to consume temperature sensor data to interact with that part of the

thermostat, without needing to know anything about thermostats.

The interfaces composing a service do not need to all be imple-

mented by the same running process. If an application requires an

interface that a service does not expose, it is common to spawn

an adapter process that consumes existing interfaces and refactors

them into a new interface for purposes of interoperability.

Interfaces are broken into signals which are resources emitted

by the interface, and slots which are resources consumed by the

interface. A thermostat would have a slot for changing the setpoint

and a signal for the current temperature, for example.

Metadata can be attached to services and interfaces by using

persisted messages in Bosswave. This metadata provides additional

namespace/generic/prefix/s.svctype/ifacename/i.ifacetype/         /fieldsignal
slot

freeform
identifies
service 
instance

globally 
unique 
service 
type

freeform 
identifies 
interface 
instance

globally 
unique 
interface 
type

i/o defined 
by 
interface 
type

namespace 
entity alias 

Figure 4: The XBOS URI structure capturing services and in-

terfaces to enable autodiscovery

context for the service or interface. For example it may convey that

the thermostat service represents a device in a particular room in a

particular building.

The format of this metadata is not constrained by Bosswave, but

again some conventions help with interoperability. Within XBOS

we are using the Brick schema [5].

4.3 Types of microservices

Following the converged architecture, XBOS is composed of three

categories of microservices, which could potentially be drawn from

existing efforts.

4.3.1 Driver. A driver serves to elevate the existing interface of

a device to a Bosswave interface within a Bosswave service. This

interface is often an insecure local area network connection which

restricts the placement of the driver to the same local network as

the device. The device is then firewalled to only allow communica-

tion with the Spawnpoint on that network. This ensures that the

Bosswave security policies cannot be bypassed by going directly

to the device.

The notion of a driver performing hardware abstraction has ex-

isted in almost all prior work in operating systems for the built

environment. The improvements here in security and ease of man-

agement are inherited from Bosswave and Spawnpoint.

4.3.2 Analysis and adaptation. Many applications in the built

environment act to take some input data, transform it, and produce

some output information. We can assume that the the inputs and

outputs are Bosswave resources as the driver infrastructure takes

care of the protocol adaptation required. Therefore there are no

placement restrictions on these services. It may be beneficial to run

these on a platform where computation is cheap (for example the

cloud), especially for heavyweight analytics like computer vision

and machine learning.

In the majority of cases, the security policy of the application

can be completely expressed as a set of permitted input resources

and permitted output resources, e.g., what the application can see

and who can see what it produces. In some cases (e.g., in [4]) more

complex policy is required, such as "X can see office occupancy only

during work hours, or X can see aggregate information about a floor,

but not individual offices". This can be implemented by spawning

a policy adapter microservice that consumes the raw information,

and publishes information in accordance with the policy. The end

user is then granted permission to consume only the output of the

policy adapter, not the raw data. This allows arbitrarily complex

logic to be enforced.

4.3.3 Controllers. A controller consumes a set of sensing and

parameter resources and writes to a set of actuation resources.

Examples include things like setpoint schedules, setbacks, etc. As
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above, there are no placement restrictions, which allows complex

controllers such as model predictive control, to be executed where

computational resources are cheap.

4.4 Heavyweight services

Some services are more heavyweight and do not benefit much from

the platform abstraction that Spawnpoint provides. A good example

is an archiver. For a large deployment, the archiver will likely have

a dedicated server with several RAID arrays. In addition, there is

typically a static globally-routed IP address associated with the

service. At this time Spawnpoint is not designed to offer this, so

these services can be deployed outside Spawnpoint.

This does not affect the interfaces exposed over Bosswave -

consumers are always indifferent to the location and platform a

service is running on - but it does mean that health monitoring

and administration tasks such as upgrades must be done using

conventional tools and methods.

5 EVALUATION

The goals of Bosswave are to solve problems of delegation, federa-

tion and protection at scale. We have long-lived real-world deploy-

ments but only at a modest scale. To fully verify the scalability, we

show that the system is capable of handling the load associated with

unifying a city-scale built environment under a single syndication

and authorization system. Drawing from public land-use and ten-

ancy data for San Francisco, we emulate the static load and churn

of changing authorization associated with natural city evolution.

This emulation is performed by executing the same Bosswave

commands as would be performed in real use. The emulated entities

and permissions are no different from real entities or permissions.

This gives us a high degree of confidence that our observations

within this emulation are what we expect if a city were to adopt

and deploy this system.

The experimental setup for the city-scale emulation is shown in

Figure 5. An event-based emulation of nearly a million people and

over a hundred thousand buildings draws from the statistical model

and issues commands to an agent which acts on them as if they

were real commands, putting the created entities and delegations of

trust into the global state. Separately, 100 containers running in the

cloud emulate participants in Bosswave. To capture the effects of

differing internet connections, the netem feature of Linux is used
to emulate a spectrum of internet speeds and latencies. Bandwidth

usage, CPU usage and memory usage statistics are streamed from

each container to a central database for analysis.

