
An Overview of Performance Portability in the
Uintah Runtime System Through the Use of Kokkos

Daniel Sunderland ∗, Brad Peterson †, John Schmidt‡, Alan Humphrey§, Jeremy Thornock¶, Martin Berzins‖
∗Sandia National Laboratories, Albuquerque, NM 87175 USA

† ‡§‖Scientific Computing and Imaging Institute, ¶Institute for Clean and Secure Energy
University of Utah, Salt Lake City Ut 84112

Email: ∗ dsunder@sandia.gov, † bpeterson@sci.utah.edu, ‡ jas@sci.utah.edu, § ahumphrey@sci.utah.edu,
¶ Jeremy.thornock@utah.edu , ‖ mb@sci.utah.edu

Abstract—The current diversity in nodal parallel computer
architectures is seen in machines based upon multicore CPUs,
GPUs and the Intel Xeon Phi’s. A class of approaches for
enabling scalability of complex applications on such architectures
is based upon Asynchronous Many Task software architectures
such as that in the Uintah framework used for the parallel
solution of solid and fluid mechanics problems. Uintah has both
an applications layer with its own programming model and a
separate runtime system. While Uintah scales well today, it is
necessary to address nodal performance portability in order
for it to continue to do. Incrementally modifying Uintah to use
the Kokkos performance portability library through prototyping
experiments results in improved kernel performance by more
than a factor of two.

Index Terms—Uintah, Kokkos, hybrid parallelism, perfor-
mance portability

I. INTRODUCTION

A current trend in large scale computing is towards larger
core counts per compute node. Whether this is through the use
of GPUs, Xeon Phis or through standard/lightweight cores.
One software approach that helps in the scaling of complex
applications codes on such diverse architectures is based upon
an Asynchronous Many Task (AMT) approach in which tasks
are dynamically executed as soon as their dependencies are
met, as in Charm++, Legion and Uintah, see [1], and many
other codes under development.

The Uintah software (http://www.uintah.utah.edu) [4] en-
forces separation between the applications’ tasks and the
runtime system which executes them. This allows applications
developers to focus on writing tasks for discretizing the
partial differential equations of solid and fluid mechanics
on a local set of block-structured, adaptive mesh patches.
When the runtime system executes the applications’ task it
resolves details such as automatic MPI message generation,
management of halo information (ghost cells) and the life
cycle of data variables, and other details. Uintah currently
scales complex applications on a variety of CPU core based
architectures up to about 700K cores. However a challenge of
porting over 1M lines of highly templated C++ to either GPU
or Xeon Phi architectures means that Uintah needs to use is
to use a performance portability layer based upon a many-
core parallel programming model (see [3]), such as OpenMP,

OpenACC, RAJA, Kokkos or OpenCL. In this work we have
chosen to use Kokkos [2] as it fits most easily with the
underlying code philosophy of Uintah. In using Kokkos it is
necessary to rewrite tasks into a form that allows Kokkos to
map the computation and data in the most appropriate way to
achieve performance on the target architecture. Kokkos does
this mapping at compile time through use of C++ template
meta programming. The challenge in using Kokkos in Uintah
is that both the user code through modified loop structures and
the data warehouse through changed data structures must be
refactored. The aim of this paper is to show how the Uintah’s
application programming model and its runtime system may
be modified to use the Kokkos performance portability layer.
Results from experiments demonstrate that Uintah applications
kernels rewritten to conform to the Kokkos programming
model improves in performance, with result seen up to a factor
of at least two. This paper is a shortened form of a more
detailed technical report [6].

II. UINTAH AND ARCHES OVERVIEW

Uintah is used to solve problems involving fluids, solids,
combined fluid-structure interaction problems, and turbulent
combustion on multi-core and accelerator based supercom-
puter architectures. As described in [4] and the references
therein, problems are either initially laid out on a structured
grid as shown in with the multi-material ICE code for both
low and high-speed compressible flows, or by using particles
on that grid with the multi-material, particle-based code MPM
for structural mechanics or by combining the two in the fluid-
structure interaction (FSI) algorithm MPM-ICE. The ARCHES
turbulent reacting CFD component [5] is designed for simulat-
ing turbulent reacting flows with participating media radiation.

