

LA-UR-17-25199 (Accepted Manuscript)

Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke

Dubey, Manvendra Krishna Carrico, Christian Bixler, Samantha Laray Aiken, Allison C.

Provided by the author(s) and the Los Alamos National Laboratory (2018-07-03).

To be published in: Atmospheric Environment

DOI to publisher's version: 10.1016/j.atmosenv.2018.01.024

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-17-25199

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Accepted Manuscript

Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke

Christian M. Carrico, Samantha L. Bixler, Manvendra K. Dubey, Allison C. Aiken

PII: \$1352-2310(18)30038-4

DOI: 10.1016/j.atmosenv.2018.01.024

Reference: AEA 15783

To appear in: Atmospheric Environment

Received Date: 27 June 2017

Revised Date: 28 December 2017

Accepted Date: 13 January 2018

Please cite this article as: Carrico, C.M., Bixler, S.L., Dubey, M.K., Aiken, A.C., Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke, *Atmospheric Environment* (2018), doi: 10.1016/j.atmosenv.2018.01.024.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Re-submission to Atmospheric Environment

1 Low Hygroscopicity of Ambient Fresh Carbonaceous

2 Aerosols from Pyrotechnics Smoke

3	Christian M. Car	rico [*] , Samantha	L. Bixler New Me	xico Institute of I	Mining and Technology
---	------------------	------------------------------	------------------	---------------------	-----------------------

- 4 Socorro, NM 87801
- 5 Manvendra K. Dubey, Allison C. Aiken Los Alamos National Laboratory, Los Alamos, NM
- 6 87545

7

8 HIGHLIGHTS

- 9 1. Pyrotechnics (fireworks) have substantial though episodic impacts on ambient aerosol properties.
- In a well-mixed < 3 hr old fireworks plume, dry light scattering (450 nm) reached 120 Mm⁻¹
 with nearly constant ω (780nm) = 0.86 and Å = 2.2.
- 3. Ambient fireworks smoke aerosol hygroscopic response was low (*f*(RH=85%) ~ 1), implying lower radiative effects but longer lifetime and potential human exposures.
- Chemical composition was a key driver as smoke from small sparklers exhibited greater
 water uptake (due to the contribution of potassium chloride) than from the larger explosive
 aerial fireworks which were likely dominated by organic and elemental carbon.

18

19

* Correspondence to: C.M. Carrico, kip.carrico@nmt.edu

Re-submission to Atmospheric Environment

ABSTRACT
ABSTRAC'

22	Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence
23	Day celebrations occurring annually on July 4 th as the most notable in the U.S. Given an
24	episodic nature, fireworks aerosol properties are poorly characterized. Here we report
25	observations of optical properties of fresh smoke emissions from Independence Day fireworks
26	smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4-5 July 2016.
27	Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc.,
28	Model 870nm) at low RH < 30% and a humidity controlled nephelometry system (Ecotech, Inc.,
29	450 nm Aurora). 'Dry' light scattering coefficient (σ_{sp}) increased from background < 15 Mm ⁻¹
30	reaching 120 Mm ⁻¹ (450 nm) as a 2-minute event peak, while the absorption coefficient increased
31	from background of 0.5 to 4.4 Mm ⁻¹ (870 nm). The event peak occurred at 00:35 on 5 July 2016,
32	~3 hours after local fireworks events, and decreased to background by 04:00 on 5 July 2016,
33	showing well mixed aerosol properties. A notable result is that the aerosol hygroscopic
34	response, as characterized by the ratio of wet to dry light scattering or f(RH=85%), declined to
35	1.02 at the peak fireworks influence from a background ~1.7. Strong wavelength dependence of
36	light scattering with Ångström exponent ~ 2.2 throughout the event showed a size distribution
37	dominated by sub-micrometer particles. Likewise, single scattering albedo at 870 nm remained
38	constant throughout the event with $\omega = 0.86 \pm 0.03$, indicating light absorbing carbon, though not
39	dominant, was mixed with organic carbon. Subsequent laboratory testing with ground-level
40	sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however.
41	As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the
12	hygroscopic response. Sparkler smoke was dominated by salt species such as hygroscopic
43	potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute
14	organic and elemental carbon to its non-hygroscopic smoke.

Re-submission to Atmospheric Environment

1	1	IN.	T.	R	\mathbf{O}	D	Π	\mathbf{C}	ΓT	N	N	I
					.,	.,	. , ,			. ,	1 4	ı

47

48	1.1 Particulate Material (PM _{2.5}) and Its Air Quality Impacts
49	Particulate material, particularly the fine fraction (i.e. small particles $< 2.5 \ \mu m$ diameter), has
50	important impacts on atmospheric chemistry and optics. Particulate matter with aerodynamic
51	diameters less than 2.5 micrometers (PM _{2.5}) is a specific parameter of interest to human health,
52	atmospheric visibility, and climate. PM _{2.5} has primary and secondary sources it is responsible
53	for substantial atmospheric light extinction, penetrates deeply into the human lungs, and is a
54	source of cloud condensation nuclei. Traditionally in the U.S., the regulatory focus has been on
55	PM _{2.5} as the basis for human health impacts [Pope and Dockery, 2006]. Recently, interest has
56	also developed in $D_p < 1~\mu m~(PM_1)$ and ultrafine particles (D $_p < 100~nm)$ which often dominate
57	number concentrations freshly emitted from combustion sources [Carrico et al., 2016a]; the
58	European Union currently has regulatory statutes addressing ultrafine particles. The sources of
59	these particles are diverse and include many anthropogenic contributions, largely from
60	combustion sources, as well as from new particle formation from natural and anthropogenic
61	precursors. Here we examine the microphysical properties of 2-3 hours old smoke from the
62	combustion of pyrotechnics (fireworks) associated with the U.S. Independence Day celebration
63	in 2016.
64	
65	1.2 Fireworks Emissions and Air Quality
66	Fireworks displays are common globally across many cultures, associated with select secular and
67	religious events. Emissions from fireworks represent a distinct though transient impact on local
68	to regional air quality. In the U.S., the most important fireworks event is Independence Day on

69 J

70

71

72

74

75

July 4th, with 75% of professional and 90% of retail fireworks sales associated with the event according to the American Pyrotechnics Association (APA). Moreover, fireworks sales have

according to the American Pyrotechnics Association (APA). Moreover, meworks sales have

increased from 41 to 285 million pounds of fireworks from 1980 to 2015 in the U.S. alone (APA

data). In 2015, revenues from consumer sales were \$0.76 billion vs. \$0.34 billion for display

73 fireworks (APA data). Thus, the emissions in the U.S. are distributed beyond major professional

displays and likely track population density among other factors. Differences are expected as a

function of height, as consumer fireworks are closer to ground level vs. those in professional

76 displays.

