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* A5, The field of SCP”’s has been impacted by several well-
Rt known physicists

« A tremendous group of physicists have played important roles in
the development of strongly coupled pasmgs |
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— Various theoretical approaches and developments
— Early experiments
— Electrical conductivity
* Branching out
— Classical and quantum MD and MC
— EOS
* Lower density strongly coupled systems
— lon traps
— Dusty plasmas
— Ultra cold plasmas
 Where are we now?
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 Workshop in Santa Barbara in 1986

— 61 talks, 8 were of experiments

* Near the same time, a series of workshops began in eastern
Europe called the PNP (Physics of Non-ldeal Plasmas) workshops

« A wide range of theoretical efforts
— Density functional theory (TF, Kohn-Sham, etc)
— Classical statistical models of dense plasmas and liquids
— One component plasmas (OCP)- MC calculations
— Hyper-Netted Chain Equation, classical and quantal

- Experiments were focused on methods of creating dense plasmas
or on measuring transport properties

— Very difficult to determine state variables in order to compare to
theory

— Several early experiments on metal vapors in the former Soviet
Union

— Shock and adiabatic compression experiments on gases
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» Isakov and Likal’ter and others did experiments on alkali metal
vapor systems

— These were pressurized heated vapor cells, reaching temperatures
of a few thousand kelvin

— Results were often confusing and generally not consistent with
models

* Pressurized experiments on wires to heated conditions up to
vaporization temperatures carried out by Hixon and Shaner

— These experiments also measured sound speeds but were limited
to these lower temperatures

« To reach more plasma like conditions required an innovation

« Tamping the heated wires using some type of solid density
insulator worked
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Many experiments were done by several groups, the most
complete set by Alan DeSilva* and colleagues.

Streaked shadowgraph of electrically heated Conductivity for expanded aluminum
wire tamped in water.
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Schematic diagram of

To reach higher temperatures, higher density tampers

¥ were required*

electrically heated aluminum
wire tamped by high density

glass.

_Outerelectrode

Water line: | Aluminum plasma Rogowski coil

(TR TR TR
2% LLLHTTITTET NI EEE RO A

- Plastic insulator X-ray pinhole

Water line Lead glass tamper | | Microchannel plate

z 7l
7
77 7 /
A, 7
o A

_ Outer electrode 'iff,%‘:;;;*:";

1078 =

1077 |-

Electrical Resistivity (Ohm-cm)

1090 ..

Temperature (eV)
163 100 "

460

1,30

0.1

Density (g/cc)

\Capacitive voltage probe

Model of Dharma-Wardana and Perrot

matched experimental results best.
- At lower temperatures and densities,
neutral collisions begin to matter

* Benage, Shanahan, and Murillo, PRL, 83, 2953 (1999).
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Uovat « A general acceptance of density functional
models
Comparison of modified LM model — lonization and structure could be
with aluminum data determined more self-consistently
— Quantum effects were important in
7 modeling these correctly
-6 : .
I’E" » Improved practical models for electrical
a5 conductivity
- — Desjarlais* modified the analytic model of Lee
=4 and More to take into account recent
2 experimental results, leading to significantly
E‘ 7 more accurate conductivity tables
— This enabled a new capability of electrically
2 launched flyer plates for equation of state
-25-2-15-1-05 0 05 1 experiments
Log p [in g/cm?]

* More interest in using QMD (quantum
molecular dynamics) to model conditions at
dense, relatively low temperature systems

— Both for EOS purposes and for electrical
* Desjarlais, Contr. Plasma Physics, 41, 267 (2001). conductivity
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. Dynamic materials experiments use Z as a pulsed
4 & magnetic pressure driver (peak B-field = 100-1200 T)

* current pulse of 7-26 MA delivered to load
* controllable pulse shape, rise time 100-1200 ns

* magnetic (J X B) force induces ramped stress
wave in electrode material

* stress wave propagates into ambient material,
de-coupled from magnetic diffusion front

magnetic stress
diffusion wave
front front

A J
S~ Y Y
Joule-heated compressed undisturbed
(plasma/gas/liquid) (solid) (solid)
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Order-of-magnitude improvement in precision over laser-
driven shock techniques (larger spatial/temporal scales)

quartz (or sapphire)
windows (4mm dia)

Al/Cu layered flyer plate
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Concurrently, others began to recognize that SCP’s

could be produced at low densities

Y24 lon traps developed by Dave Wineland’s group at NIST were
capable of creating very low temperature ions

— Penning traps could contain ion species and laser cool to very low
temperatures

— They could also store a significant number of ions, > 10°

* These systems enabled them to create a model OCP system

— Demonstrated Wigner crystallization to BCC lattice through
scattering measurements®
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Dusty plasmas in the lab discovered somewhat by accident*
- — Images were taken of process of making silicon chips
— Discovered dust particles scattering light above the chip
* This led to the development of studying dusty plasmas
— Dust particles in plasma discharge would charge up to high level
— SCP’s created due to very large charge

FIG. |. Schematic of apparatus. A discharge is formed by
capacitively coupled 1f power applicd 1o the lower electrode.
A vacuum vessel, not shown, encloses the electrode assembly.
A cylindrical lens produces a laser sheet in a horizontal plane,
with an adjustable height. The dust cloud is viewed through
the upper ring clectrode.

