‘ ! ! . LLNL-TR-745697

LAWRENCE
LIVERM ORE

wouro | CLOMP V1.5

J. Gyllenhaal

February 2, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

CLOMP v1.5

Summary Version
15
Purpose of Benchmark

CLOMP is the C version of the Livermore OpenMP benchmark developed to measure OpenMP
overheads and other performance impacts due to threading. For simplicity, it does not use MPI
by default but it is expected to be run on the resources a threaded MPI task would use (e.g., a
portion of a shared memory compute node). Compiling with -DWITH_MPI allows packing
one or more nodes with CLOMP tasks and having CLOMP report OpenMP performance for the
slowest MP1 task. On current systems, the strong scaling performance results for 4, 8, or 16
threads are of the most interest. Suggested weak scaling inputs are provided for evaluating
future systems. Since MPI is often used to place at least one MPI task per coherence or NUMA
domain, it is recommended to focus OpenMP runtime measurements on a subset of node
hardware where it is most possible to have low OpenMP overheads (e.g., within one coherence
domain or NUMA domain).

Characteristics of Benchmark

CLOMP’s target input approximates a typical scientific application inner loop workload under
strong scaling conditions (that is, not a lot of work available to hide OpenMP overheads). The
overall speedup and implied overhead of several OpenMP scheduling algorithms are then
measured. Most current OpenMP benchmarks tolerate OpenMP overheads several orders of
magnitude higher than is necessary in order to get reasonable performance out of threading loops
with just a few hundred thousand cycles of work in them. In order to get good performance
with CLOMP’s target input, and with many of our scientific applications, it is critical for there to
be hardware support for threading and for the OpenMP compilers and libraries to be
implemented to effectively use this OpenMP-accelerating hardware. The CLOMP benchmark
can be used to demonstrate the need for new techniques for reducing thread overheads and to
evaluate the effectiveness of these new techniques. The CLOMP benchmark is highly
configurable and can also be used to evaluate the handling of other well-known threading issues
such as NUMA memory layouts, work-load imbalance, cache effects, and memory contention
that also can significantly affect performance.

Examples of OpenMP Hardware Support

Examples of OpenMP hardware support in current systems include support for atomic operations
and locking operations in L2 cache and mechanism for efficiently distributing work to a large
number of threads. For today's systems that synchronize threads thru main memory, current
best-in-class implementations of OpenMP have overheads at least ten times larger than is
required by many of our applications for effective use of OpenMP. For these applications to
most effectively use OpenMP with 8 threads per MPI task, they require thread barrier latencies
on the order of 200 processor cycles and total OpenMP “parallel for” overheads on the order of
500 processor cycles on high performance systems. With a single read from main memory often

Page 1 of 8

taking several hundred cycles, it is clearly impossible to achieve these overhead goals without
specialized hardware support.

Parameters of Benchmark

The CLOMP benchmark is configured entirely at run time using the command-line parameters.
The usage information for the CLOMP Version 1.5 benchmark that is output when it is run with
no arguments is shown in Fig. 1. The numThreads argument specifies the number of OpenMP
threads to use when running the benchmark, where the special value ‘-1’ specifies that the
default number of OpenMP threads (usually the number of processors or the number of threads
set via OMP_NUM_THREADS). The allocThreads argument specifies how many threads
will be used to allocate the memory. The typical values for allocThreads are 1 and -1. Setting
allocThreads to 1 emulates what most of our codes do, which allocates all the memory
touched in the main thread (which causes poor thread memory layout on systems that exhibit
NUMA effects). Setting allocThreads to -1 (or the number of threads used) threads the
allocation using OpenMP the same way the calculations are threaded so that the same threads
will allocate the memory as use them, thereby improving thread memory layout. (This is not
currently guaranteed to be true by OpenMP, but it appears to be true for some OpenMP
implementations). Although ideally programs would allocate all the memory a thread touches in
that same thread, in practice this is often very hard to do. Thus, we are interested in the
performance difference caused by whether the allocations themselves were done serially or in
parallel.