78	Gas-phase and particle emissions from fireworks may differ substantially from those from fuels
79	combustion. For example, ozone formation can be impacted by fireworks, as they can serve as a
80	direct formation mechanism for ozone in addition to emission of precursors [Attri et al., 2001].
81	Some studies have shown some elevated NO _x while other studies have shown negligible impacts
82	on NO _x and ozone [Mandal et al., 2012; Parkhi et al., 2016]. Due to its oxidative capacity
83	fireworks smoke has been implicated as a health risk for acute cardio-respiratory effects [Godri
84	et al., 2010].
85	
86	1.3 Particulate Material Properties from Fireworks Smoke
87	Nearly universally, observations show elevated PM and particularly ultrafine and accumulation
88	mode particles associated with emissions from fireworks. They are a substantial though short-
89	lived source of fine mode particulate material (PM _{2.5}) including trace metal species [Drewnick et
90	al., 2006; Moreno et al., 2007]. One of the most comprehensive fireworks-related studies
91	examined a network of 315 U.S. ambient aerosol monitoring stations over multiple years [Seidel
92	and Birnbaum, 2015]. Observations showed recurrent, though short-lived (<0.5 days), impacts
93	associated with U.S. Independence Day fireworks at urban U.S. monitoring stations [Seidel and
94	Birnbaum, 2015]. For example, the study found average hourly PM _{2.5} concentrations elevated by
95	$21~\mu\text{g/m}^3$ during the hour from 19:00-20:00, with a 42% average increase in 24-hour $PM_{2.5}$
96	concentrations compared to proximate days.
97	
98	The chemical composition of fireworks is relevant for the resulting smoke properties. The
99	primary composition of fireworks' black powder charge is graphitic carbon, potassium nitrate,
100	and elemental sulfur in varying proportions [Russell, 2000]. The black powder is use as a
101	propellant and explosive charge for aerial fireworks, and the products of combustion include
102	potassium compounds [Russell, 2000]. There are various emitter compounds, mainly metals,
103	including iron oxides, aluminum, titanium and potassium compounds for coloration. For
104	example, the primary colorants for yellow coloration are sodium salts [Russell, 2000].
105	Nonetheless, organic carbon (OC) species are often the dominant chemical contributor in
106	ambient fireworks observations [Jiang et al., 2015; Tsai et al., 2012].
107	

108	1.4 Southeast Asia Studies of Fireworks Emission Characteristics
109	The origin of fireworks traces to East Asia, and the Asian continent has a long history in
110	religious and secular festivals [Russell, 2000]. Numerous recent studies have examined the
111	significance of fireworks to air quality in south and East Asia, and most notably India, Taiwan,
112	and China [Chen et al., 2016]. Several studies have examined fireworks in India particularly as
113	related to the annual Diwali Festival [Kumar et al., 2016; Nasir and Brahmaiah, 2015]. One of
114	the worst smog events in India occurred in New Delhi, India in early November 2016 with $PM_{2.5}$
115	concentrations exceeding the instrument upper limit of 999 $\mu\text{g/m}^3.$ It is still under investigation,
116	but it was estimated that 60-70% contributions from fireworks smoke
117	$(\underline{https://phys.org/news/2016-10\text{-}delhi\text{-}toxic\text{-}smog\text{-}diwali\text{-}festival.html}). \ As \ a \ result, \ the \ Supreme$
118	Court of India banned the sale of fireworks in 2017, though the air quality impacts were still very
119	significant during the Diwali festival of 2017 (https://phys.org/news/2017-10-delhi-toxic-haze-
120	diwali-fireworks.html).
121	
122	1.5 Optical Properties of Fireworks Aerosols
123	Many of the measurements of fireworks smoke impacted aerosols have focused on $PM_{2.5}$ mass
124	concentrations and chemical speciation. However, a small number of studies investigated
125	aerosol optical properties of fireworks smoke. The general observations are a fine mode
126	dominance of PM properties and elevated single scattering albedo (ω , the ratio of light scattering
127	to extinction) during impacted time periods [Devara et al., 2015]. In part due to their transitory
128	impacts, data in the literature is lacking on the extent, duration, and characteristics—particularly
129	optical properties—of emissions from fireworks. The intent of this study is to report
130	observations of freshly emitted fireworks generated smoke including optical properties, and in
131	particular, aerosol hygroscopic response as related to the U.S. Independence Day fireworks on 4-
132	5 July 2016.
133	
134	2 EXPERIMENTAL DETAILS
135	2.1 Sampling Site
136	Measurements were conducted in summer 2016 at Technical Area-51 at Los Alamos National
137	Laboratory (LANL) (Figure 2) located at 35.850° N 106.272° W at an elevation of 2149 m ASL.

Re-submission to Atmospheric Environment

The LANL study was focused on laboratory biomass burning emissions, yet it also provided a
unique opportunity to examine ambient fireworks influenced ambient smoke properties. We
conducted follow-up laboratory experiments with commercially available sparklers using the
same measurement techniques. The following section describes the measurements and
experimental quality assurance efforts. Carrico et al., [2016b] gives more details on the
experimental methods and results for laboratory combustion of biomass fuels.
The nearest meteorological measurements were ~3 km due north at Los Alamos Municipal
Airport (WBAN:93091) which is located at 35.881° N 106.276° W at an elevation of 2184 m
ASL (Figure 2). Local wind direction and speed are reported on a 30-minute average basis and
were examined to determine atmospheric transport and source regions. Furthermore, NOAA
Hysplit backtrajectory analyses were conducted at the LANL sampling site and the Los Alamos
Municipal Airport sites [Rolph, 2017; Stein et al., 2015].
Nearby local municipal fireworks displays included White Rock, NM display which was 8.8 km
ESE of the LANL sampling site (288 degrees vector from White Rock to LANL site). A public
display of fireworks was ignited at Overlook Park in White Rock, NM, for an hour beginning at
approximately 21:00 on the evening of 4 July 2016. A public display occurred in Jemez Springs
approximately 40 km to the west-southwest of Los Alamos at the same time. Additionally, there
were no fewer than six municipal fireworks displays within 200 km of Los Alamos on the
evening of 4 July 2016 with unknown contributions including Santa Fe, NM (38 km to the SE),
Albuquerque (80 km SSW), Rio Rancho (80 km SSW), Las Vegas (100 km ESE), Grants 163
km WSW), and Farmington (190 km WNW).
2.2 Measurement Methods
An aerosol sample inlet extended above roof level of the LANL building at a height of
approximately 5-m above ground level. A laminar sample flow of 6 lpm was drawn through a
6.5 mm OD copper tubing, and the aerosol instruments sampled the flow undiluted. Due to the
length and pressure drop through the ambient inlet line, no further sample conditioning or size
cut was introduced before measurement instrumentation. Combustion sources, particularly with
flaming combustion, produce size distributions shifted toward smaller ($D_p \sim 50$ nm) more