Rings of dust particles floating above
silicon wafer

* Selwyn, Singh, and Bennett, J. Vac. Sci. Tech. A7, 2758 (1989)
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Dusty plasmas became a field unto itself

'."""-__\,“ /s These dusty plasmas behaved very much as Yukawa systems
— In many cases could be directly compared to MD simulations

* Many interesting and previously difficult to study properties could
be investigated*

— Viscosity, melting, 2D vs 3D systems, ...

— These systems have also been studied a great deal on the space
station, where gravity doesn’t affect the behavior

Image of crystallized dusty plasma

Image of dust acoustic wave

* For example, Barkan, etal., Phys. Of Plasmas, 2, 3563 (1995) and
Thomas, Morfill, Demmel, and Goree, PRL, 73, 652 (1994). ) Sandia National Laboratories




These ultra cold systems were produced for the first time in
1995* and led to the Nobel Prize in 2001

— Began to be studied in several laboratories throughout the world

« Soon (1999) researchers began investigation what happens when
BEC'’s or other cooled atom systems were ionized quickly
through photoexcitation

— Created a new system, ultra cold plasmas with interesting and
surprising characteristics

Trappe
Atoms,~ eman=Slowed Atomic Beam
Plazsma \ Stromtium Ri:st:rV{:Tlir
& A
> °% 4608 50Tmeors
Mﬂgl:"ﬂic ; Photolonizing Beam
Coils

Meutral Atom
Imaging Camera Cooling Beams

* Ensher, Jin, Matthews, Wieman, and Cornell, PRL 77, 4984 (1995)
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Discovered that ions are heated
significantly upon ionization

Creation of ionized plasma from l2———————7——T1—— 17—
gaseous system produces a change I
in the potential energy landscape 1.0 i . . ]
— Produces forces on the ions, 0.8 ‘e " —_—
which respond and heat up & T ¢ ]
— Oscillations occur in the :— 0.6 L ]
temperature as plasma 04l o -
equilibrates I J“
Verified through experimental 0.2 4 7
observation and simulation* Y L A S S S T S
— Saw rapid heating and evidence 66 02 04 06 08 10 12
of oscillitory behavior t [us]
Analogous to non-thermal melting
in solids * Murillo, PRL 96, 165001 (2006).

* Pohl, Pattard, Rost, PRL 94, 205003 (2005).
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* Dusty plasma workshops
— First workshop held at San Diego in 1986

— 14th Workshop being held this month at Auburn University with
over 100 participants

» Ultra cold plasma workshops
— | believe first one held in 2005 at Harvard
— Since been several others
« Eventually development of a subfield, warm dense matter
— Strongly coupled, partially degenerate systems
— Initial seminar held in Vancouver, BC in 1996
— Eight workshops held since then
« SCCS and PNP are still continuing to this day
— 11th strongly coupled conference held in Santa Fe in 2014

— 15t physics of nonideal plasma conference held in Kazakhstan in
2015
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« Many instances where QMD calculations have

provided extraordinarily accurate results for warm

dense matter materials
— Shock physics results*
— Electrical conductivity*®
— Phase transitions

« Have served as a trusted tool when data is
unavailable

— Based on significant success when compared to
data
6 i
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One example of the impact of this work over time is

the recent measurement of the metallization of
gl deuterium

 These experiments were conducted on

Sandia’s Z machine using pulsed power — Cathode
driven technique “wihclow Ancde
— A shock ramp loading technique was = el
used to pressurize liquid deuterium to g Fiber probas Gap
densities near 2 g/cms3. - Al e
— Schematic of the experimental setup is Iroenit plate
shown at right Daibariinm
* Velocity profiles and broadband it sampse
reflectivity is measured as the | oe. '
deuterium is heated and compressed &%
e
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- One example of the impact of this work over time is
\ A\ the recent measurement of the metallization of

85 deuterium*

%]

« The results show a sharp Critical _,
transition to metallic behavior at a | Point
pressure near 300 GPa

— This is higher than predicted by
most QMD calculations

— Dependence of the transition as
function of temperature is also
different than any of the QMD
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* Knudson, etal, Science 348, 1455 (2015).
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* One example is the _ e
understanding electron-ion B Y. S :
equilibration in a dense plasma 1. S
— Amazingly, this has proven very

difficult to measure
experimentally

— MD calculations have now been
done for hydrogen and some
other systems*

* Results likely much more
accurate than an experiment
could test

—
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* Glosli, etal, PRE 78, 025401 (2008). Temperature (eV)
* Dimonte and Daligault, PRL 101, 135001 (2008).
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Interface Mixing:

Fundamental Tests of Hydrodynamics

T

+ Consider a cold interface that separates fuel
(DT) and a plastic ablator (CHO). Energy is

sourced in through the electrons (e.q.,

L

s 5()0

At

parficle beam, radiation).

» Question #1: How does such an interface

ramp
time

evolve subject to different inifial heating rates? R

» Question #2: Are there large electric fields : :

and how long do they laste

25

» Question #3: Are there definife signatures of
non-hydrodynamic behavior?

Current results based on:

N = 11,500,000 particles
Z length = ~0.5 micron
time = ~10 ps, ~10° steps
aspect ratio = 40

{5eV/ps, o}
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“Species Density Evolution: Mixing
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« Sophisticated Simulation techniques are being applied to a
tremendous range of systems

— QMD
— OFMD
— Path Integral MC
« Multiple sub-fields have been developed or enabled
— Dusty plasmas
— Ultracold plasmas
— Warm dense matter
— Pulsed power based dynamic materials work
« Almost none of that was foreseen
— All the work was important

() sancia National Laboratories



