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DAKOTA

REMINDER: WHAT IS DAKOTA?



http://www.sandia.gov/
http://www.sandia.gov/

SNL Mission: Advanced Science and >

DAKOTA

Engineering for National Security i i,

Laboratories

=  Nuclear Weapons
= Defense Systems and Assessments
= Energy and Climate

= |nternational, Homeland, and
Nuclear Security

Strong research foundations span
many disciplines

Dakota Mission:
To serve Sandia’s mission through state-of-the-art research and robust, usable
software for optimization and uncertainty quantification.

Dakota Team: has balanced strengths in algorithm research, software design
and development, and application deployment and support
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Dakota: Algorithms for Design >

DAKOTA

Exploration and Uncertainty Quantification ()&
= Suite of iterative mathematical and statistical methods that

interface to computational models
= Makes sophisticated parametric exploration

of black-box simulations practical

for a computational response

QOls

design-analyze-test cycle:

= Sensitivity Analysis

= Uncertainty Quantification

= Design Optimization

= Model Calibration model

" Goal: provide scientists and engineers (analysts, designers,
decision makers) richer perspective on model predictions
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Sensitivity Analysis

>

DAKOTA

Sandia
|I1 National
|ahoratories

= Which are the most influential parameters?

" |nterrogate model to assess input/output mapping

= Expose model characteristics, trends, robustness

= Focus resources for data gathering or model/code development

= Screening: reduce variables for UQ or optimization analysis

» Dakota automates common single parameter variations, and
provides richer global sensitivity methods

Xyce model of CMOS7 ViArray

Assess influence of
manufacturing variability on
supply voltage performance
during photocurrent event
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Uncertainty Quantification

|I1 National
Laborataries

= @Given parameter uncertainty, what is the uncertainty in the
model output?
= Mean or median performance of a system
= Qverall variability in model response
* Probability of reaching failure/success (reliability)
= Range/intervals of possible outcomes

» UQ also enables statistical validation metrics

Final Temperature Values

= Device subject to heating, e.g., i (M)

modeled with heat transfer code 45 :
= Uncertainty in composition/ environment o3 i

(thermal conductivity, density, boundary) ?-g T — m

L . a5 b ouncertaint "*

= Make risk-informed decisions about 1 /
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. . . )}
Optimization

Sandia
|I'| National
|ahoratories

= Goal-oriented: find the best performing design or scenario,
subject to constraints
= |dentify system designs with maximal performance
= Determine operational settings to achieve goals
= Minimize cost over system designs/operational settings

= |dentify best/worst case scenarios

= Computational fluid dynamics
code to model F-35
performance

" Find fuel tank shape with
constraints to minimize drag,
yaw while remaining
sufficiently safe and strong
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. . . ] >
Calibration / Parameter Estimation S

Sandia
|"| National
|ahoratories

= Data-driven: find parameter values that maximize
agreement between simulation output and experiment

= Seek agreement with one or more experiments,
or high-fidelity model runs

= Yields: single best set, range, or distribution of parameters most
consistent with data
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L »
Dakota: Distinguishing Strengths >

|I1 National
Laborataries

= Makes sensitivity analysis, optimization, and uncertainty
guantification practical for costly computational models

= Flexible interface to simulation codes: one interface; many
methods

= Combined deterministic/probabilistic analysis

= Continual advanced algorithm R&D to tackle computational
challenges (particularly in SNL’s national security mission)

= Treats non-smooth, discontinuous, multi-modal responses
= Surrogate-based, multi-fidelity, and hybrid methods

= Risk-informed decision-making: epistemic and mixed UQ, rare events, Bayesian

= Scalable parallel computing from desktop to HPC
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»

What Simulations Work with Dakota?

= Applied to many science and engineering domains:
mechanics, structures, shock, fluids, electrical, radiation, bio,
chemistry, climate, infrastructure, etc.