Re-submission to Atmospheric Environment

169	absorbing particles whereas smoldering fires produce larger though still predominantly sub- $\!\mu m$
170	particles ($D_p \sim 200$ nm) with high ω [Carrico et al., 2016a]. As discussed later, measured
171	wavelength dependence of light scattering (as demonstrated by the unitless Ångström exponent,
172	\mathring{A}) shows sub- μm mode particles dominated fireworks smoke optical properties. All laboratory
173	smoke measurements were sampled at near ambient conditions undiluted into the instruments, at
174	relative humidity (RH), dry bulb temperature and pressure given in Table 1.
175	
176	2.3 Particle Light Scattering as a Function of Relative Humidity
177	Relative humidity is an important parameter as it will affect particle water uptake; smoke with a
178	substantial inorganic component is hygroscopic [Carrico et al., 2016b]. Numerous systems for
179	measurement of RH controlled light scattering have been used in past aerosol studies. The
180	instrument described here is based on a simplified version of that described in Carrico et al.,
181	[2003] (Figure 1).
182	
183	The instrument consisted of two integrating nephelometers (Ecotech, Inc., Aurora 450 nm)
184	plumbed in series to measure light scattering coefficients by particles (σ_{sp} , given in units of
185	inverse length, here 1/Megameters). For our purposes, sampling conditions here (RH $<$ 40%) are
186	considered 'dry,' as hygroscopic diameter growth factors were found to be < 1.02 , the instrument
187	uncertainty, for such low humidity [Carrico et al., 2010]. Drying before the dry nephelometer
188	used a membrane drier (Permapure, Inc.) with a dry purge flow, and typically resulted in $RH <$
189	20% (Table 1). Humidification of the wet nephelometer used a custom in-line humidifier
190	consisting of a water jacket separated from the aerosol sample flow by a water vapor permeable
191	membrane. During the sampling period discussed here, controlled 'wet' $RH = 85.4 + /-0.6\%$
192	(arithmetic mean and standard deviation) for the wet nephelometer based on dew point
193	temperature from the upstream Vaisala and the dry bulb temperature measured internal to the
194	nephelometer (Table 1). For both wet and dry instruments, nephelometer inlet temperature and
195	humidity were monitored with a capacitive type sensor (Vaisala Inc., HMT333) interfaced to an
196	analog to digital converter card (National Instruments, Inc. NI-USB 6008). RH instruments were
197	calibrated at high and low RH to within 2% of the RH generated by saturated salt solutions,
198	similar to the 2-3% RH accuracy given as the uncertainty by the manufacturer.

200	Sample residence time was approximately 4 seconds (s) prior to measurement with the wet
201	nephelometer. Pure CO ₂ and particle free air were used to calibrate the nephelometers before
202	and after these measurements. Flow rates were verified with external flow standard (BIOS
203	International, Inc., DryCal). All plumbing between the sample inlet and instrument were
204	stainless steel fittings (Swagelok, Inc.) and 1 cm OD electrically-conductive tubing to minimize
205	particle loss.
206	
207	Nephelometer measurements are reported here for 'as-sampled' conditions (near ambient T, P)
208	with no adjustments for temperature, pressure, instrument non-idealities or other environmental
209	conditions (Table 1). The nephelometer, due to angular limitations and other non-idealities, gives
210	a nephelometer measured total scattering coefficient (σ_{sp}). Müller et al. [2011] used
211	nephelometer-measured wavelength dependence consistent from a single nephelometer and as
212	quantified by the Ångström exponent in deriving a correction to yield 'true' light scattering.
213	Since the long wavelength light scattering measurement here with a photoacoustic extinctiometer
214	(PAX) discussed later [Nakayama et al., 2015] has a different geometry with a smaller truncation
215	error correction is not attempted with this data. Here, using the fireworks smoke measured
216	Ångström derived from the nephelometer plus the PAX, this correction would yield only a slight
217	change in σ_{sp} of +3% and thus is ignored here.
218	
219	2.4 Photoacoustic Extinctiometer Measurements
220	We report particle light scattering and absorption coefficients (σ_{sp} and σ_{ap}) at a frequency of 1-
221	min with a photoacoustic extinctiometer (PAX, Model 870 nm, DMT, Inc.), sampling at a flow
222	rate of approximately 1 lpm [Arnott et al., 1999; Nakayama et al., 2015]. The PAX gives an
223	estimate of the aerosol single scattering albedo (ω , unitless 'brightness' of the aerosol), where ω
224	= σ_{sp} / [σ_{sp} + σ_{ap}]. The instrument sampled through a 0.065 m OD electrically-conductive
225	sampling line, approximately 2 m in length (upstream residence time, $\tau < 3$ s) with no further
226	sample conditioning.
227	
228	The PAX was calibrated by first using a strongly light scattering aerosol, (NH ₄) ₂ SO ₄ with
229	complex refractive index of $1.52 \pm 0.01 + 0.00i \pm 0.03i$ at 532 nm [Lang-Yona et al., 2009],
230	followed by a strongly absorbing aerosol generated with a kerosene lamp. Calibrations

231	compared measured light scattering and absorption to directly measured light extinction applying
232	the Beer-Lambert Law to laser intensity attenuation in the optical cavity [Arnott et al., 2000].
233	The calibration is not sensitive to the optical properties of the calibration material (e.g., size,
234	refractive index) as high concentrations determine extinction directly from attenuation of the
235	laser intensity using the Beer-Lambert Law. Minor uncertainties are introduced when applying
236	the calibrated response to ambient data due to the fixed geometry of the measurement cell and
237	differences in the scattering phase function for different aerosols [Nakayama et al., 2015].
238	During measurements, the instrument auto-zeroed periodically on a 15-minute basis by switching
239	a HEPA particle filter in-line
240	
241	3 RESULTS
242	3.1 Measurement Quality Control Checks
243	A comparison of light scattering coefficients as measured by two nephelometers both at low RH
244	gives indication of the agreement at 'dry' conditions as the wet nephelometer here was controlled
245	to low RH = $33.9 \pm 1.7\%$ (Figure 3). These ambient measurements were collected shortly after
246	the fireworks event on 8 July 2016. With respect to ambient $PM_{2.5}$, this period was quite clean
247	with σ_{sp} ranging from 7 to 14 Mm ⁻¹ . Agreement between instruments at these low ambient
248	concentrations shows a slope of 0.98, intercept of 0.6 Mm ⁻¹ , and an R ² value of 0.98. The strong
249	agreement at low RH and low magnitude light scattering demonstrates acceptable instrument
250	inter-calibration. The agreement also provides evidence of minimal particle loss through the
251	instruments and humidification system.
252	
253	3.2 Meteorological Context of Ambient Measurements
254	The meteorology during the period of interest was dry (RH $< 21\%$) and mostly clear with some
255	broken cloud cover from Los Alamos airport measurements obtained from the U.S. National
256	Oceanic and Atmospheric Administration (NOAA) Climate Data Center. A wind rose shows the
257	frequency distribution of windspeed and direction blowing from starting 20:35 4 July 2016 –
258	08:15 5 July 2016 (36 observations, all times here are given in local MDT). The winds during
259	the period of interest were moderate and steady at 4.5 m/s and westerly origins at 265 degrees
260	(Figure 2).
261	

