

Structural Acoustic Modeling Capabilities in Sierra-SD

Timothy Walsh

Sandia National Laboratories

Overview of Sierra-SD Structural Acoustic Capabilities

- Massively parallel
- Hex, wedge, tet acoustic elements (up to order p=6), coupled with both 3D and 2D (shell) structural elements
- Linear and nonlinear acoustics
- Allows for mismatched acoustic/solid meshes
 - Mortar or multi-point constraints (MPC)'s
- Infinite elements and Perfectly Matched Layers (PML)
- Solution procedures:
 - Frequency response (frequency-domain)
 - Transient (time-domain)
 - Eigenvalue (modal) analysis
 - Linear and quadratic (complex modes)

Structural Acoustic Equations of Motion

acoustics

$$\nabla^2 \phi = \frac{1}{c^2} \ddot{\phi}, \text{ in } \Omega_f \times (0, T)$$

$$\nabla \phi \cdot \boldsymbol{n}_f = -\rho_f \ddot{u}_n, \text{ on } \partial \Omega_f^N \times [0, T]$$

$$\phi = 0, \text{ on } \partial \Omega_f^D \times [0, T]$$

$$\phi(0, T) = 0, \text{ in } \Omega_f$$

$$\dot{\phi}(0, T) = 0, \text{ in } \Omega_f$$

Time domain

$$[M]\boldsymbol{a}(t) + [C]\boldsymbol{v}(t) + [K]\boldsymbol{u}(t) = \boldsymbol{f}(t)$$

solid mechanics

$$abla \cdot \boldsymbol{\sigma} = \boldsymbol{\rho} \, \ddot{\boldsymbol{u}}, \quad \text{in } \Omega \times (0, T)$$
 $\boldsymbol{\sigma} \boldsymbol{n} = \boldsymbol{h}, \quad \text{on } \partial \Omega^N \times [0, T]$
 $\boldsymbol{\sigma} = \boldsymbol{D} : \boldsymbol{\nabla} \boldsymbol{u}, \quad \text{in } \Omega \times [0, T]$
 $\boldsymbol{u} = \boldsymbol{0}, \quad \text{on } \partial \Omega^D \times [0, T]$
 $\boldsymbol{u}(0, T) = \boldsymbol{0}, \quad \text{in } \Omega$
 $\dot{\boldsymbol{u}}(0, T) = \boldsymbol{0}, \quad \text{in } \Omega$

Frequency domain (Helmholtz)

$$[H(\omega)]\mathbf{z}(\omega) = \mathbf{F}(\omega)$$
$$[H(\omega)] = -\omega^2[M] + i\omega[C] + [K]$$

Discretized Equations of Motion

Fully coupled time domain formulation

$$\begin{bmatrix} M_s & 0 \\ 0 & -M_a \end{bmatrix} \begin{bmatrix} \overset{\bullet}{u} \\ \overset{\bullet}{\phi} \end{bmatrix} + \begin{bmatrix} C_s & L^T \\ L & -C_a \end{bmatrix} \begin{bmatrix} \overset{\bullet}{u} \\ \overset{\bullet}{\phi} \end{bmatrix} + \begin{bmatrix} K_s & 0 \\ 0 & -K_a \end{bmatrix} \begin{bmatrix} u \\ \phi \end{bmatrix} = \begin{bmatrix} f_s \\ -f_a \end{bmatrix}$$

Fully coupled eigenanalysis formulation

$$\lambda^{2} \begin{bmatrix} M_{s} & 0 \\ 0 & -M_{a} \end{bmatrix} \begin{bmatrix} u \\ \phi \end{bmatrix} + \lambda \begin{bmatrix} C_{s} & L^{T} \\ L & -C_{a} \end{bmatrix} \begin{bmatrix} u \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} K_{s} & 0 \\ 0 & -K_{a} \end{bmatrix} \begin{bmatrix} u \\ \phi \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Fully coupled frequency-domain formulation

$$-\omega^{2}\begin{bmatrix} M_{s} & 0 \\ 0 & -M_{a} \end{bmatrix} \begin{bmatrix} u \\ \phi \end{bmatrix} + i\omega \begin{bmatrix} C_{s} & L^{T} \\ L & -C_{a} \end{bmatrix} \begin{bmatrix} u \\ \phi \end{bmatrix} + \begin{bmatrix} K_{s} & 0 \\ 0 & -K_{a} \end{bmatrix} \begin{bmatrix} u \\ \phi \end{bmatrix} = \begin{bmatrix} f_{s} \\ -f_{a} \end{bmatrix}$$