Simulation data is managed by a distributed data store
known as a Data Warehouse, an object containing metadata
for simulation variables. The metadata indicates the patches
on which specific variable data resides, halo depth or number
of ghost cell layers, a pointer to the actual data, and the data
type (node-centered, face-centered, etc.). Access to simulation
data in the Data Warehouse is through a simple get and
put interface. During a given time step, there are two Data
Warehouses available to the simulation, 1.) the Old Data
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Warehouse contains all data from the previous time step, and
2.) the New Data Warehouse maintains variables to be initially
computed or subsequently modified. At the end of a time step,
the New Data Warehouse is moved to the Old Data Warehouse,
and another New Data Warehouse is created. In the case of
on-node GPUs, Data Warehouses specific to GPUs are used.

Parallelism within Uintah is achieved in three ways by
using: domain decomposition to assign each MPI rank its
own region of the computational domain; task level parallelism
within an MPI rank to allow each task to run independently
on node or thread level parallelism within a node. Uintah
maintains a clear separation between applications code and its
runtime system, and hence the details of the runtime system
are hidden from the application developer. The task developer
must supply entry functions to the task code, and write serial
C++ code for CPU and Xeon Phi tasks and CUDA parallel
code for GPU tasks. This model for CPU, GPU or Xeon Phi
tasks currently requires that three versions of the task code
be maintained. The use of Kokkos enables a move to a single
code and allows users to exploit data parallelism within all
Uintah tasks.

The primary motivation is to extend Uintah to emerging
exascale problems with important commercial ramifications
and benefits for improving coal combustion efficiency. For
example the Arches component is being used to predict
capabilities for a commercial, 1000 MW coal fired boiler.
Given this challenging application, the Kokkos performance
and portability improvements will be illustrated through the
Arches component.

Arches is a finite volume combustion code that has been
developed over a number of years [5]. The use of the Large
Eddy Simulation (LES) approach of Arches has potential to be
an important design and prediction tool. The approach used in
Arches is that of a structured, high order finite-volume mass,
momentum, energy conservation discretization method for the
gas and solid phase with combustion.

III. KOKKOS

Kokkos is a C++11 library for implementing portable
thread-parallel codes on various HPC architectures [2]. Kokkos
is used to optimize single-node performance, since most HPC
codes already have strategies to optimize their intra-node
performance. It currently supports CPU, GPU, Intel Xeon Phi
and IBM Power 8 architectures. The (open) source code is
available at https://github.com/kokkos/kokkos.

Kokkos allows users’ to encapsulate their code into com-
putational kernels, and uses template meta-programming to
optimize their kernels at compile time for the given device.
Kokkos is able to optimize users kernels because it requires
them to conform to abstractions provided by the Kokkos API.
The main abstractions within Kokkos are Parallel Patterns,
Execution Space, Execution Policy, Views, Memory Space,
Memory Layout and Memory Traits.

The user can specify a kernel which only uses a subset of
these abstractions, and the others will default to optimal values
for the current device. The Parallel Pattern describe what type

Fig. 1. Modified Uintah Programming Model

of kernel the user wishes to execute be it a parallel for, par-
allel reduce or parallel scan. The Execution Space informs
the compiler about where the kernel is to be run, i.e., GPU
or CPU cores, and the Execution Policy dictates how a kernel
should be executed in the given Execution Space.

Since most scientific codes store data in multi-dimensional
arrays, Kokkos provides Views, which are light-weight, ref-
erence counted multi-dimensional arrays. Emerging HPC ar-
chitecture have deep memory hierarchies so Kokkos Views
allow the user to specify in which Memory Space the array
exists. Memory Layout dictates how the array is mapped to
memory (row-major, column-major, tiled, etc), and it is critical
for performance that the memory layout is suitable for the
given CPU. GPU or Xeon Phi device as using the wrong
layout can have significant performance penalties. Memory
Traits provides additional information about how the views
are allocated or used and can enable other compile-time
optimizations. By using views, Kokkos is able to separate the
data locality and layout from the computational code. Kokkos
is then able to select the best memory layout and execution
policy at compile time for the given architecture.