The partsPerThread, zonesPerPart, zoneSize, and flopScale command-line
arguments in Fig. 1 will be described more fully below as we describe the mesh and computer
kernels of the CLOMP benchmark. The last command line argument, timeScale, is provided as
a convenience for those running the CLOMP benchmark; it scales the run-time of the
benchmark. A timescale of 100 was designed to run for between 5 and 30 seconds for a serial
run of the kernel (depends on mesh size and machine speed) that should provide reasonably
accurate timings given the resolution of the timers used. A timeScale of 1 runs the benchmark
very quickly to identify scaling problems and correctness but probably inaccurate timings. Using
a timeScale of 100 is probably a reasonable, yet still short, run on most current machines but
may have to be adjusted for machine speed.

Page 2 of 8

CLOMP Version 1.50 (CORAL2 RFP)
Usage: clomp numThreads allocThreads partsPerThread \
zonesPerPart zoneSize flopScale timeScale

New in Version 1.2: Compile with -DWITH MPI to generate clomp mpi

New in Version 1.3: zonesPerPart can be range expression start-end
(i.e., 700-100)
zonesPerPart can be random over range by adding R[seed]
(i.e., 100-300R2)

New in Version 1.5: Args change: numParts = numThreads * partsPerThread
numThreads: Number of OpenMP threads to use (-1 for system default)
allocThreads: #threads when allocating data (-1 for numThreads)

partsPerThread: Number of independent pieces of work per thread
zonesPerPart: Number of zones in the first part (3 flops/zone/part)
zoneSize: Bytes in zone, only first ~32 used (512 nominal, >= 32 valid)
flopScale: Scales flops/zone to increase memory reuse (1 nominal, >=1 Valid)
timeScale: Scales target time per test (10-100 nominal, 1-10000 Vvalid)

Some interesting testcases (last number controls run time) :

Target input: clomp 16 1 1 400 32 1 100
Target/NUMA friendly: clomp 16 -1 1 400 32 1 100
UNBALANCED Target input: clomp 16 1 4 700-100 32 1 100
RANDOM UNBALANCED input: clomp 16 1 4 1-800R4 32 1 100
Weak Scaling Target: clomp N -1 1 400 32 1 100
Weak Scaling Huge: clomp N -1 1 6400 32 1 100
Strong Scaling Target: clomp -1 -1 1024 10 32 1 100
Mem-bound input: clomp N 1 1 640000 32 1 100
Mem-bound/NUMA friendly: clomp N -1 1 640000 32 1 100
MPI/OMP Hybrid Target: (mpirun -np M) clomp mpi 16 1 1 400 32 1 100

Figure 1 Usage information for CLOMP v1.5 benchmark.

The CLOMP benchmark creates a simple unstructured mesh (see Figures 2a, 2b, and 2c) that is
configured via the command-line parameters partsPerThread, zonesPerPart, and
zoneSize that were shown in Fig. 1. The mesh consists of “numThreads *
partsPerThread” independent zone partitions where each zone partition contains
“zonesPerPart” zones. The zonesPerPart parameter may be a constant (e.g., 4) as shown
in Fig. 2a, a deterministic range expression (e.g., 4-1) as shown in Fig. 2b, or a random range
expression (e.g., 1-4R2) as shown in Fig. 2c that pseudo-randomly picks zone counts from the
specified range (1-4) with the random seed specified (2). The non-constant zonesPerPart
expressions allows creating situations where OpenMP dynamic scheduling is expected (or
desired) to outperform static scheduling.

The CLOMP benchmark explicitly allocates all the zones (e.g., Zone01, Zone02, Zone 03, and
Zone04 in Fig. 2a) in each zone partition (e.g., Part0 in Fig. 2a) in a continuous block, so that all
the partition’s zones are immediately adjacent to each other (even though they are accessed via a
linked list). This zone allocation strategy should allow prefetching to work well while traversing
each partition’s zones. The amount of memory allocated for each zone is set by the zoneSize
parameter (shown in Fig. 1), although there is a system dependent minimum size that is usually
32 bytes. Only the first approximately 32 bytes of each zone is actually used, and the zoneSize

Page 3 of 8

parameter is provided mainly as a way to increase the memory footprint of the mesh without
creating more work.