Research Areas in Acoustics Sierra-S National Laboratories

- On-going research areas in Sierra-SD-acoustics
 - Nonlinear acoustics
 - Infinite elements and Perfectly Matched Layers (PML)
 - High order ('p') finite elements
 - Inverse problems
- Upcoming research and development areas
 - Cavitating acoustic finite elements
 - Lighthill's acoustic analogy
 - Coupling with nonlinear solver (Sierra-SM)

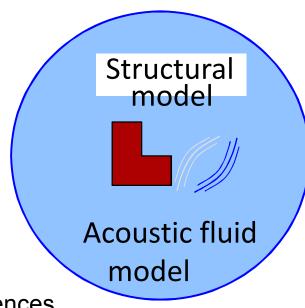
Why Nonlinear Acoustics?

Linear acoustics is inadequate for many applications

- Resonating cavities
- Large-amplitude sources
- Far-field of explosions
- Aeroacoustic noise

<u>Assumptions of Linear Acoustic</u> <u>Theory</u>

- Small amplitude waves
- Linear constitutive fluid model
- No fluid convection



<u>Consequences</u>

- Resonance leads to infinite amplitude waves
- "Sine wave remains a sine wave"
- No wave distortion
- Wavespeed independent of stress state in fluid

Eulerian Formulations for Nonlinear Acoustics

The linear acoustic wave equation

$$\frac{1}{c^2}\phi_{tt} - \Delta\phi = 0$$

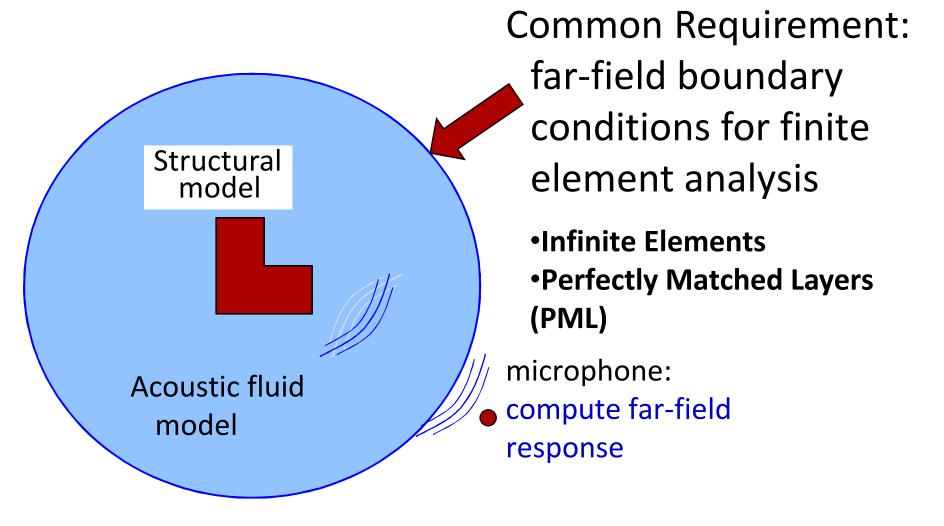
The 2nd order Kuznetsov Equation

$$\left| \frac{1}{c^2} \phi_{tt} - \Delta \phi + \frac{1}{c^2} \frac{\partial}{\partial t} \right| (\nabla \phi)^2 + \frac{B/A}{2c^2} \left(\frac{\partial \phi}{\partial t} \right)^2 + b \nabla^2 \phi \right| = 0$$

High order nonlinear acoustic equation

$$\frac{1}{c^2}\phi_{tt} - \Delta\phi + \frac{1}{c^2}\frac{\partial}{\partial t}\left[(\nabla\phi)^2 + b\nabla^2\phi\right] + \frac{1}{2c^2}\nabla\psi \bullet \nabla(\nabla\phi)^2 + \frac{\gamma - 1}{c^2}\left(\frac{\partial\psi}{\partial t} + \frac{1}{2}(\nabla\phi)^2\right)\Delta\psi = 0$$