To set up the emulation, nearly a million distinct entities are cre-

ated for people living in the city. Then an additional million entities

are created for leases (and titles), apartment buildings, apartment

owners, and common devices such as thermostats and meters as

shown in Table 1. These intermediaries are created as distinct enti-

ties to capture the real hierarchy and delegation present in a city.

An apartment leasee, for example, obtains permissions to the ther-

mostat resources using a proof traversing their lease, apartment

building and then building owner.

In total, roughly 2 million entities and roughly 3 million dele-

gations of trust were created to represent the initial state of San

Francisco. Again, due to the authority-less nature of Bosswave it

Statistical model

Person emulator
x951,293

revoke lease
transfer owner

Agent

Global auth state in blockchain

Agent

Network Emu

x100

CPU Mon

MEM Mon DB

Network Mon

Figure 5: Overview of city-scale emulation

Type Entities DoTs granted

Occupant 951,293 1,312,005

Apt Owner 15,787 529,562

Apt Bldg 40,921 40,921

Apt Lease 264,781 264,781

House Title 95,931 95,931

Thermostat 360,712 N/A

Meter 360,712 N/A

Utility 603 722,026

Total 2,090,740 2,965,226

Table 1: Number and type of entities and DoTs in the city-

scale emulation

was necessary to create this state in the same manner as it would be

created in a real deployment – there is no “developer shortcut” as

the developers have the same power in the system as everyone else

in the world. The emulation then proceeds to change the permis-

sions in the city by following the statistical model of ownership and

occupancy change. As apartments and houses change occupancy,

old leases or titles are revoked and new leases and titles created.

At the peak of business hours, the city emulation causes roughly

150 changes of permission per hour. We separately characterize the

capacity of Bosswave at a rate of approximately 4000 changes of

permission per hour, although this limit is driven by the blockchain

and changes as the body of clients vote on what the bandwidth of

the chain should be.

5.1 Agent Resource Usage

We have measured the cost of participating in Bosswave, which

requires synchronization with the Wave blockchain. For space rea-

sons, the full results will be presented in a separate paper. The cost

of participation under normal conditions is reasonable: a constant

CPU load of about 5% of a desktop-class processor core or 50% of

an embedded-class ARM core. There is also an associated constant

network bandwidth use of between 2KB/s and 12KB/s. However,

this CPU and network overhead is still significantly higher than the

cost of interacting with centralized authorization services and may

pose a problem for battery powered or highly-constrained systems.

One solution to this is the remote agent. This takes the expensive
parts of the Bosswave agent – blockchain participation, proof

building and message verification – and offloads it to a separate

trusted platform. The trust relationship between the local agent and
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the remote agent is established out of band. The local agent then

requires minimal resources. As an example, we have thousands of

resources associated with ARM Cortex-M0+ class wireless sensors.

These cannot participate in the blockchain directly, but can perform

the symmetric encryption required to communicate with a remote

agent that has the blockchain andwill do thework of building proofs

as well as verifying and signing messages. The symmetric keys for

establishing trust are installed at commissioning time. While this

does mean the remote agent must be trusted, this pattern is still

very different from a centralized authority because anyone can

create their own remote agent, so no requirement for trust of a

third party is introduced.

5.2 Syndication performance

The signatures on every message are the most significant term

in syndication performance. On server class devices the impact is

minimal, adding approximately 75 µs to message routing time. On

embedded devices such as a Raspberry Pi the signatures take longer

to generate and verify, approximately 1 ms and 1.5 ms respectively.

This leads to a throughput of roughly 600 msgs/s per core. In prac-

tice, the situations where such embedded class devices are used (e.g.,

as a local gateway to a BMS or sensor network) rarely have such

high message rates, so the cost of the cryptography is not onerous.

On server class Bosswave router performance is comparable to

popular syndication systems, easily capable of routing thousands

of messages per second.

The cost of generating a proof is more variable, and depends

on how many DoTs lie between the namespace entity and the

prover. For complex namespaces involving thousands of entities this

can take hundreds of milliseconds on an embedded device, but in

practice the proof is cached and remains valid until the permission

graph changes along the path used (due to revocation or expiry).

We expect this to occur infrequently, maybe once every few weeks,

so the vast majority of resource interactions use a cached proof.

5.3 Device protection

In many existing building operating system architectures, the traffic

appearing at an end device is dynamic — it changes based on who

is actuating it (e.g., sMAP [13]) or consuming its sensor feeds (e.g.,

Mortar.io [22]). This makes it difficult to configure layer 3 firewalls

to block illegitimate traffic upstream. In Bosswave the device and

its agent only speaks to the designated router. As the parties au-

thorized to control the device or consume its data changes, the IP

address speaking to the device remains the same. While simple, this

difference in network architecture makes it much easier to protect

the device: only allow traffic to and from the designated router. At

layer 7, the designated router ensures that unauthorized traffic does

not get forwarded to the device. The problem becomes reduced to

hardening the designated router against denial of service attacks.