Re-submission to Atmospheric Environment

262	Air mass back-trajectories calculated backwards for 12 hours and arriving at the LANL sampling
263	site (south site) and at the Los Alamos airport (north site) at heights of 500, 750 and 1000 m also
264	indicated strongly westerly flow aloft (Figure 2) [Rolph, 2017; Stein et al., 2015]. The westerly
265	nature of the winds suggests little influence from the nearby White Rocks, NM, fireworks
266	display at approximately 8.8 km to the southeast of the sampling site. At 16 km/h winds and a
267	location 40 km upwind (2.5 hours transit time), we argue that the Jemez Springs, NM fireworks
268	influence was a most likely contributor. The peak impacts occurred > 2 h after the end of
269	municipal displays, and the back-trajectories passed over Jemez Springs (Figure 2). Due to
270	complex mountain meteorological flow characteristics and the nature of numerous fireworks
271	from individual use, the direct source cannot be isolated though.
272	
273	3.3 Ambient Fireworks Aerosol: Extensive Properties
274	Extensive properties of light scattering and absorption coefficients both increased markedly
275	during the fireworks-dominated episode beginning at approximately 23:45 on 4 July 2016 and
276	lasting until 04:00 on 5 July 2016 (Figure 4). We define the time period of the event by when
277	the light scattering coefficient (450 nm) increased and stayed above typical background values of
278	<15 Mm ⁻¹ shown previously. As shown in the time series in Figure 4, some small perturbations
279	occurred earlier in σ_{sp} around 18:20-19:40 on 4 July 2016. Likewise, some continued influence
280	of fireworks smoke is suspected after 04:00 on 5 July 2016. Both periods are excluded as
281	outside the primary event though. Past studies of combustion aerosols demonstrate that optical
282	properties show significant and rapid changes occurring over time frames on the order of 2 h past
283	initial emission, similar to the transport time observed here [Carrico et al., 2016a; Vakkari et al.,
284	2014].
285	
286	For four hours before the event light scattering was low and relatively stable, $\sigma_{sp} = 9.0 \pm 0.5 \ Mm^{-1}$
287	1 (450 nm). A rapid peak with σ_{sp} reaching 120 Mm $^{-1}$ (2-min) occurred at about 00:35 on 5 July
288	2016, subsequently decreasing througout the morning. Light scattering from both instruments
289	and light absoption from the PAX are highly correlated and show simultaneous peaks. The time
290	period for this event is approximately 3 hours later than the large firework events in this area and
291	as observed at many air quality stations in the U.S. [Seidel and Birnbaum, 2015].

293	The relatively large magnitude and slight change in $\boldsymbol{\omega}$ shows only a modest increase in black
294	carbon (BC measured in units of $\mu\text{g/m}^3)$ associated with the organic carbon in fireworks smoke.
295	PAX-estimated BC concentration increased from 0.1 to 0.36 $\mu g/m^3$ by assuming a mass
296	absorption cross-section for of 4.6 m ² /g at 780nm during the episode. Past measurements with
297	an Aerosol Chemical Speciation Monitor (ACSM) showed predominantly organic carbon (OC)
298	as well as potassium, chloride, and sulfate contributions [Jiang et al., 2015]. Several studies
299	have shown secondary organic aerosol (SOA) predominance, higher OC/EC ratios, and small
300	increases in black carbon all suggesting organic carbon is more important than soot carbon in
301	fireworks smoke [Tsai et al., 2012; Raju et al., 2014]. In Lin et al., [2016], a high absorption Å
302	of 1.4 indicated a substantial brown carbon contribution, not unlike biomass smoke also
303	observed in a study in New York, U.S.A. [Wang et al., 2012]. We do not have any direct
304	measurement of aerosol carbonaceous content but suspect organic carbon, and potentially brown
305	carbon as found in past studies, dominated the aerosol chemical composition.
306	
307	3.4 Ambient Fireworks Aerosol: Intensive Properties
308	Among intensive properties, ω at 780 nm stayed relatively constant at 0.86 ± 0.03 during the
309	episode, slightly higher than before or after the episode (Figure 4, Table 2). Thus the event did
310	not entail a dramatic shift to a strongly light absorbing aerosol dominated by black carbon. From
311	the photoacoustic instrument, the light scattering and absorption were strongly correlated with R ²
312	= 0.93 thus showing little change in their relationship during the fireworks-dominated event
313	indicating well-mixed properties.
314	
315	The light scattering coefficients of the shorter wavelength nephelometer (450 nm) exceeded the
316	PAX (870 nm) by a factor of ~four. The wavelength dependence of light scattering was strong
317	with $\mbox{\normalfont\AA} = 2.2 \pm 0.3$ during the event, and this was little changed before, during or after the
318	episode indicating the dominance of the sub-micrometer fraction throughout. Using the episode
319	average Å, we adjusted the scattering to a wavelength of 450 nm to compare directly to the
320	nephelometer. Light scattering measurements from the PAX instrument and nephelometer were
321	highly linear during the event $(R^2 = 0.95)$ with a slope of 1.12 indicating little variability in the
322	aerosol size distribution and again a well-mixed aerosol (Figure 5). Finally, the variability in the