Sandia
|I'| National
|ahoratories

Example simulation codes: radiation

finite element, discrete event, Matlab, Python models il

Helpful simulation characteristics:

~ molecular

Can be run in a non-interactive / batch mode  dynamics
Parameters (inputs) not hard-wired, can be adjusted |
Simulation responses (outputs) can be programmatically i;nmumu!m@w
processed to extract a few key quantities of interest | El

Model is robust to parameter variations
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DAKOTA

DAKOTA AND VERIFICATION
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Supports Overall Simulation Workflow >

DAKOTA
Including Verification and Validation ) S
Enables quantification of R vep— ) sensitivity
margins and uncertainty Abstracton analysis to
(QMU) and design with _ down-select
simulations; analogous to . .
. Mathematical ysical
experiment-based QMU Modeing Modelng Sesian of
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o ] ) .
Dakota Verification Methods )

|I'| National
Laborataries

= Prerequisite: Simulation exposes numerical parameters, e.g.,
= Linear/nonlinear solver tolerances
= Time step or time step control parameters

= Discretization: knob controlling uniform or adaptive refinement;
discrete parameter to select from pre-generated grids

= Solution algorithm/solver choices
= (Validation) Model closures, form, discrete selection

= Relevant Dakota Methods
= Parameter studies
= Sensitivity analysis
= Richardson extrapolation
= Secondarily: UQ, optimization
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L »
Dakota Verification Methods >

|I1 National
Laborataries

Gentered Parameter Study

= Parameter Studies: see effect of varying knobs
= Automate manual parameter variation

.........

= Centered, grid, list

= Sensitivity Analysis: determine critical factors
=  Assess which solution control knobs most affect Qols

= Rank numerical knobs to guide verification studies or to find settings
that meet computational budget

= Uncertainty Quantification
= Generate numerical error bars based on solution technique or settings

= Optimization

= Find mesh quality and solver settings that yield sufficiently resolved
results given a computational budget
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. . >
Richardson Extrapolation

|I'| National
Laborataries

" Basics:

= Specify numerical controls as continuous state variables with initial
values, e.g., char_mesh_size =4.0

= Specify refinement rate, e.g.,r=1.5

= Dakota will evaluate model with a sequence of mesh sizes, e.g.,
4.0,2.7,1.8,1.2, ...

= Algorithm options:
= Estimate order: refine twice and estimate order p from 3 grids

Qol; — Qol
_ tog (o= Qolf)/
P= log (1)

= Converge order: refine until the convergence order estimate stabilizes

= Converge Qol: refine until the response Qol converges
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DAKOTA

APPLICATION EXAMPLES
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Cobra-TF Solution Verification
Progression Problem 6 CTF-only

 |Initial study produced very good agreement with theoretical expectation (h=0.946
compared to 1.0)

* Problem 6 involves spacer grids of unequal spacing (top & bottom different than
interior) requiring meshes characterized by multiple Az values

» Attempts to lump these into a singe Az produced poor orders-of-convergence, eg ~0.7
(see report)

» Asensitivity study of total pressure drop on spacer grid locations showed low
sensitivity, < 0.2%

» Spacer grid locations were shifted to produce meshes characterized by a single Az,
and the solution verification study was repeated

Axial mesh refinement convergence studies for CTF




Cobra-TF Solution Verification

Progression Problem 6 CTF-only: No Spacer Grids

Omit
Spacer
Grids

CTF-only Problem 6, No Grids

Mesh AZ #Axial | Tot. Press.
factor, f (cm) | elements (bar)
0.5 4.160 87 0.68788
0.75 6.240 58 0.68759
1.0 8.225 44 0.68731
1.5 12.479 29 0.68673
2.0 16.450 22 0.68620

Error

Error Model:
P=P+a(Az)
E=P—-P=a(A2)"

b = 0.946

0.07 . "
E=a({dx)™h, & = -1.6336-04, b = G4

0001 |

0.0001 1 10 100

dz

Good agreement with theoretical 1.0

Estimated and theoretical rates consistent: no spacer grids




Cobra-TF Solution Verification

Progression Problem 6 CTF-only: With Spacer Grids*

Spacer
Grids

CTF-only Problem 6, With Grids*

Mesh Az #Axial | Tot. Press.
factor, f (cm) | elements (bar)
0.5 4.036 72 1.16843
0.75 6.054 48 1.1701
1.0 8.072 36 1.17176
1.5 12.108 24 1.17508
2.0 16.144 18 1.17845

* Grid locations were shifted to
produce equal mesh spacing between
all grids.

Error

CI'0010.1 1 10

Error Model:
E=P—-P=a(A2)"
b=1.012

01

E=a(dx)"b, & = 6 583603, b = 1015 -

Good agreement with theoretical 1.0

Estimated and theoretical rates consistent with spacer grids




Cobra-TF Solution Verification
Progression Problem 6 CTF-only: With Spacer Grids*

L3:VUQ.V&V.P8.04 “Percept Capabilities in CASL DAKOTA,” March 2014.

