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Brittle Materials Failure Presents A Reliability 
Concern in High Consequence Applications
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Current State: 
Qualitative Stress-Based Predictions

o We Design To Avoid High Stress

o Engineering Judgment Has Deficiencies 

• Limited by practical experience

• Neglects flaws/flaw populations

• Does not incorporate fracture mechanics
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Future State: Quantitative Mechanics-Based
Prediction of Brittle Failure & Reliability
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Sandia Has A Research & Development Program 
That Addresses The Gaps To Predict Brittle Failure

Vision

 Transition from Qualitative stress-based engineering judgment to 
Quantitative mechanics-based failure prediction.

Approach

 Develop foundational materials characterization & modeling S&T in:

1) Stress/Loading – physically-based models, materials & processing data, & model validation

2) Fracture Mechanics - crack initiation & propagation, and statistical bounds & variability

3) Structure/Properties – understand & control of process-structure-property relations
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Coordinated Stress, Fracture, & Structure/Props 
Experiments & Modeling Are Being Conducted

Current State: Qualitative stress-
based failure analysis 

(engineering judgment)

Vision: Quantitative
mechanics-based failure & 

reliability prediction

Micro- to Continuum-
Scale Stress 

Characterization & 
Modeling

. 

Microstructure & 
Property 

Characterization & 
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Characterization 
& Modeling Crack 

propagation
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Micro- To Continuum-Scale Stress Mapping Is 
Possible With SEM/EBSD And PL Spectroscopy
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EBSD map (0.5 m spacing)

PL Spectroscopy grid (2 µm spacing) R2 peak shift
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PL Spectroscopy Was Used To Measure
Stress-Sensitive Cr Emission Band Peak Shifts

Photoluminescence (PL) Spectroscopy

Equipment
 Horiba Labram HR Raman Spectrometer 

 532 nm, 15 mW Laser

 Confocal microscope

Measurement
 Peaks shift due to stress, temperature,      

& Cr concentration

 Crystal orientation dependent signal 

 R1 – R2 separation variation provides 
additional stress-state information

 Peak width provides stress-state 
information

 Ar line corrected instrument drift



A State-Of-The-Art PL Spectroscopy Capability 
Has Been Developed To Map Multi-Scale Stress

R2 peak

R1 peak
Ar peak

• R1 & R2 fluorescence peaks (positions, 
widths, and separations) are best fit 
with a Lorentzian or pseudo-Voigt fit

• The Ar peak is best fit with a Gaussian 
fit

Map mm2 areas using thousands of spectra with micrometer-scale spatial resolution 
 Focused laser beam for micro-scale spatial resolution
 Determine stress sensitive R1 (~694.24 nm) and R2 (~692.84 nm) Ruby (Al2O3:Cr3+) PL bands
 Automated specimen repositioning and spectra acquisition
 Process thousands of spectra in minutes (MATLAB, GRAMS, & LABSPEC)

Wavelength resolution and stability to resolve peak shits to 0.001 nm (~3MPa)
 Instrument drift corrected to Ar lamp emission line NIST reference (696.5431 nm)
 Temperature stable to 0.1C (0.0007 nm peak shift) and temperature corrected
 Working to correct for Cr concentration (1 wt.% Cr – 4.8 nm peak shift)

10 Johnson & Tallant
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Converting Peak Shifts to Stress

if	Π�� = Π�� = Π�	and	Π�� = Π� 	this	can	be	put	in	the	form	

C. A. Michaels, R. F. Cook, “Determination of residual stress distributions in polycrystalline 
alumina using fluorescence microscopy” Materials and Design, 107, (2016), 478-490
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• Sputtered ~100nm of glass on polished surface 
of single crystals (Eagle glass from corning)

• Crystals were then placed glass side together on 
alumina boat

• Crystals were heated to 1600C at 20C/min and 
held for 1 hr followed by air cool in furnace

Bi-crystal samples for Spectroscopic stress 
measurement

Successfully bonded Bi-crystals:

• C-plane to C-plane, rotated 30

• A-plane to C-plane

• A-plane to M-plane

500 µm

Sapphire 
Single Crystal #1

Sapphire 
Single Crystal #2
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Stress results, compare to FE

 σM calculated from PL data 
has same shape as that from 
FE model

 There is currently a scaling 
uncertainty
 What temperature change 

should be applied in FE model?