Far-Field Acoustics



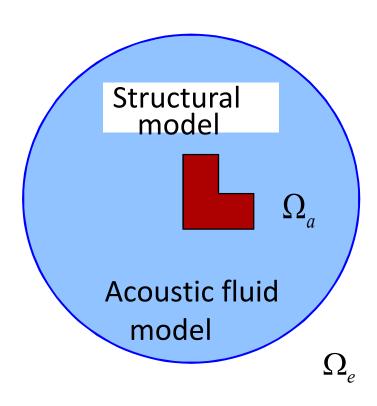
Infinite Elements

- Time and frequency domain formulations are identical (same matrices)
- Restricted to homogeneous media on ellipsoidal domains
- Built-in capability for computing far-field pressures (outside of acoustic mesh)

PML

- Originally restricted to frequency domain solutions
- Works on arbitrarily shaped convex domains (with corners)
- Can also absorb evanescent waves, and in some cases works on heterogeneous domains
- No capability for computing farfield pressure

Infinite Element Formulation



$$\Omega = \Omega_a + \Omega_e$$

Acoustic wave equation for fluid

$$\frac{1}{c^2} p_{tt} - \Delta p = 0 \ \Omega x [0, T]$$
$$\frac{\partial p}{\partial n} = g(x, t) \quad \Gamma x [0, T]$$

Weak formulation on exterior domain

$$\int_{\Omega} \frac{1}{c^2} p \, q \, dV + \int_{\Omega} \nabla p \cdot \nabla q \, dV = \int_{\Gamma} g q \, dS$$

Trial and weight functions

$$\phi(x,\omega) = P(x)e^{-ik\mu(x)} \qquad q = D(x)P(x)e^{ik\mu(x)}$$
$$(-\omega^2 M + i\omega C + K)p = f$$

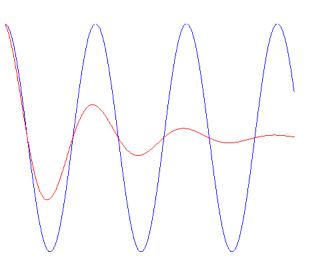
Overview of PML

WTF4

- ullet Undamped solution of wave equation: e^{ikx}
 - this wave will propagate indefinitely in the x direction
- Complex Coordinate System:

$$\tilde{x} = a(x) + ib(x)$$

- Wave Equation becomes:
 - $e^{ik\tilde{x}} = e^{i(-ka(x)+ikb(x))} = e^{-kb(x)}e^{ika(x)}$
 - Damped Wave Equation



Slide 11

I would just set a(x) = x Walsh, Timothy Francis, 7/24/2014 WTF4

General Formulation for PML

Complex coordinate stretching

$$\tilde{x} = x - \frac{i}{\omega} \int_{x}^{a} \sigma(\xi) d\xi \quad a < x < \bar{a}$$

Helmholtz equation over complex coordinates

$$-\tilde{\Delta}p - k^2p = 0$$

Weak form over complex coordinates

$$\int_{\tilde{\Omega}_I} \langle \tilde{\nabla} p, \tilde{\nabla} q \rangle - k^2 p q \ d\Omega_I = \int_{\tilde{\Gamma}_S} g q dS$$

Mapped weak form back to real coordinates

$$\int_{\Omega_I} \left[(\boldsymbol{J}^{-1} \nabla p) \cdot (\boldsymbol{J}^{-1} \nabla q) - k^2 pq \right] J(x, y, z) d\Omega_I = \int_{\Gamma_S} gq dS$$

Re-write as Helmholtz equation with variable coefficients

$$\int_{\Omega_I} \tilde{A} \langle \nabla p, \nabla \bar{q} \rangle - k^2 \tilde{J} p \bar{q} \ d\Omega_I = \int_{\Gamma_S} g \bar{q} d\Gamma_S$$
$$\tilde{A} = \tilde{J} \tilde{J}^{-1} \tilde{J}^{-T}$$

