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GaN nanotube lasers ► ► ► Beam shaping 
            –  Annular-shaped emission  
 –  Atom trapping 
 –  Stimulated emission depletion microscopy 
 
Rectangular GaN nanowire lasers ► ► ► Linear polarization 
            – Intrinsic control (no additional environment requirement) 
            – Beneficial for polarization-sensitive on-chip components 
 
Nonpolar core-shell nanowire lasers ► ► ►UV-visible lasers 
            – No quantum-confined stark effect 
            – High material gain and low lasing threshold 
            – Potential confinement factor engineering 
            – Compatible architecture for electrical injection 

Why cross-section control for nanowire lasers? 

• Annular-shaped emission from GaN nanotube lasers potentially for nanofluidic and atom trapping and STED microscopy applications. 
• Intrinsic linearly polarized emission from rectangular GaN nanowire lasers potentially for on-chip polarization-sensitive applications. 
• Single nonpolar InGaN/GaN MQW core-shell nanowire lasers  with low threshold, compatible p-i-n architecture for electrical injection 

 

Conclusions 

Structure 2: Intrinsic linear polarization from 
rectangular GaN nanowire lasers 

Structure 3: Single non-polar p-i-n InGaN/GaN 
multi-quantum-well nanowire lasers 
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Structure 1: Annular-shaped emission from 
GaN nanotube lasers 

(a) (b) (c) 

Top-down two-step etch process: (a) Ni ring patterns were deposited on a planar 
III-nitride substrate and then transferred into the substrate by (b) ICP dry etch and 
(c) KOH (AZ400K) wet etch. (d) An SEM image of a GaN nanotube (Length: 4 µm; 
Outer diameter: 1.3 µm; Shell thickness: 150 nm) 
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CCD images of the GaN nanotube laser 
excited (c) below and (d) above lasing 
threshold 
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Spectra of the emission from a GaN nanotube laser (a) in air and (b) in silicone oil, 
showing potential in nano-fluidic applications. (c) L-L curves of the GaN nanotube 
laser.  

(a) (b) 

(a) CCD image of the end-facet emission 
of the GaN nanotube laser. (b) Simulation 
results of the far-field intensity of the GaN 
nanotube laser in spherical coordinate 
system. The annular-shaped emission can 
be potentially used for atom trapping or 
STED microscopy 
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(f) 

Top-down two-step etch 
process: (a) E-beam litho. (b) 
ICP dry etch. (c) KOH 
(AZ400K) wet etch. (d) Plan-
view and (e) 45º view SEM 
images of a rectangular GaN 
nanowire laser. Scale bar: 2.5 
µm (f)  Diagram shows the 
long x- and short y-axes. 
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(a) Intrinsic, linearly polarized 
emission with an extinction ratio of 14:1 
was observed from the end-facet 
emission of nanowire A (x-dimension: 
450 nm, y-dimension: 120 nm). Inset: the 
SEM image of the GaN nanowire. The 
major axis of the linearly polarized 
emission is along the y-direction of the 
rectangular nanowire laser.(b) Elliptically 
polarized emission from nanowire B (x-
dimension: 450 nm, y-dimension: 300 
nm).  
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PL Spectra of a rectangular GaN 
nanowire laser. The narrow-band 
emission indicates the onset of lasing 

Simulated transverse confinement factors of 
transverse modes of rectangular GaN 
nanowire lasers. The modes polarized 
along the y-direction have higher 𝜞𝜞𝒙𝒙𝒙𝒙 
when the y-dimension is ~120 nm. 
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(a) SEM image & (b & c) High resolution cross-sectional scanning TEM images of a 
core-shell nanowire. 5 quantum-wells (QWs) are re-grown on the nonpolar m-planes 
of a n-GaN nanowire core fabricated by the top-down two-step process. 
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(a) L-L curve of a core-shell nanowire in linear and log scales. The “kink” in the curve 
indicates the lasing threshold (180 kW/cm2). (b) PL spectra of the core-shell 
nanowire lasers. Narrow-band lasing peaks were observed above the lasing 
threshold. (c) Gain curves of 7 nonpolar core-shell nanowire lasers and the 
previously reported semipolar core-shell nanowire laser. The nonpolar core-shell 
lasers exhibit lower transparency carrier densities & higher differential gains. 
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(a) Core-shell nanowires that require lower 
carrier densities for 𝑔𝑔 = 1200𝑐𝑐𝑐𝑐−1 indicate 
higher gain quality and correspond to lower 
measured lasing thresholds. (b) Higher gain 
quality corresponds to narrower spontaneous 
emission linewidth. The results imply that the 
variation of the lasing threshold for the 7 core-
shell nanowire lasers is because of the 
nonuniform material gain, which comes from the 
inhomogeneous regrowth 

Cross-sectional shape control enables beam shaping 

Cross-sectional shape control enables intrinsic polarization control Potential UV-visible electrically injected single nanowire lasers 
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