To use Kokkos a user identifies a parallelizable kernel of
computation and data. A user can used C++11 lambdas or cre-
ate function objects (functors) to encapsulate a kernel. Kokkos
then maps the computations onto cores and the data onto
memory using the execution and memory spaces. The user
is responsible for writing thread-scalable, high-performance
kernels. Carefully written kernels can obtain portable SIMD
auto vectorization, as is shown in Section V.

IV. MODIFYING UINTAH TO USE KOKKOS

Uintah, like many HPC codes, has a large legacy code base
with limited support and development resources. To refactor
Uintah to fully utilize Kokkos kernels is a substantial effort.
Most of the work involves refactoring loops into parallel
kernels and converting existing array data types into Kokkos
views. Figure 1 shows how Uintah is modified overall to
use Kokkos at both the data warehouse and user task level.
It is desirable to do this refactor incrementally. Also, when
refactoring Uintah component codes we have been able to
take advantage of new and experimental, but planned future



Kokkos features. For example we have used an experimental
planned Kokkos parallel three-level loop for the final example
in Section V.

When replacing the array data used by Uintah with Kokkos
views. the runtime system needs to be extended to return
Kokkos views in place of the current Uintah array data
structures. Using the Unmanaged memory trait, the runtime
system can wrap the existing data structures with Kokkos
unmanaged views. Unmanaged views do not include refer-
ence counting, and must be supplied a layout and memory
space. Unmanaged views allow codes to incrementally adopt
Kokkos APIs without requiring a massive upfront rewrite. The
runtime system and component codes can then incrementally
track down instances where non-view APIs are being used
to refactor them individually to remove the assumptions that
make them incompatible with pure Kokkos views. After these
incompatibilities are removed the code should then be portable
to other architectures.

However, codes which use unmanaged views are not
portable to different devices, so the user must incrementally
verify the portability of kernels to other devices without wait-
ing for the entire code base to be refactored. This is achieved
here by extracting kernels into stand-alone executables with
mock inputs. The kernels can then be compiled for various
devices and optimized to run better on those devices. When
doing this for a diffusion kernel within ARCHES, we were
able to obtain good SIMD vectorization on CPUs and better
caching effects on GPUs.

Uintah tasks declare and initialize mesh patch array vari-
ables which are then used within one or more loops throughout
the execution of the task. Using C++11 the loop bodies of the
tasks are encapsulated in lambdas, which are then invoked with
the appropriate parallel pattern. The loop bodies could also
be extracted into a function object, and then invoked by the
parallel pattern. This entire process is incremental, but allows
for performance and portability verification at each step.

V. RESULTS

Two examples are used to test the performance of the
runtime system using Kokkos on key Uintah algorithms. The
first example is is that of a nonlinear advection scheme and
the second is a 3D loop in the Arches code [5]. In Arches 30-
40% of the code is spent on model evaluation, discretization of
transport and other flow components. Kokkos is a natural fit for
Arches because it is possible to achieve lamda/functorization
of existing code with relatively little work. Fast initial adoption
is very helpful for our engineering developers. This process
is illustrated by the discretization of the simple advection
component using many different, but standard, approaches
such as upwinding and flux limiting. In this case speed-up
measured for a standard upwinding discretization from exist-
ing baseline code against the Kokkos code, using unmanaged
views. The speedup for different patch sizes are shown in Table
I. The upwind and the van Leer flux limiter show significant
speedups over the original Uintah implementation. The van
Leer result speedup is not as large as the upwind result due

to the number of branches (1 versus 5) in the computational
kernel. The significant speedups that are shown are a result of
two complementary changes. These are the use of the Kokkos
parallel for and the improved way in which Kokkos iterates
through the memory space as compared to the original Uintah
implementation and the reimplementation of the computational
kernel to perform better. This example suggests that careful
rewrites of key computational kernels in conjunction with
Kokkos can offer significant performance improvements. In
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Upwind Kokkos Speedup 4.6 10.0 10.7 12.9 12.7
van Leer Kokkos Speedup 2.76 4.05 4.04 5.01 6.37