Part0 ZoneOl Zone02 Zone03 Zone04
FirstZone —pNextZonel piNextZonel _piNextZonel piNextZone| g
PartData ZoneData ZoneData ZoneData ZoneData
Partl Zonell Zonel2 Zonel3 Zonel4
partArray[4] FirstZone pNextZonel pINextZone| p/NextZonel jNextZonel g

PartData ZoneData ZoneData ZoneData ZoneData

P P

artptr0 Part2 Zone2l Zone22 Zone23 Zone24

PartPtril FirstZone pNextZone pNextZonel _p/NextZone pNextZonel o
PartData ZoneData ZoneData ZoneData ZoneData

PartPtr2

PartPtr3 >
Part3 Zone31l Zone32 Zone33 Zone34
FirstZone pNextZone pNextZone pNextZone pNextZonel o
PartData ZoneData ZoneData ZoneData ZoneData

Figure 2a CLOMP balanced unstructured mesh data structures for
numThreads * partsPerThread = 4 and zonesPerPart=4.

Part0 Zone(Ol Zone02 Zone03 Zone04
FirstZone > extZone ;Nethone > extZone ;Nethone_.
PartData ZoneData ZoneData ZoneData ZoneData
Partl Zonell Zonel2 Zonel3
partArray[4] FirstZone pNextZone| pl/NextZone| pNextZone|_g

PartData ZoneData ZoneData ZoneData

PartPtr0

ar £ Part2 Zone2l Zone22

PartPtril FirstZone pNextZone| p/NextZonel g
PartData ZoneData ZoneData

PartPtr2

PartPtr3 >
Part3 Zone3l
FirstZone pNextZone| o
PartData ZoneData

Figure 2b CLOMP workload-sorted unbalanced unstructured mesh data structures for
numThreads * partsPerThread = 4 and zonesPerPart=4-1
(workload-sorted dynamic scheduling test configuration).

Page 4 of 8

Part0 ZoneOl Zone02 Zone03 Zone04
FirstZone —pNextZonel piNextZonel _piNextZonel piNextZone| g
PartData ZoneData ZoneData ZoneData ZoneData
Partl Zonell
partArray[4] FirstZone »NextZone| g
PartData ZoneData
P P
artptr0 Part2 Zone2l Zone22 Zone23 Zone24
PartPtril FirstZone pNextZone pNextZonel p/NextZone pNextZonel o
PartData ZoneData ZoneData ZoneData ZoneData
PartPtr2
PartPtr3 >
Part3 Zone3l Zone32 Zone33
FirstZone pNextZone pNextZone pNextZone|_g
PartData ZoneData ZoneData ZoneData

Figure 2c CLOMP unsorted randomized unbalanced unstructured mesh data structures for
numThreads * partsPerThread = 4 and zonesPerPart=1-4R2
(unsorted workload dynamic scheduling test configuration).

No real or useful physics is done by the CLOMP benchmark, but a configurable amount of
physics-like work is done in each zone during each “physics cycle,” and the benchmark is
designed to produce bit-for-bit reproducible (and predictable) answers no matter how many
threads are used to calculate the results. The CLOMP benchmark uses this property (and other
techniques) to detect many common threading errors. The thread-parallel kernel for the CLOMP
benchmark is shown in Fig. 3 with OpenMP directives for static scheduling. The

calc deposit () call in Fig. 3 represents an MPI exchange of data (although currently no MPI
is done in the timing sections CLOMP, even with -DWITH_MPI) and must be called from a
single-threaded region and must be called after the previous thread parallel work is done. All the
computational work is done in the update part (), and it is the for loop around

update part () thatis the target for threading.

deposit = calc_deposit (); /* Sync, non-threadable */
#pragma omp parallel for private (pidx) schedule (static)
for (pidx = 0; pidx < num parts; pidx++)

update_part (partArray([pidx], deposit);

Figure 3 CLOMP thread-parallel kernel with OpenMP directives and static scheduling.