Re-submission to Atmospheric Environment

323	intensive optical properties as shown in the standard deviation in Table 2, was much lower
324	during the fireworks plume sampling period also indicating a uniform, well mixed aerosol.
325	
326	Among aerosol intensive properties, the hygroscopic response was single measured parameter
327	that significantly changed through the event. The enhancment in light scattering due to aerosol
328	hygroscopic growth or f(RH=85%) dropped from ~1.7 to a minimum approaching approximately
329	1.02 during the peak of the episode (Figure 4). We observed an anti-correlation between
330	$f(RH=85\%)$ and σ_{sp} during the event with $R=-0.85$. For $f(RH=85\%)$, the minimum was 1.02
331	and the event average = 1.16 ± 0.10 , significantly lower than before or after the event (Table 2).
332	Though the low hygroscopicity means less direct visibility and climate impacts, it also has larger
333	implications for aerosol lifetime and exposure.
334	
335	Brock et al. [2016] proposed a single parameter κ-neph fit for f(RH) data. Using Brock et al.
336	[2016], κ -neph during the event decreased to a minimum of 0.003 with an event average κ -neph
337	= 0.027 \pm 0.017 (Table 2). We take the minimum $\kappa\text{-neph}$ oberserved ($\kappa\text{-neph}=0.003)$ as
338	associated directly with fireworks emissions and κ -neph = 0.12 as that of the background aerosol
339	(similar to the mean value before and after the event and excluding the suspected perturbations
340	due to fireworks shown in Figure 4). We calculated a 2-component mixture κ -neph weighted by
341	their σ_{sp} contributions. We apply a 2-component model where background aerosol κ is
342	combined with a fireworks κ taken as the minimum reached in Figure 4. These component κ
343	values are weighted by the dry light scattering coefficients from the respective cases in real time
344	with background $\sigma_{sp} = 9 \text{ Mm}^{-1}$ and any excess attributed to fireworks. The tight agreement in
345	Figure 6 for the fireworks influenced case indicates a fairly well-mixed and uniform fireworks
346	aerosol as it reached Los Alamos, also indicated by small variability in \mathring{A} and ω in Figure 4.
347	Using these inputs and a 2-component mixture, calculated κ is shown versus measured κ -neph
348	for the 4-hour fireworks event from 23:45-04:00 (Figure 6) and the preceding 4 days from 1
349	July-4 July 2016. The plot shows a strong relationship during the fireworks episode and a much
350	more variable Los Alamos typical aerosol. During the fireworks episode the hygroscopic
351	response roughly follows a 2-component mixture of a nearly hydrophobic fireworks aerosol and
352	a modestly hygroscopic background aerosol.

354	For combustion processes, one of the most important parameters dictating aerosol physical
355	properties is the MCE as measured in numerous biomass burning aerosol studies. A pronounced
356	relationship between the MCE and $\boldsymbol{\omega}$ was described across other FLAME-4 experiments with
357	smoldering combustion characterized by low MCE and leading to high ω [Liu et al., 2014] and
358	leading to a shift to larger sizes [Carrico et al., 2016a]. Using Liu et al., [2014] and their
359	relationship of ω to MCE, the fireworks aerosol represented combustion with MCE ~ 0.92 which
360	is the transition between flaming and smoldering.
361	
362	3.5 Laboratory Sparkler Measurements
363	We followed the ambient observations with a short laboratory experiment generating
364	pyrotechnics smoke using two types of sparklers, "Colored Sparklers" manufactured in China
365	and "Gold Sparklers" manufactured in Thailand purchased at local fireworks vendors in New
366	Mexico, USA. In previous studies, a significant source of smoke at the ground-level is from
367	sparklers, and emissions were dominated by ultrafine particles $D_p < 50 \text{ nm}$ comprising 83% of
368	number concentrations [Betha and Balasubramanian, 2014]. During Diwali festival in India,
369	sparklers were found to be a strong contributor to near ground-level PM spikes [Yerramsetti et
370	al., 2013].
371	
372	The smoke from both sparkler varieties measured here was strongly hygroscopic (Table 3), in
373	sharp contrast to the ambient-sampled fireworks influenced properties. Sparklers lack the black
374	powder explosive in aerial fireworks but produce their spark coloration from potassium and
375	sodium salts (http://www.compoundchem.com/2014/11/04/sparklers/). Analysis of major ions
376	(ion chromatography) and carbonaceous content (Sunset Laboratories Organic and Elemental
377	Carbon Analyzer) of PM1 from the smoke generated from sparkler combustion confirms the
378	dominance of potassium and chloride for both sparkler samples (Figure 7). The lower response
379	associated with the Gold Sparkler from Thailand relates to its somewhat smaller contribution
380	from potassium chloride and larger contribution from organic and elemental carbon (Figure 7).
381	Numerous ambient studies have linked fireworks smoke with tracers including elevated trace
382	potassium and chloride ions [Lin et al., 2014; Yao et al., 2015; Kong et al., 2015]. Potassium
383	chloride is a strongly hygroscopic salt that is also an important component of biomass smoke
384	[Carrico et al., 2010].

Re-submission to Atmospheric Environment

385	
386	These properties require further study to determine a complete and systematic description of the
387	controlling variables, but we argue that chemical composition plus combustion characteristics of
388	the pyrotechnics will have a profound influence on smoke properties. Due to the composition of
389	sparklers (including colorant compounds such as potassium chloride) vs. aerial fireworks (black
390	powder explosives), sparkler smoke hygroscopicity was found to contrast (dominated by
391	hygroscopic inorganic salts for the former rather than non-hygroscopic carbonaceous material
392	from black powder combustion products for the latter) As observed with biomass smoke,
393	fireworks smoke aerosol microphysical and chemical properties and fuel composition determine
394	air quality impacts [Reid et al., 2005a; Reid et al., 2005b]. In a congruent way, biomass burning
395	is a key source of particulate organic carbon (OC), elemental carbon (EC), 'brown' carbon that
396	absorbs radiation at shorter wavelengths, [Bond et al., 2013; Saleh et al., 2014] as well as
397	inorganic species that are fuel dependent [Carrico et al., 2016b].
398	
399	4 DISCUSSION AND CONCLUSION
400	Impacts on air quality from fireworks have been receiving increasing attention, particularly in
401	high population density developing countries like India and China where acute impacts are
402	observed. This is also a concern in the U.S. with potential exposure to fireworks emissions,
403	particularly to sensitive populations. Here we measured aerosol optical properties including
404	aerosol light scattering, its wavelength dependence, light absorption, single scattering albedo,
405	and aerosol hygroscopic response.
406	
407	Aerosol optical property measurements associated with U.S. Independence Day show a ~4-hour
408	episode with peak light extinction at ~00:35 on 5 July 2016 with minor effects before and after
409	this period. The temporal trends were consistent though later than those found at sites examined
410	across the U.S. [Seidel and Birnbaum, 2015], who observed peak impacts at 9-10 pm on July 4 th
411	and decreasing to background by noon on July 5 th . Combined evidence from the timing of the
412	event (several hours after municipal fireworks displays) and meteorology indicates influence of a

meteorology, consistent westerly winds measured at the Los Alamos airport combined with air-

fireworks display upwind and 40km to the west-southwest at Jemez Springs, NM. From