Results: 10-to-1 Prolate Spheroid

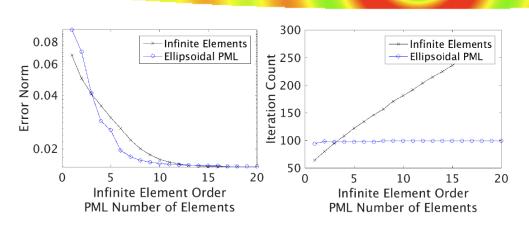
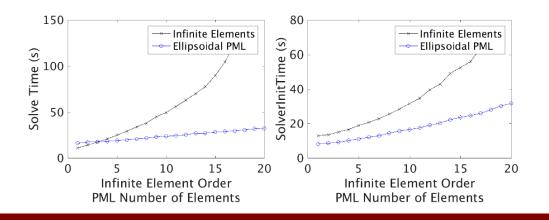


Figure 9: Comparison Between IE and PML (100 Hz)



For a fixed level of accuracy

- PML required many less iterations than infinite elements
- PML solution times were much faster
- In frequency domain, PML is clear winner over infinite elements

Inverse Problems - Motivation

Forward Solver

Material properties

Geometry

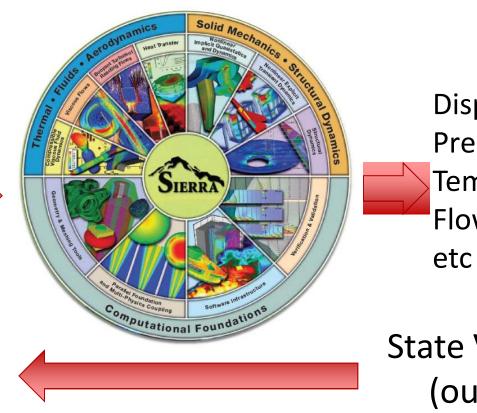
Boundary conditions

Loads

Residual stresses

etc

System parameters



Displacement
Pressure
Temperature
Flow field

State Variables (outputs)

Experimental data + inverse solution = missing link!

Abstract Optimization Formulation

Abstract optimization formulation

$$\underset{\boldsymbol{u},\boldsymbol{p}}{\text{minimize}} \quad J(\boldsymbol{u},\boldsymbol{p})$$

subject to
$$g(u, p) = 0$$

$$\mathcal{L}(\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{w}) := J + \boldsymbol{w}^T \boldsymbol{g}$$

PDE constraint

Lagrangian

$$egin{dcases} \mathcal{L}_u \ \mathcal{L}_p \ \mathcal{L}_w \end{pmatrix} = egin{dcases} J_u + oldsymbol{g}_u^T w \ J_p + oldsymbol{g}_p^T w \ g \end{pmatrix} = \{0\}$$

$$egin{bmatrix} \mathcal{L}_{uu} & \mathcal{L}_{up} & oldsymbol{g}_u^T \ \mathcal{L}_{pu} & \mathcal{L}_{pp} & oldsymbol{g}_p^T \ oldsymbol{g}_u & oldsymbol{g}_p & 0 \end{bmatrix} egin{bmatrix} \delta oldsymbol{u} \ \delta oldsymbol{p} \ oldsymbol{w}^{\star} \end{pmatrix} = - egin{bmatrix} J_u \ J_p \ oldsymbol{g} \end{pmatrix}$$

Newton iteration

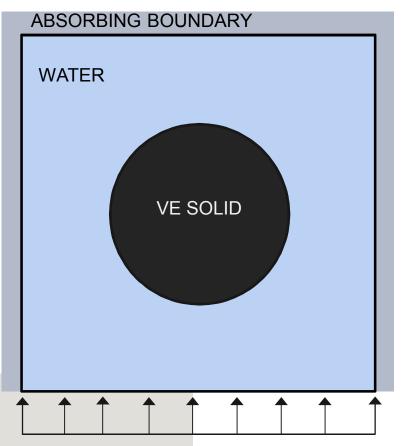
$$\mathbf{W}\Delta\mathbf{p} = -\hat{J}',$$

$$oldsymbol{W} = oldsymbol{g}_p^T oldsymbol{g}_u^{-T} (\mathcal{L}_{uu} oldsymbol{g}_u^{-1} oldsymbol{g}_p - \mathcal{L}_{up}) - \mathcal{L}_{pu} oldsymbol{g}_u^{-1} oldsymbol{g}_p + \mathcal{L}_{pp}$$