 This plot uses Δ�=1600 oC but 
glass layer doesn’t support 
stress for high temperatures

 Currently only using linear, 
room temperature CTE values
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Microstructural Meshing REAL microstructures

 Generated microstructures are 
often insufficient for model 
validation with experiments

 Equivalent microstructures is 
vaguely defined, in order to do 
first order model validation 
need microstructure upon 
which experiments performed 
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EBSD map aligned with 
experiment mapped for stress



Meshing Schemes

 Multiple commercial and open source meshing software's 
available

 Common issue is number of elements to capture 
microstructure can become extremely large

 Fall into two basic categories
 Point-by-point, or element for every pixel/data point

 Cubit  Sculpt, MOOSE EBSD/Image reader, etc

 Software that enables input from multiple data sources 

 OOF2/3D,  Avizo, etc
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Comparisons of Meshing Schemes

Element per point OOF2

Nelements 44274 18090

Nnodes 43836 27987
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Significant reduction in computational power for OOF2 meshes



Have your mesh now what?

 Need material properties, 
including anisotropy

 Need to be able to rotate elasticity 
and other tensor properties by 
orientation

 MOOSE is great option for 
adaptive rapid development
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Model Set up
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elastic constants
S11= 497 GPa S33= 501 GPa
S44= 147 GPa S12= 163 GPa
S13= 116 GPa S14= -22  Gpa

- Goto et. al. Journal of Geophysical 
Research, 1989 

Coefficients of thermal 
expansion

α11 = 7.3e-06 1/C
α33 = 8.2e-06 1/C

ΔT=1500C
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2.45

2.45

4.48

0

σm (GPa)



Comparison to Experiment
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Grain σm (MPa)

1 49

2 206

3 -52

General Agreement-need to refine 
for resolution and 2D-3D reality

1
2
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Experimentally-Informed Microstructure Modeling 
Capability Is Being Developed To Predict Stress

Al2O3 – Kovar Brazed Sample

19.5 mm

Spectroscopic peak shift

Resultant stress calculation

Measurement Grid 3000 µm x 200 µm (10 µm spacing) 

Measured area

PL spectroscopy used for micro- to 
continuum-scale stress measurement 

FE simulation of micro-scale stress & 
variation in a brittle material microstructure

1.29 1.96(GPa)

1 µm

Predicted stress

Von-Mises Stress

-100 1000
(MPa)

20 µm

Al2O3

Kovar

EBSD map ofAl2O3SEM of Al2O3
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Stress map of Al2O3

EBSD map of polycrystalline Si

Applied Tension

Buchheit, Teague, Johnson, Tallant, Meserole, & Tandon



Conclusions 

 Photo-luminesicne spectroscopy mapping is promising 
technique for enabeling validation of stress at critical 
microstructural level

 Ease/speed of experiments enables large areas to be 
measured

 Microstructure meshing and modeling are primed to take 
advantage of this new data to enable mechanistic based 
models of brittle failure
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Future Work 

 Perform external loading experiments on single crystals

 Perform loading experiments on tested microstructures and 
compare

 Move to more complicated microstructures

 Study interaction of loading and microstructure 
defects/properties 

 Improve models with experimental validation
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Questions
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Converting Peak Shifts to 
Stress

if	Π�� = Π�� = Π�	and	Π�� = Π� 	this	can	be	put	in	the	form	

C. A. Michaels, R. F. Cook, “Determination of residual stress distributions in polycrystalline 
alumina using fluorescence microscopy” Materials and Design, 107, (2016), 478-490
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