413

415	mass back-trajectory analysis performed here with the NOAA H 1 SPL11 model shows passage
416	over Jemez Springs, NM
417	
418	Throughout the event, little variability was observed in the intensive aerosol properties of single
419	scattering albedo and Ångström exponent for light scattering, indicating a well-mixed firework
420	smoke plume. Contrastingly, the hygroscopic response, $f(RH)$ dropped to a minimum around 1
421	at the peak of the event indicating a nearly hydrophobic aerosol. Though we lack chemical
422	composition measurements, the aerosol was not strongly soot-dominated as ω increased slightly
423	during the event to $\omega = 0.86 \pm 0.03$ and the BC mass concentration remained low (BC < 0.36
424	μg/m³). We suspect carbonaceous aerosol, and more specifically, organic carbon species
425	contributed substantially to the low hygroscopicity [Carrico et al., 2005] and relatively high
426	value of ω . Past chemical speciation studies of fireworks aerosols have shown a dominance of
427	carbonaceous material and in particular organic carbon, and we suspect this as the case due to
428	modest increases in black carbon and a low hygroscopicity that argues against inorganic salts
429	that would drive larger hygroscopicity.
430	
431	Our ambient measurements should not be considered universally representative for fireworks
432	smoke as underscored by the strong difference in hygroscopic properties between the sparklers
433	and ambient fireworks smoke we attributed to aerial fireworks. We followed the ambient
434	measurements with lab testing of two sparkler varieties that showed a very strong hygroscopic
435	response which we linked to the colorant compounds and lack of black powder explosives in
436	sparklers. Clearly the composition of the fireworks is key to the hygroscopicity of the smoke,
437	and this is an area for further exploration. Several parallels are found in common between
438	fireworks and biomass smoke: tracers of potassium and chloride, the generally low hygroscopic
439	response of the carbonaceous fraction of each, and the importance of organic carbon compounds.
440	
441	It is worth reiterating here that most fireworks (approximately two thirds) by dollar amount are
442	associated with private sales to individuals and thus air quality impacts, particularly near ground
443	level, are not limited to professional displays. It is indeterminate which would dominate air
444	quality impacts and likely varies with regional population density and usage. Overall, due to the
445	short time-frame of impacts, no specific regulatory actions are recommended regarding fireworks

146	impacts. However, the weak hygroscopicity and submicron size of the particles would result in a
147	longer atmospheric lifetime than the background aerosol. Exposures can be high and sensitive
148	individuals are advised to remain indoors, or view from upwind or crosswinds directions. The
149	results provide useful data for freshly emitted combustion aerosols that can be used as model
450	inputs for fireworks smoke aerosol microphysical properties.
451	
452	5 ACKNOWLEDGMENTS
453	Data from this study is available by emailing the corresponding author (kip.carrico@nmt.edu).
454	This work was supported in part by the U.S. Department of Energy, Office of Science, Office of
455	Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty
456	Program (VFP). This work was supported primarily by the U.S. Department of Energy's
457	Atmospheric System Research, an Office of Science, Office of Biological and Environmental
458	Research program under grant F265 (PI MKD). Los Alamos National Laboratory is operated for
459	the DOE by Los Alamos National Security under contract DE-AC52-06NA25396. The New
460	Mexico Consortium provided additional support for this work. The authors gratefully
461	acknowledge Dr. Amy Sullivan at Colorado State University for analysis of the two filters for
462	chemical composition of sparkler smoke. The authors also acknowledge the NOAA Air
463	Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model
464	and/or READY website (http://www.ready.noaa.gov) used in this publication. The assistance of
465	Thom Rahn, Sanna Sevanto, and Petr Chylek (Los Alamos National Laboratory) and Caroline
466	Allen (New Mexico Institute of Mining and Technology) is acknowledged.
467	
468	6 KEYWORDS
469	Fireworks smoke, ultrafine particles, fine mode aerosols, carbonaceous aerosols, photoacoustic
470	extinctiometer (PAX), nephelometer, hygroscopicity

Re-submission to Atmospheric Environment

7 TABLE AND FIGURE CAPTIONS

- Table 1. Means and standard deviations of pressure, temperature, relative humidity conditions for ambient sampled conditions
- Table 2. Aerosol optical properties for approximate four-hour blocks before, during and after a fireworks smoke event.
- Table 3. Comparison of ambient fireworks smoke aerosol and laboratory measurements of sparklers emissions.
- Figure 1. Experimental flow diagram showing photoacoustic extinctiometer (870 nm) and *f*(RH) system (450 nm).
- Figure 2. Los Alamos, NM map showing location of sampling site, local wind rose at the Los Alamos Airport, and inset of 48-hour air mass back trajectories at 500-m, 750-m and 1000-m agl (background images courtesy of Google Earth).
- Figure 3. Comparison of two nephelometer agreement for ambient aerosols sampled at 1-min during background aerosol conditions and RH < 34% in both instruments.
- Figure 4. Aerosol optical properties including (a) extensive parameters of particulate light scattering and absorption coefficients (σ_{sp} and σ_{ap}) and (b) intensive parameters including light scattering wavelength dependence (Ångström exponent, Å), hygroscopic response in light scattering (f(RH=85%)), and ratio of aerosol light scattering to extinction (single scattering albedo, ω). Measurements occurred during a fireworks smoke-influenced period at Los Alamos National Lab on 4 July 2016. Periods of largest impacts from smoke showed a nearly hydrophobic aerosol with $f(RH=85\%) \sim 1$.
- Figure 5. Relationship between light scattering from the dry reference nephelometer and photoacoustic extinctiometer

Re-submission to Atmospheric Environment

Figure 6. κ -neph predicted from 2-component mixture of background aerosol (κ -neph = 0.12) and fireworks smoke aerosol (κ -neph = 0.003) compared to measured values.

Figure 7. Chemical composition of the smoke generated from burning two types of sparklers (a) "Colored Sparker" manufactured in China and (b) "Gold Sparkler manufactured in Thailand.

Re-submission to Atmospheric Environment

8 TABLES & FIGURES

Table 1. Means and standard deviations of pressure, temperature, relative humidity conditions for ambient sampled conditions. The sampling site is located at 2149m ASL.

Pressure	Temperature	Low RH	High RH
(mbar)	(K)	Nephelometer (%)	Nephelometer (%)
751.3 ± 0.7	298.2 ± 0.9	18.9 ± 2.4	85.4 ± 0.6

Table 2. Aerosol optical properties for approximate four-hour blocks before, during and after a fireworks smoke event.

