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Overview of Sierra-SD Structural @&
Acoustic Capabilities

= Massively parallel

= Hex, wedge, tet acoustic elements (up to order p=6),
coupled with both 3D and 2D (shell) structural elements

= Linear and nonlinear acoustics
= Allows for mismatched acoustic/solid meshes

= Mortar or multi-point constraints (MPC)’s
= |nfinite elements and Perfectly Matched Layers (PML)
= Solution procedures:

= Frequency response (frequency-domain)

= Transient (time-domain)

= Eigenvalue (modal) analysis

" Linear and quadratic (complex modes)



Structural Acoustic Equations of

Motion
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Time domain
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solid mechanics
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Frequency domain (Helmholtz)
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Discretized Equations of Motion

= Fully coupled time domain formulation
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= Fully coupled eigenanalysis formulation
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= Fully coupled frequency-domain formulation
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Research Areas in Acoustics Sierra-S D &z.

= On-going research areas in Sierra-SD-acoustics
= Nonlinear acoustics
" |nfinite elements and Perfectly Matched Layers (PML)
= High order (‘p’) finite elements

= |nverse problems

= Upcoming research and development areas
= Cavitating acoustic finite elements
= Lighthill’s acoustic analogy

= Coupling with nonlinear solver (Sierra-SM)




Why Nonlinear Acoustics? QN

Linear acoustics is inadequate for
many applications

Structural
model

s /

Acoustic fluid
model

*‘Resonating cavities
-Large-amplitude sources
*Far-field of explosions
*Aeroacoustic noise

Assumptions of Linear Acoustic Conseqguences

Theory
= Resonance leads to infinite
= Small amplitude waves amplitude waves

= Linear constitutive fluid model ‘ = “Sine wave remains a sine wave”
= No fluid convection = No wave distortion
=  Wavespeed independent of stress
state in fluid
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Eulerian Formulations for Nonlinear

Acoustics
= The linear acoustic wave equation
|
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= High order nonlinear acoustic equation
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Far-Field Acoustics )

Common Requirement:
far-field boundary
conditions for finite
element analysis

Structural
model

*Infinite Elements

L *Perfectly Matched Layers
// (PML)
Acoustic fluid microphone: |
model e compute far-field

response




Comparison of Infinite Elements and .
PML

Infinite Elements PML

= Time and frequency domain e Originally restricted to
formulations are identical (same frequency domain solutions
matrices) e \Works on arbitrarily shaped

= Restricted to homogeneous convex domains (with corners)
media on ellipsoidal domains e Can also absorb evanescent

= Built-in capability for computing waves, and in some cases works
far-field pressures (outside of on heterogeneous domains
acoustic mesh) e No capability for computing far-

field pressure



Infinite Element Formulation

Acoustic wave equation for fluid

Structural 2
model C 3
L D _o(x,r)  Tx[0.T]
0 on
a Weak formulation on exterior domain

Acoustic fluid

j iz;qu+ j VpeVgdl = qudS
model a ¢ Q r

Q Trial and weight functions
¢(X, (()) = P(x)e—ikﬂ(x) q= D(x)P(x)eiky(x)
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Overview of PML )=,

WTF4

= Undamped solution of wave equation: e’

= this wave will propagate indefinitely in the x direction

= Complex Coordinate System:
= £ = a(x) +ib(x)
= Wave Equation becomes:

= kT _ ei(—ka(m)—l—ikb(m)) _ e—kb(m)eika(m)

= Damped Wave Equation
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WTF4 | would just set a(x) = x
Walsh, Timothy Francis, 7/24/2014



General Formulation for PML =,
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Helmholtz equation over —Ap _ k2p —0
complex coordinates

Weak form over ~ ~ 9 B
complex coordinates /QI (Vp, Vq) — kpq dfir = /fs gqdS

back to real

Mapped weak form /
coordinates =
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I's

Re-write as Helmholtz A(Vp,V§) — k> Jpg dQ = / gqdls
equation with variable Q7 I
coefficients




Results: 10-to-1 Prolate Spheroid = @&
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Inverse Problems - Motivation

Forward Solver

Material properties I
Displacement
Geometry P

o Pressure
Boundary conditions Temperature
Loads I i VS Flow field
Residual stresses etc

etc

— State Variables
System parameters < —
(outputs)

Experimental data + inverse solution = missing link!




Abstract Optimization Formulation @&

minimize  J(w.p) ~ Objective function
Abstract u.p | |
optimization subject to  g(u,p) =0 . PDE constraint
formulation | _
Llu.p.w):=J+wlg . Lagrangian
(L, Ju+ gL w . o
{ Ly =2 Jy+glw p ={0} | First order optimality
| Lo g . conditions
(Lo Loup gl ou J,
Low Lpp gi|0py=-11, Newton iteration
Lo o 01 \w ) . 9 )
WAp=—J

Hessian calculation
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Inverse Problems: Acoustic Cloaking

2-D fluid region with circular VE solid inclusion

Inclusion consists of concentric rings w/ distinct material properties

Periodic acoustic load applied to end

Match forward problem pressure distribution by adjusting VE material parameters
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Left: Model Set up

Right: Forward problem pressure alstrlsutlon 2500 Hz |oaa|ng; in moae| W|tH 50 |ayers




Acoustic Cloaking ) e,

- Optimized VE foams allow recovery of desired pressure distribution

Forward Initial Guess Optimized

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)
Right: Pressure distribution after convergence to optimized design



Acoustic Cloaking ) o,

Laboratories

- Optimized VE foams allow recovery of desired forward pressure

distribution
- Top : Acoustic pressure from forward analysis
- Bottom : Acoustic pressure around optimized solid inclusion
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Conclusions ) 2=,

= Massively parallel finite element structural acoustics capability
Sierra-SD has been developed for large-scale analysis

= Applicable to large-scale models with many degrees of
freedom.

= Sierra-SD and optimization codes have been loosely coupled
for the solution of source and material inversion problems.

= Capability has been applied to a variety of problems inside and
outside of Sandia