TABLE I
KOKKOS SPEEDUP ON ARCHES ADVECTION

porting the Arches 3D stencil example we needed a way
to avoid porting the whole of Arches. Using the technique
of creating a simple mock runtime system, we were able to
verify that the diffusion kernel in Arches is portable between
GPU, CPU, and Xeon Phi devices and were able to optimize
to ensure that it used SIMD vectorization. The loop used is
a simple diffusion kernel which amounts to the convolution
of 1D stencils for 3 face centered variables X, Y, Z with
3D stencils of 2 cell centered variables D, phi. The initial
Uintah code for this loop uses Uintah arrays and iterators.
Uintah arrays are indexed with an IntVector representing an
(i, j, k) tuple. Uintah Iterators are initialized with low and
high IntVectors and will iterate over the indicated range in a
column-major order. The initial Uintah code is show in Code
Listing 1. The Uintah framework used the concept of a single
loop iteration with IntVectors as an aid to the development of
the computational algorithms for the application developers.
These techniques were optimized to assist in the development
and debugging of application algorithms. The indirection and
pointer hops that occur in the IntVector and loop traversal are
non-ideal from a performance standpoint, but offer significant
benefits to initial algorithm development. While the benefits of
the Uintah constructs are numerous from an algorithm devel-
opment point of view, the drawbacks to raw performance are
reflected in Table II and show that rewriting the kernels with
the Kokkos constructs and using techniques to promote SIMD
vectorization can offer significant performance improvements.

t y p e d e f I n t V e c t o r IV ;
f o r ( I t e r a t o r i t r ( low , h igh ) ; ! i t r . done ( ) ;++ i t r ) {

IV c=∗ i t r ;
IV xp=c+IV ( 1 , 0 , 0 ) , xm=c+IV (−1 ,0 ,0) ;
IV yp=c+IV ( 0 , 1 , 0 ) , ym=c+IV (0 ,−1 ,0) ;
IV zp=c+IV ( 0 , 0 , 1 ) , zm=c+IV (0 ,0 ,−1) ;

r h s [ c ]+= ax ∗ (X[ xp ]∗ (D[ xp ]+D[ c ] ) ∗ ( p h i [ xp]−p h i [ c ] )
−X[ c ] ∗ (D[ c ] +D[xm ] ) ∗ ( p h i [ c ] −p h i [xm ] ) )

+ay ∗ (Y[ yp ]∗ (D[ yp ]+D[ c ] ) ∗ ( p h i [ yp]−p h i [ c ] )
−Y[ c ] ∗ (D[ c ] +D[ym ] ) ∗ ( p h i [ c ] −p h i [ym ] ) )

+az ∗ (Z [ zp ]∗ (D[ zp ]+D[ c ] ) ∗ ( p h i [ zp]−p h i [ c ] )
−Z [ c ] ∗ (D[ c ] +D[ zm ] ) ∗ ( p h i [ c]−p h i [ zm ] ) ) ;}

Code Listing 1. Uintah 3D Stencil Kernel

There are three step to naively convert a Uintah kernel to
Kokkos. First, the iterators loops are replaced with a parallel
algorithms over the same range. Second, IntVector indexing



is replaced with direct i, j, k lookups. Lastly, Uintah arrays
are wrapped and replaced with unmanaged Kokkos views.
Using unmanaged views allow for an incremental transition to
Kokkos, though to achieve performance portability these views
will need to become managed Kokkos views in the future. The
naive Kokkos loop is shown in Code Listing 2 in [6].
p a r a l l e l f o r ( range , [ = ] ( i n t i , i n t j , r a n g e k range ) {
auto r = subview ( rhs , i , j , ALL ( ) ) ;
auto x0= subview (X, i , j , ALL ( ) ) ;
/ / Other s u b v i e w s f o l l o w s i m i l a r l y

. . . .
p a r a l l e l f o r ( krange , [&] ( i n t k ) {

r ( k ) += ax ∗ ( xp ( k ) ∗ ( dp0 ( k ) +d00 ( k ) ) ∗ ( pp0 ( k )−p00 ( k ) )
− x0 ( k ) ∗ ( d00 ( k ) +dm0 ( k ) ) ∗ ( p00 ( k )−pm0 ( k ) ) )