Although the focus of the CLOMP benchmark is the OpenMP kernel shown in Fig. 3, a
simplified version of the compute kernel of update part () isshown in Fig. 4 in order to
explain the £1opsScale command-line parameter from Fig. 1. This update part () kernel
follows the linked list of zones in each zone partition and does a little bit of math on the zone’s
value. Its purpose is to consume cycles in a configurable way that produces verifiable output, not
to actually do anything useful. When f1opscale is 1 (the desired target setting), each iteration
of the outside zone traversal loop does (with a reasonable optimizer) two loads from the zone
(zone->value, a double, and zone->nextZone, a pointer), does a double multiple, a double add,

Page 5 of 8

and a double subtract, and a double store to the zone (zone->value, a double). This memory
access to flop ratio is representative of several interesting scientific calculations and can put a
load on the memory system, especially prefetching logic of the memory system. By setting the
flopScale parameter to 100 and reducing the mesh size by 100, one can get an input of
approximately the same run time that is much less affected by the memory system. Using a value
greater than 1 for f1opscale is interesting only for explaining performance anomalies in the
benchmark run when flopscale is set to 1. Note: The actual update_part() source code
explicitly loop versions the zone loop in Figure 4 for flopScale == 1 to remove the scale_count
loop overhead even for compilers than don’t support that optimization.

for (zone = part->firstZone; zone = NULL; zone = zone->nextZone)
{
for (scale_count = 0; scale_count < flopScale; scale_count++)
{
deposit = remaining_deposit * deposit_ratio;
zone->value += deposit;
remaining_deposit -= deposit;
}
}

Figure 4 The non-threadable compute kernel of update_part().

The CLOMP benchmark measures the total overhead for static, dynamic, and manual OpenMP
“parallel for” loop scheduling and the speedup achieved when performing a “physics cycle” on
the specified unstructured mesh. The potential “best-case” static-scheduled speedup is also
determined in order to provide an approximate upper bound on static-scheduled threaded
performance and in order to be able to calculate an efficiency rating for the OpenMP
implementation. By running the CLOMP benchmark with several different mesh sizes and thread
configurations, the performance effect of OpenMP overheads, NUMA effects, cache and
memory bandwidth and latency effects, and prefetching effectiveness can be clearly seen. The
amount of work each benchmark OpenMP test performs is run-time configurable and is, by
design, independent of mesh size, so that a wide range of CLOMP benchmark runs can be done
quickly.

Below we suggest some run configurations for CLOMP that have shown interesting results on
the systems tested. There are probably many other useful configurations to try.

Mechanics of Building Benchmark

The CLOMP benchmark consists of one C file, clomp.c, and a Makefile that contains the
compile line for a few compilers, and two similar example run script run_clomp.bgq and run
clomp.ctsl of 22 interesting run configurations. These run_clomp* scripts generate
run_clomp.summary and run_clomp.CORAL2_RFP which is summarizes the run data for the
CORAL2 RFP. You can either compile clomp.c directly with the desired compiler arguments to
get good OpenMP performance or you can put the compile line in the Makefile. Running the
Makefile with no arguments shows the compiler lines available. For example, make icc builds
CLOMP with icc and mpicc (assumed to be in your path) (on Linux) generating clomp,
clomp_hwloc and clomp_mpi. If you are reporting results to us, please specify the compiler

Page 6 of 8

options uses to build CLOMP. You must optimize clomp at least at the equivalent of -O3 unless
you have a strong reason not to.

You may optionally compile with the -DHWLOC option which causes clomp to bind OpenMP
threads to cores using the hwloc library. This binding yielded significant speedup on various
x86 clusters tested. You may change the straightforward binding logic to better match your
hardware.

Compiling with -DWITH_MPI enables MPI in the code. Our hwloc implementation is not MPI
aware and generally generated very poor results with MPI as implemented. Our MPI launchers
and bind helpers (e.g., mpibind) do a reasonable thread-binding by default. If your MPI
launcher does not, please feel free to set up the appropriate binding when running clomp_mpi
(either externally or by enhancing clomp.c). Since MPI is often used to place at least one MPI
task per coherence or NUMA domain, focus on binding to a subset of node hardware where it is
most possible to have low OpenMP overheads (e.g., within one coherence domain or NUMA
domain).