	$\sigma_{\rm sp}$ (87	0 nm)	σ_{ap} (870) nm)	σ _{ep} (87	0 nm)	ω (870	nm)	BC (µg	/m ³)	Å (450/8	70 nm)	$\sigma_{\rm sp}$ (45	0 nm)	f(RH =	85%)	к-перһ	
	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev
Before	2.4	0.8	0.49	0.28	2.9	0.9	0.83	0.11	0.10	0.06	2.07	0.44	8.8	0.4	1.62	0.06	0.104	0.013
Event	11.5	7.3	1.71	0.96	13.3	8.2	0.86	0.03	0.36	0.20	2.23	0.28	49.0	29.7	1.16	0.10	0.027	0.017
After	4.0	1.1	0.77	0.21	4.7	1.2	0.83	0.04	0.16	0.04	2.27	0.35	17.3	3.5	1.38	0.08	0.067	0.014

Table 3. Comparison of ambient fireworks smoke aerosol and laboratory measurements of sparklers emissions.

Source	f(RH=85%)	к-neph	ω (870nm) Ångström
Ambient fireworks smoke aerosol	1.16 ± 0.10	0.027 ± 0.017	0.86 ± 0.03 2.23 ± 0.28
"Colored sparkler" (China)	3.69 ± 0.37	0.30 ± 0.04	1.00 ± 0.02 1.73 ± 0.24
"Gold sparkler" (Thailand)	2.61 ± 0.04	0.19 ± 0.01	0.93 ± 0.02 1.96 ± 0.12

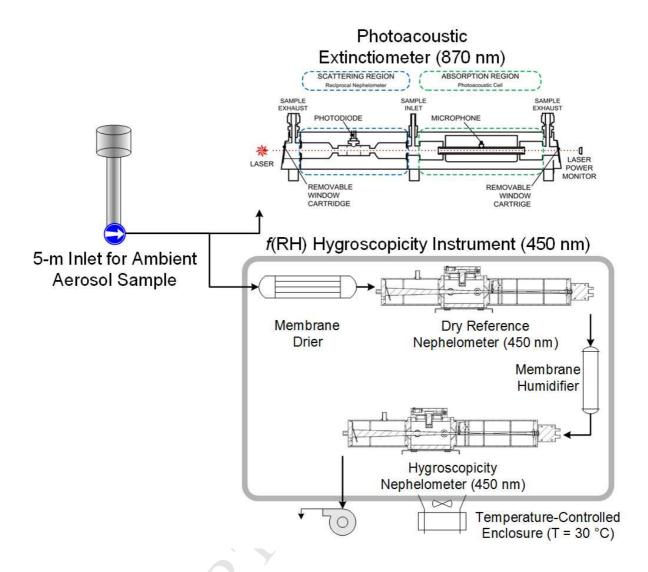


Figure 1. Experimental flow diagram showing photoacoustic extinctiometer (870 nm) and f(RH) system (450 nm).

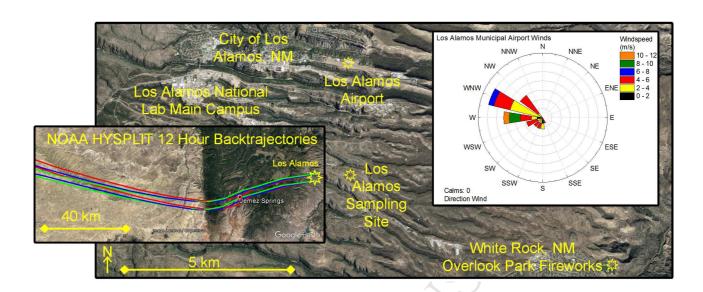


Figure 2. Los Alamos, NM map showing location of sampling site, local wind rose at the Los Alamos Airport, and inset of 48-hour air mass back trajectories at 500-m, 750-m and 1000-m agl (background images courtesy of Google Earth).

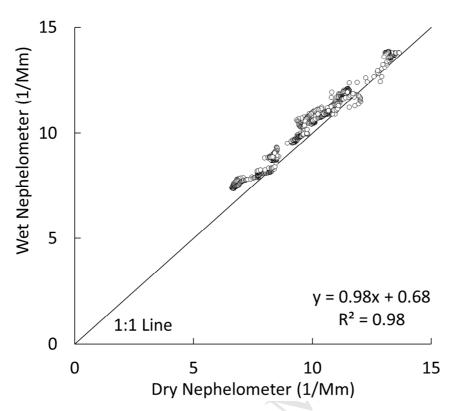


Figure 3. Comparison of two nephelometer agreement for ambient aerosols sampled at 1-min during background aerosol conditions and RH < 34% in both instruments.

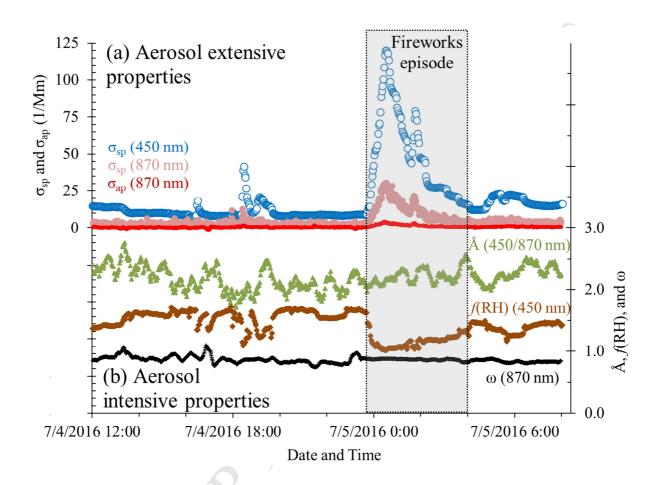


Figure 4. Aerosol optical properties including (a) extensive parameters of particulate light scattering and absorption coefficients (σ_{sp} and σ_{ap}) and (b) intensive parameters including light scattering wavelength dependence (Ångström exponent, Å), hygroscopic response in light scattering (f(RH=85%)), and ratio of aerosol light scattering to extinction (single scattering albedo, ω). Measurements occurred during a fireworks smoke-influenced period at Los Alamos National Lab on 4 July 2016. Periods of largest impacts from smoke showed a nearly hydrophobic aerosol with $f(RH=85\%) \sim 1$.