Hessian calculation

Inverse Problems: Acoustic Cloaking

- 2-D fluid region with circular VE solid inclusion
- Inclusion consists of concentric rings w/ distinct material properties
- Periodic acoustic load applied to end
- Match forward problem pressure distribution by adjusting **VE material parameters**



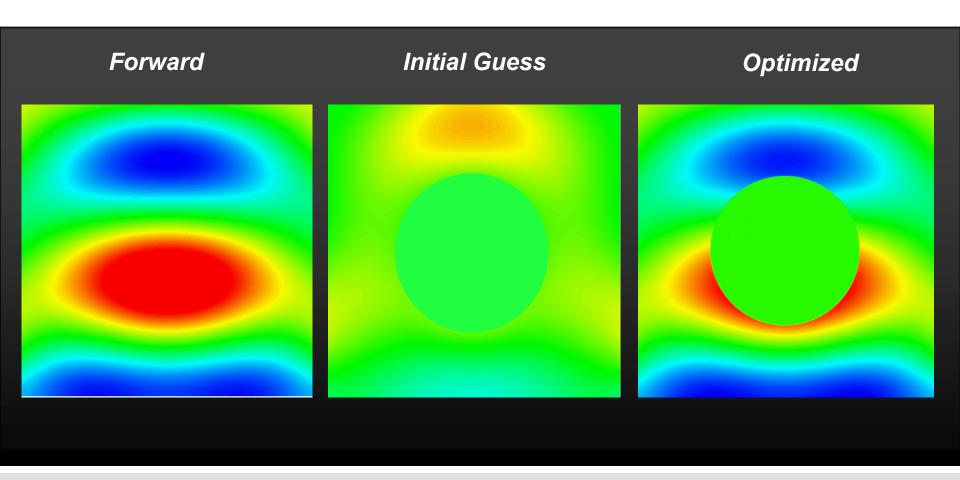


Left: Model Set up

Right: Forward problem pressure distribution (500 Hz loading) in model with 50 layers

Acoustic Cloaking

Optimized VE foams allow recovery of desired pressure distribution



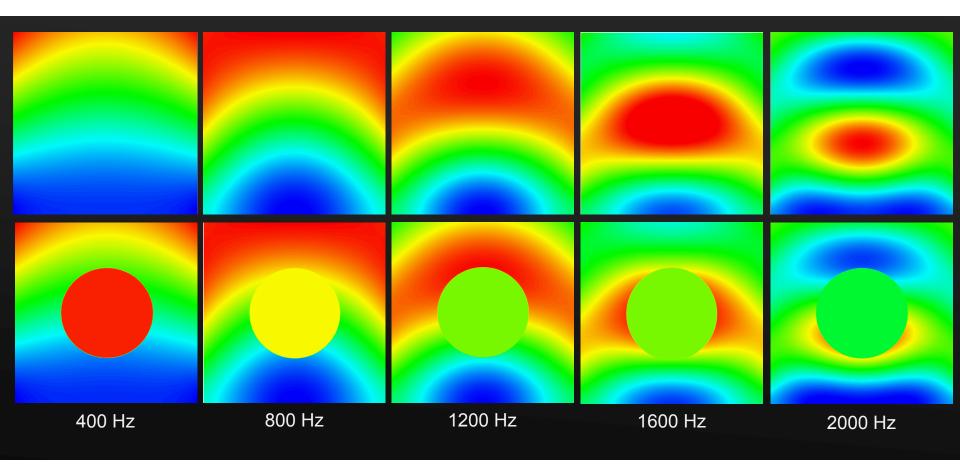
Left: Target acoustic pressure distribution, from forward problem

Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)

Right: Pressure distribution after convergence to optimized design

Acoustic Cloaking

- Optimized VE foams allow recovery of desired forward pressure distribution
 - **Top**: Acoustic pressure from forward analysis
 - Bottom: Acoustic pressure around optimized solid inclusion



Conclusions

- Massively parallel finite element structural acoustics capability
 Sierra-SD has been developed for large-scale analysis
- Applicable to large-scale models with many degrees of freedom.
- Sierra-SD and optimization codes have been loosely coupled for the solution of source and material inversion problems.
- Capability has been applied to a variety of problems inside and outside of Sandia