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lydrogen at high pressures —
the known phase dlagram SO far
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Recent predlctlons of the LL-IMT in hydrogen
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Proposed Experiment: Shock - Ramp
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Two-step pulse shape provides shock-ramp profile
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Processed VISAR signals
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Measured observables in deuterium @&:.
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Stripline experimental profiles ) £
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SVS system provides data to infer reflectivity &=

Reflection from aluminum coating Reflection from deuterium
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SVS system provides data to infer reflectivity
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P(t) obtained from v(t) and LiF EOS
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T(t) and p(t) obtained from D, EOS (Kerley03)
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Experimental PT Paths
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Reflectivity signals mapped to pressure

aluminum

deuterium /R

R

. /R .
deuterium = aluminum

R

0.6

0.5F

0.4

0.3

0.2

0.1

(a)

Release \L

7\Compression -

(b)

o

0.6

0.5F

04

0.3F

0.2F

0.1F

Asymmetry observed in the
reflectivity is likely caused
by time evolution of

] ] ] ]

°c o ©< ©

w -P\ o o
/R

]
O
\V)

1
(@)
a

o

: thermal gradients at the :

deuterium/LiF interface

] ] ] ]

°e© o o ©

w & a (0))
/R

]
O
\V]

1
o
O

200

250 300
Pressure (GPa)

350

250 300
Pressure (GPa)

350

luminum

a

deuterium

R

luminum

a

deuterium

R

Sandia
National _
Laboratories




Location of the LL-IMT in deuterium T
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Location of the LL-IMT in deuterium
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Extended P-p diagram for deuterium
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Magnetic pressure can also be used to launch (@&,

flyer plates to high velocity
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Previous Hugoniot data for deuterium has ) e,
relatively large uncertainty and scatter
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VISAR was used to obtain precise flyer plate an@r:.;;:m
shock velocities in the D, and quartz
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Quartz Hugoniot and release has been ) e,
extensively studied in the multi-Mbar regime
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Recent results show significant improvement in
precision with respect to previous data
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Recent results show significant improvementin (@&,
precision with respect to previous data ;
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Conclusions from Principal Hugoniot experiments ().,

are corroborated by reshock measurements
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Conclusions

= Shock-ramp technique enabled experimental access to the
liquid-liquid, insulator-metal transition (LL-IMT)

= Experiments show clear evidence of metallization of deuterium

= Relative insensitivity to T at low temperature suggests this is a
p-driven transition in the low temperature regime

» patthe transition is inferred to be ~2-2.1 g/cc in deuterium

= Experiments at higher T in good agreement with previous work
of Weir et al.

= High precision Hugoniot experiments enable evaluation of
various quantum simulation methods

= Metallization at low T and along the Hugoniot are in reasonable
agreement with non-local vdW functionals
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Dzyabura experiment
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There is a significant temperature difference

at the deuterium/LiF interface
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Thermal conduction simulations
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Reflectivity signals mapped to pressure
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Extended P-T diagram for hydrogen
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Reanalysis of Weir et al data
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P(p) relatively insensitive to EOS model
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Giant planets in the Solar system S
Interior composed of the lightest elements H & He, hydrides NH;, OH,,
CH, (ices) and small amounts of heavier elements (cores)
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H-He de-mixing appears to be precipitated
at low T and P by metallization in hydrogen
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Recent results show significant improvementin (@&,
precision with respect to previous data
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