This task is also made easier by Bosswave as every message is

signed, tying it to a specific entity. If the entity is misbehaving, it is

blacklisted, causing future messages from that entity to be dropped.

As creating new entities requires interacting with the blockchain,

a Sybil attack where new identities are created to circumvent the

blacklist is not possible — it is trivial for the designated router to

blacklist entities faster than they can be created.

5.4 Deployments

Deployment Length Device Type # Resources

Campus Building 9 Months

Thermostats 21

WSN Mote 64

Power Meter 5

Residential House 13 Months

Thermostats 84

WSN Mote 300

Power Meter 12

Research Lab 9 Months WSN Mote 1485

Air Velocity 7 Months Sensor 12

Table 2: Summary of the resources associated with HPL mi-

croservices in three deployments

Aside from the city-scale emulation, we also present details about

four deployments of Bosswave and XBOS, as summarized in Table

2. Together they have securely handled more than a billion resource

interactions (involving proof generation and verification) over thou-

sands of resources. The experimental air velocity sensor publishes

hundreds of raw readings per second and a service on a Spawnpoint

in the cloud performs a suite of analytics to convert those to useful

data which are then subscribed to by research collaborators. Table 2

summarizes the length of deployments, type of devices and number

of resources. At the time of writing we are deploying this system

in 20 small to medium commercial buildings.

The residential installation of XBOS features a Spawnpoint in-

stance deployed on an on-premises PC hosting containerized mi-

croservices that back various devices and services. Thus, the devices

in the home are monitored and controlled purely through Boss-

wave. This has a number of security benefits. For example, the

smart plug controlling the electric vehicle charger is the TP-Link

HS-110, which communicates using a network protocol that can

be trivially compromised.
3
By firewalling the device so that it can

speak only with the Spawnpoint-hosted service that acts as its

Bosswave proxy, only authorized traffic appears at the device.

6 SUMMARY

In summary, this work builds upon the established pattern of a

building operating system – microservices performing hardware

presentation, analytics and data archival linked together by syndi-

cation – published in work such as BOSS [14], Sensor Andrew [25],

Mortar.io [22], etc. We affirm this pattern, and solve four outstand-

ing problems that arise as at city-scale. These are the delegation

of permissions, federation across multiple administrative domains,

protection of devices, and execution of microservices.

These problems have been identified in isolation in work such as

SensorAct [4] which identifies the need for stakeholders to delegate

how their own data is accessed, but a solution that solves these

problems without a central authority has thus far not existed. With-

out this property, the transition from a building operating system to

an operating system for the built environment comprising millions

of administrative domains will be mired in management overhead

stemming from exponentially increasing distinct views of trust.

We present the first system to provide strongly consistent global

authorization without a central authority, solving issues of delega-

tion and federation. By coupling this in a new publish/subscribe

3
https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/

https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/
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mechanism we realize a syndication tier that offers strong guaran-

tees on message authenticity and privacy. Notably, the end device

only ever receives authorized traffic and only from a single host,

resolving issues of device protection. Unlike existing work such

as [14, 22], the service routing messages cannot change permissions,

forge messages or reveal resources to unauthorized parties.

The final problem of microservice execution is cleanly resolved

by combining the authorization and syndication mechanisms with

a container execution environment which provides isolation, moni-

toring and administration of persistent processes while preserving

Bosswave’s delegation and federation properties.

The system is fully implemented and deployed at a global scale.

We anticipate researchers will design and deploy interoperable

microservices using this system going forward, following examples

such as XBOS [9] and leveraging the extensive libraries created for

this purpose [6, 7]. An examination of recent work published in

BuildSys shows that many systems are already designed around a

compatible syndication pattern and could leverage Bosswave with

minimal effort.

7 CONCLUSION

We present a natural extension to the design of building operating

systems that leverages an authority-free syndication layer to enable

operation at city-scale. This unifying system solves problems of

delegation, both within and across administrative domains, and of

federation which allows applications to span the built environment.

Extending this to a secure syndication tier efficiently solves issues

of device protection and DDOS that plague the modern Internet.

Furthermore, building this into the syndication tier makes the sys-

tem practical to deploy: the syndication tier is already the unifying

element, and we can realize all the authorization and protection

benefits while still providing the near-universal publish/subscribe

API. Resource-oriented rules allow natural and transparent expres-

sion of many application security policies, so the application need

not be aware of the system to benefit from it. This serves both to

reduce new application complexity and to allow porting of existing

applications to Bosswave. With these tools, we can move from the

building to the built environment securely and efficiently.
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