
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Reactor image? IBL image?

Dynamic compression experiments 
on deuterium and their implications 

for first-principles theory

Marcus D. Knudson
mdknuds@sandia.gov

Dynamic Material Properties Group
Sandia National Laboratories

Albuquerque, NM

Institute for Shock Physics
Washington State University

Pullman, WA

SAND2016-4607C



Acknowledgements

2

Mike Desjarlais

Andreas Becker

Winfried Lorenzen

Ronald Redmer

QMD Calculations

Experiment

Design/Analysis

Planetary Modeling

Pulse Shaping

Diagnostics

Nadine Nettelmann

Andreas Becker

Ronald Redmer

Marcus Knudson

Ray Lemke

Kyle Cochrane

Devon Dalton

Dustin Romero

Ray Lemke

Jean-Paul Davis

Mark Savage

Ken Struve

Keith LeChien

Brian Stoltzfus

Dave Hinshelwood

Charlie Meyer

Jeff Gluth

Devon Dalton

Anthony Romero

Dave Bliss

Alan Carlson

Entire Z crew

University of Rostock



3R.J. Hemley, High Press Res. 30, 581 (2010)

ATOMIC FLUID

INSULATING
FLUID

CONDUCTING
FLUID

MOLECULAR FLUID



4

Recent predictions of the LL-IMT in hydrogen

M. Morales, et al. Proc. Natl. Acad. Sci. U.S.A. 107, 12799 (2010)W. Lorenzen, et al. in Frontiers and Challenges in Warm Dense Matter (2014)M. Morales, et al. Phys. Rev. Lett. 110, 065702 (2013)V. Dzyabura, et al. Proc. Natl. Acad. Sci. U.S.A. 110, 8040 (2013)G. Mazzola, et al. Nature Comm. 5, 3487 (2014)
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Proposed Experiment:  Shock - Ramp

M.D. Knudson et al., Science 348, 1455 (2015)
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Stripline experimental configuration
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First step accelerates 
drive plate across few 
hundred micron gap

Subsequent current 
rise produces ramp 
compression from 

initial shocked state

Two-step pulse shape provides shock-ramp profile



Processed VISAR signals
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Aluminum / D2 InterfaceD2 / LiF Interface
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Measured observables in deuterium

Al D2 LiF



Stripline experimental profiles
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457.9 nm 589.3 nm532 / 543.5 nmWavelength range ~450-700 nm

Reflection from aluminum coating Reflection from deuterium 

SVS system provides data to infer reflectivity

633 nm

t
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SVS system provides data to infer reflectivity

Lower T
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P(t) obtained from v(t) and LiF EOS
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T(t) and (t) obtained from D2 EOS (Kerley03)
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Experimental PT Paths
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Reflectivity signals mapped to pressure

Asymmetry observed in the 
reflectivity is likely caused 

by time evolution of 
thermal gradients at the 
deuterium/LiF interface 
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Location of the LL-IMT in deuterium

M.D. Knudson et al., Science 348, 1455 (2015)
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Location of the LL-IMT in deuterium
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Extended P- diagram for deuterium

Laser-shocked DAC, Loubeyre et. al

Shock ring-up, Weir et. al

Shock-ramp, Knudson et. al
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Magnetic pressure can also be used to launch 
flyer plates to high velocity

Lemke et al., J. Appl. Phys. 98, 073530 (2005)
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All of the previous data 

used aluminum as an 

impedance match 

standard with 

uncertainties in /0 of 

order 10%

Hicks et al., PRB 79, 014112 (2009)Knudson et al., PRB 69, 144209 (2004)Boriskov et al., PRB 71, 092104 (2005)

Previous Hugoniot data for deuterium has 
relatively large uncertainty and scatter
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aluminum

quartz

D2

VISAR

VISAR was used to obtain precise flyer plate and 
shock velocities in the D2 and quartz
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• Nearly 300 Hugoniot points for quartz have 
been obtained between 1 and 15 Mbar

• A release model was developed using 
release measurements obtained from TPX, 
and both ~200 mg/cc and ~100 mg/cc 
aerogel 

TPX

~200 mg/cc
aerogel

~100 mg/cc
aerogel

quartz

Knudson and Desjarlais, PRB 88, 184107 (2013)Knudson and Desjarlais, PRL 103, 225501 (2009)

Quartz Hugoniot and release has been 
extensively studied in the multi-Mbar regime
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Recent results show significant improvement in 
precision with respect to previous data
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Recent results show significant improvement in 
precision with respect to previous data
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Conclusions from Principal Hugoniot experiments 
are corroborated by reshock measurements
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Conclusions

 Shock-ramp technique enabled experimental access to the 

liquid-liquid, insulator-metal transition (LL-IMT)

 Experiments show clear evidence of metallization of deuterium

 Relative insensitivity to T at low temperature suggests this is a 

-driven transition in the low temperature regime

  at the transition is inferred to be ~2-2.1 g/cc in deuterium

 Experiments at higher T in good agreement with previous work 

of Weir et al.

 High precision Hugoniot experiments enable evaluation of 

various quantum simulation methods

 Metallization at low T and along the Hugoniot are in reasonable 

agreement with non-local vdW functionals
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V. Dzyabura, et al. Proc. Natl. Acad. Sci. U.S.A. 110, 8040 (2013) 32

Dzyabura experiment
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deuterium 
temperature

aluminum 
temperature

LiF
temperature

~1545 K

~1100 K

There is a significant temperature difference
at the deuterium/LiF interface
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Thermal conduction simulations
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Reflectivity signals mapped to pressure
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Extended P-T diagram for hydrogen
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Reanalysis of Weir et al data
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P() relatively insensitive to EOS model

Solid lines from QMD (vdW-DF2)

Dashed lines from Kerley03
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Giant planets in the Solar system
Interior composed of the lightest elements H & He, hydrides NH3, OH2, 

CH4 (ices) and small amounts of heavier elements (cores)



40W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 84, 235109 (2011)

H-He de-mixing appears to be precipitated
at low T and P by metallization in hydrogen



Kerley03

PBE

Z Quartz standard
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Recent results will 

enable critical 

comparison with different 

density functionals in the 

vicinity of dissociation

Knudson et al., PRB 69, 144209 (2004) Desjarlais, PRB 68, 064204 (2003)

Results with quartz 
standard have 

uncertainty in /0

of  ~1.5%

Averages of 
several data 

points

Typical uncertainty 
of single datum

Recent QMC

Z data is in strong 

disagreement with recent 

QMC calculations

Tubman et al., PRL 115, 045301 (2015)

vdW-DF2

vdW-DF1

Recent results show significant improvement in 
precision with respect to previous data