) ) Mesh AV #Axial Tot. Press.
* Grid locations

factor, f (cm) elements (bar)

were
_ 0.5 4,036 72 1.16843
shifted to produce
equal mesh spacing Ui i 48 1.1701
. \ Spacer between all grids. 1.0 8.072 36 1.17176
Grid 1.5 12.108 24 1.17508
Challenge 2.0 16.144 18 1.17845
“ E(t=1.0) = 0.0066 y
i c Model | E=a{dx)*b, A= 6583603, b = TIPS
rror Model:
I B > b
*il_ E=P—-—P=a(Az)
I ,IJi] b=1.012 ” o
pithe Very good agreement with theoretical 1.0

/\ ) 000753 1 10




Fully-Coupled Solution Verification

Progression Problem 6

Progression Problem 6

Error Model:

NA\S

Mesh #Axial Max
factor, f elements Power
0.5 92 21,882
0.75 65 27,907 =
1.0 50 27,909 %
1.25 43 27,966 ,_%
1.5 37 27,995
1.75 35 28,018
2.0 30 28,019

1000

100

10

Each run requires ~600 cpu hours on ORNL's Titan

E = a(f)®, b = 0.842

" FEM Error —+—— !

0.1

EPmax = Pmax — Pmax — a (f)b

1
mesh factor, f

b= 0.842

Degraded order-of-convergence but still usable.

CASL ROund laple, July 14-10, 2014

10



Dakota analyses informed V&V of Ruggedized »

DAKOTA
Instrumentation Package (RIP) model )
Front View

=  System: Assembly of batteries, electronics,
and circuit boards in metal housings

= SIERRA Aria Model: Ensure electronics
remain within operating temperature
range

= 6 Quantities of Interest (Qols):
Temperatures at internal heat sources
= TC1,2,56 are located on the battery housing
= TC3andTC4 are located on electronics
packages
= Dakota used to
= Examine sensitivity to 27 numerical parameters
= Examine sensitivity to 57 model parameters

=  Propagate uncertainty for comparison to
experiment
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Dakota sensitivity studies identified tradeoffs

>

DAKOTA

Laboratories

between Qol variability and simulation time  (f) &%
51121
3961 Temperature variability can be

reduced by setting the max time
step to 50 or below without
increasing simulation time
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Dakota History and Resources S

Sandia
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= @Genesis: 1994 optimization LDRD
= Modern software quality and development practices
= Released every May 15 and Nov 15

= Established support process for SNL, partners, and beyond

[ | Mike Eldred,

| The DAKOTA Project - Home

aaemem | Nttp://dakota.sandia.gov |.. o & Founder

[5) Most Visited (@) Getting Started =/ Latest Headlines % Jaguar - Sandia Nation... [ Review & Approval Sy... () 5.2 Open B3 Bookmarks

The DAKOTA Project () s Natna Laortrs Lab mission-driven

Large-Scale Engineering Optimization and Uncertainty Analysis

Home | [ About | [ Search | [ DakoTa@sNL | algorlthm R& D deployed
in production software

A Multilevel Parallel Object-Oriented
Framework for:

Download
Install + Design Optimization
Developer Portal * Parameter Estimation
* Uncertainty Quantification

Use DakoTA * Sensitivity Analysis i

ick L] . .
. = Extensive website: documentation,
Dakota Documentat

o e~ NEWS training materials, downloads

DakoTA CoMMUNITY (g DAKOTA 5.3 Released January 21, GET LATEST RELEASE ope
Curent s Verson. = Open source facilitates external
Mail Lists Four technology transfer awards go to Released: January 31, 2013
a Sandia Labs {SNL News Releases, M H
SEARCH DAKOTA 2012) * Download DAKOTA 2.3 CO I I a b O rat | O n ; WI d e Iy d OW n I Oa d ed
sire: QUEST team working to put

ED uncer tainty theory to practice (ASCR
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Engaging Dakota R

. . . . . r- . Sandia
Algorithms for Design Exploration and Uncertainty Quantification mh National

Website: http://dakota.sandia.gov

= Download (LGPL license, freely available worldwide)

=  Getting Started guide; User’s Manual: Tutorial with example input files
= Extensive documentation (user, reference, developer)

=  Support mailing list (reaches both Dakota team and user community)

In CASL
= Available in VERA
= CASL/Dakota User’s Manual (on Dakota publications page)

= People resources
=  Brian Williams, Ralph Smith
= Vince Mousseau, Natalie Gordon, Lindsay Gilkey
=  Westinghouse, EPRI users

Thanks for your attention! briadam@sandia.gov, rhoope@sandia.gov
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