+ay ∗ ( yp ( k ) ∗ ( d0p ( k ) +d00 ( k ) ) ∗ ( p0p ( k )−p00 ( k ) )
− y0 ( k ) ∗ ( d00 ( k ) +d0m ( k ) ) ∗ ( p00 ( k )−p0m ( k ) ) )

+az ∗ ( z ( k +1) ∗ ( d00 ( k +1)+d00 ( k ) ) ∗ ( p00 ( k +1)−p00 ( k ) )
− z ( k ) ∗ ( d00 ( k ) +d00 ( k−1) ) ∗ ( p00 ( k )−p00 ( k−1) ) ) ;
} ) ; } ) ;

Code Listing 2. SIMD Kokkos 3D Stencil Kernel

Optimizing this kernel as in Codelisting 2 to allow SIMD
auto vectorization requires extracting 1D subviews from the
3D arrays views. The Kokkos subview function creates a new
view from an existing view given ranges of indices, similar
to subview operations on Matlab arrays. Using C++11 auto
we are able to represent these subviews without needing to
know the exact type of view that Kokkos returns, this allows
Kokkos to optimize the resulting view for the given context. It
is important to extract these 1D subviews so that the compiler
knows that we are using a stride-one memory access pattern on
the CPU in the inner loop so that it can correctly identify the
loop as a candidate for vectorization (assuming that the arrays
are laid out in row-major order on the CPU). The inner array is
then implemented with another parallel for loop which only
depends on the kth index. The user is responsible for verifying
that there are no loop carry dependencies in the inner loop. The
speedups of the SIMD kernel over the initial Uintah kernel can
be seen in Table II. These experiments were run on an 16 core
Intel Xeon with a SIMD vector length of 2 yielding an ideal
speedup of 2X of the Kokkos SIMD kernel over the Kokkos
standard kernel. The results in Table II demonstrate that
with careful rewrites of computational kernels with techniques
that promote vectorization, it is possible to achieve the ideal
speedup of 2X (1.8X- 2.3X) for sufficient workloads. We
believe that the caching effects contributed to the speedup
of 2.3X. The speedups over standard Uintah code reflect the
relative inefficiency of that user-friendly code. The CUDA
results shown in the table are present to show that the changes
required to the diffusion kernel to get SIMD vectorization do
not affect the vectorization that CUDA already achieves.

VI. CONCLUSIONS

We have shown how it is possible to introduce the Kokkos
performance portability layer into a sophisticated AMT run-
time in the Uintah software. This involved rethinking the
design of the Uintah nodal data warehouse and changing loops
in the applications model. The initial experiments conducted
show the promise of Kokkos as a means of providing present
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ms x ms x ms x
Serial Uintah 1.06 1.0 8.04 1.0 64.9 1.0

Kokkos 1 core 0.65 1.6 4.30 1.9 36.1 1.8
Serial SIMD 0.31 3.4 2.47 3.3 20.2 3.2

Kokkos 2 cores 0.17 6.4 1.16 6.9 8.94 7.3
4 Threads SIMD 0.08 13 0.58 14 5.27 12
Kokkos 8 cores 0.07 16 0.54 15 4.51 14

16 Threads SIMD 0.04 24 0.31 26 2.54 25
Kokkos 16 cores 0.04 29 0.28 29 3.52 18

32 Threads SIMD 0.02 43 0.16 49 3.42 19

Kokkos GPU 0.09 12 0.21 38 0.61 105
CUDA SIMD 0.09 12 0.21 38 0.63 103

TABLE II
RESULTS ON 3D STENCIL EXAMPLE. 2 SOCKETS/16 CORES/32 THREADS,
AVX, INTEL XEON CPU E5-2660 0 @ 2.20GHZ 32 GB GEFORCE GTX

TITAN X CAPABILITY 5.2, 12 GB

and future performance portability for the Uintah software.
The incorporation of Kokkos on a standard cpu core offers
anywhere from 2X speedups, to upwards to 12X speedups.
The portability features of Kokos enable speedups of up 30x to
50x using multiple cores and threads or GPUs. The process of
adopting Kokkos into the Uintah framework offers an iterative
path forward for improved performance and portability.
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