Setting Up the OpenMP Environment

On the few systems we have tested so far, additional system-specific and/or compiler-specific
environment variables need to be set in order to get good thread performance while not
penalizing serial performance. We found OMP_WAIT_POLICY ACTIVE was critical on BG/Q
but slowed down serial the serial sections of CLOMP by 25% or more on some other clusters,
making the threaded portions appear artificially ‘faster’. Clomp v1.5 now measures this serial
impact and essentially scales down threaded speedups by the measured serial impact. Be sure to
check this line of the clomp output to make sure the serial section is not being severely penalized
(and thus the OpenMP speedup scores being penalized):

OMP Serial Impact: 1.03X Slower serial (2.694s / 2.619s, After OMP/Before OMP)

Ideally, the serial impact would be a 1.00X slowdown (no slowdown) or close to this.

Platform-specific thread settings sometimes give threads strong processor affinity, bind threads
to separate processors, or direct the operating system to use all the available processors to run
threads instead of just a few. In the past, we found these settings by looking at the SPEC
OpenMP benchmark results where all environment variables set have to be specified and/or by
asking the vendors for suggestions.

For example, on BGQ with the xlc compiler, these two environment variables had to be set for
the best performance:

setenv OMP_WAIT POLICY ACTIVE
setenv BG_SMP_FAST WAKEUP YES

Page 7 of 8

On BG/Q, oMP WAIT POLICY setto AcTIVE did not have a negative impact on serial
performance.

On Linux with recent icc compiler versions, setting oMP WAIT POLICY to PASSIVE was Very
important for good serial, as well as, OpenMP performance:

setenv OMP WAIT POLICY PASSIVE

Setting oMP_WAIT POLICY to ACTIVE did slightly improve OpenMP runtimes but also
significantly slowed the serial sections. With CLOMP v1.5 serial impact adjustment, this yield
approximately the same net speedups. You will need to check your environment for the proper
setting of OMP WAIT POLICY.

For both BGQ/xIc and Linux/icc, there were other thread environment variables available that we
didn’t explore with CLOMP v1.5. With some settings, OMP_NUM_THREADS had to be set to
the number of threads used in order to get good performance (OMP_NUM_THREADS was used
by the thread binding system) so we set OMP_NUM_THREADS in the run_clomp* scripts.

If you are reporting benchmark results to us, please describe what environment variables were
set and why.

Mechanics of Running Benchmark

The CLOMP benchmark should be run on a dedicated (idle) node with the appropriate thread
performance environment variables set (described above). All the runs should be done on the
same machine around the same time (if possible) because we have found memory layout to
sometimes be different on different nodes of the same cluster. The benchmark can be run directly
(as described in Fig. 1), but when generating CORAL2 RFP results, it can be useful to modify
the provided example script “run_clomp.bgq” or “run_clomp.cts1” to run a suite of CLOMP runs
and automatically create comma-delimited result summary files that can be loaded into the
CORALZ2 results spreadsheet. The run_clomp.bgq script was designed to run 22 variations we
have found most useful during our CLOMP benchmarking runs on our current machines. The
script comments indicate which runs are for strong scaling performance, weak scaling
performance, measuring dynamic scheduling benefits, detecting bandwidth limitations, detecting
NUMA bandwidth limitations, and detecting hybrid OpenMP/MPI performance issues. The
comma-delimited value file run_clomp.CORAL2_RFP is designed to be easily loaded into a
spreadsheet and then pasted into the CORALZ2 RFP results spreadsheet.

Interpreting the Output

The output of the CLOMP benchmark is fairly descriptive (pseudo code of what is being
measured in printed in the full CLOMP output) and will not be described in detail here. The
most important performance result of interest is the speedup for the OpenMP static schedule case
over the serial run for ~400 zones per thread with the number of threads equal to the number of
processor cores/threads dedicated to a single MPI task. Ideally, that speedup should be close to
the number of threads used but is typically much lower due to current OpenMP overheads.

Page 8 of 8
Prepared by LLNL under Contract DE-AC52-07NA27344.