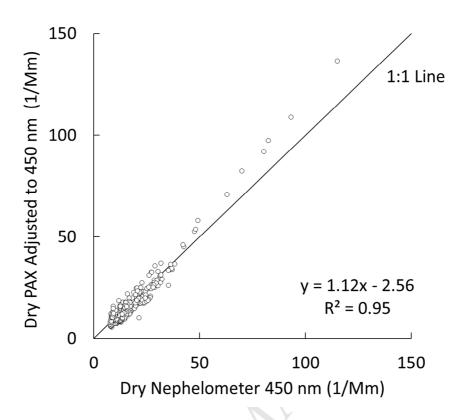


Figure 5. Relationship between light scattering from the dry reference nephelometer and photoacoustic extinctiometer adjusted to 450 nm with the average Ångström exponent.

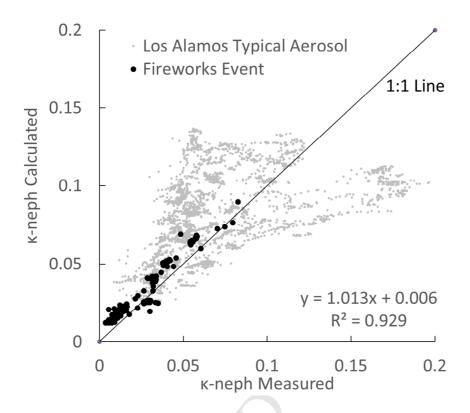
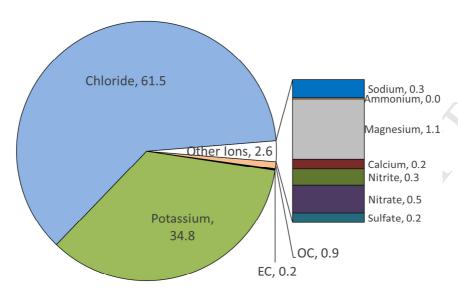
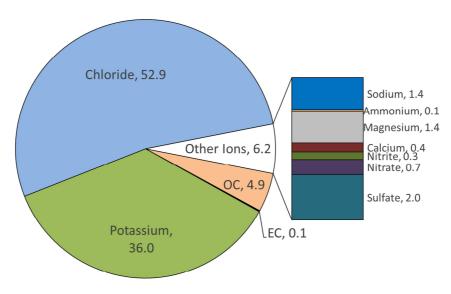




Figure 6. κ -neph predicted from 2-component mixture of background aerosol (κ -neph = 0.12) and fireworks smoke aerosol (κ -neph = 0.003) compared to measured values.

Re-submission to Atmospheric Environment

(a) Colored Sparkler (China)

(b) Gold Sparkler (Thailand)

Figure 7. Chemical composition of the smoke generated from burning two types of sparklers (a) "Colored Sparker" manufactured in China and (b) "Gold Sparkler manufactured in Thailand.

Re-submission to Atmospheric Environment

9 REFERENCES

- Arnott, W. P., H. Moosmuller, C. F. Rogers, T. F. Jin, and R. Bruch (1999), Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description, *Atmospheric Environment*, 33(17), 2845-2852.
- Arnott, W. P., H. Moosmuller, and J. W. Walker (2000), Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols, *Review of Scientific Instruments*, 71(12), 4545-4552, doi:10.1063/1.1322585.
- Attri, A., U. Kumar, and V. Jain (2001), Microclimate Formation of ozone by fireworks, *Nature*, *411*(6841), 1015-1015, doi:10.1038/35082634.
- Betha, R., and R. Balasubramanian (2014), PM2.5 Emissions from Hand-Held Sparklers: Chemical Characterization and Health Risk Assessment, *Aerosol and Air Quality Research*, 14(5), 1477-1486, doi:10.4209/aaqr.2013.07.0255.
- Bond, T. C., et al. (2013), Bounding the role of black carbon in the climate system: A scientific assessment, *Journal of Geophysical Research-Atmospheres*, *118*(11), 5380-5552, doi:10.1002/jgrd.50171.
- Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer Part 1: Hygroscopic growth, *Atmospheric Chemistry and Physics*, *16*(8), 4987-5007, doi:10.5194/acp-16-4987-2016.
- Carrico, C., S. Kreidenweis, W. Malm, D. Day, T. Lee, J. Carrillo, G. McMeeking, and J. Collett (2005), Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park, *Atmospheric Environment*, *39*(8), 1393-1404, doi:10.1016/j.atmosenv.2004.11.029.
- Carrico, C., P. Kus, M. Rood, P. Quinn, and T. Bates (2003), Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity, *Journal of Geophysical Research-Atmospheres*, *108*(D23), doi:10.1029/2003JD003405.
- Carrico, C., M. Petters, S. Kreidenweis, A. Sullivan, G. McMeeking, E. Levin, G. Engling, W. Malm, and J. Collett (2010), Water uptake and chemical composition of fresh aerosols generated in open burning of biomass, *Atmospheric Chemistry and Physics*, *10*(11), 5165-5178, doi:10.5194/acp-10-5165-2010.
- Carrico, C., A. Prenni, S. Kreidenweis, E. Levin, C. McCluskey, P. DeMott, G. McMeeking, S. Nakao, C. Stockwell, and R. Yokelson (2016a), Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results, *Journal of Geophysical Research-Atmospheres*, *121*(10), 5750-5768, doi:10.1002/2015JD024389.
- Carrico, C. M., S. Bixler, C. Allen, M. K. Dubey, A. C. Aiken, T. Rahn, L. Torres, and H. Parker (2016b), Water Uptake and Optical Properties of Biomass Smoke from Southwestern US Fuels: Predicting Properties and Their Variability, in *American Geophysical Union*, edited, San Francisco.
- Chen, Y., et al. (2016), Evaluation of impact factors on PM2.5 based on long-term chemical components analyses in the megacity Beijing, China, *Chemosphere*, 155, 234-242, doi:10.1016/j.chemosphere.2016.04.052.

- Devara, P., K. Vijayakumar, P. Safai, M. Raju, and P. Rao (2015), Celebration-induced air quality over a tropical urban station, Pune, India, *Atmospheric Pollution Research*, 6(3), 511-520, doi:10.5094/APR.2015.057.
- Drewnick, F., S. Hings, J. Curtius, G. Eerdekens, and J. Williams (2006), Measurement of fine particulate and gas-phase species during the New Year's fireworks 2005 in Mainz, Germany, *Atmospheric Environment*, 40(23), 4316-4327, doi:10.1016/j.atmosenv.2006.03.040.
- Godri, K., D. Green, G. Fuller, M. Dall'Osto, D. Beddows, F. Kelly, R. Harrison, and I. Mudway (2010), Particulate Oxidative Burden Associated with Firework Activity, *Environmental Science & Technology*, 44(21), 8295-8301, doi:10.1021/es1016284.
- Jiang, Q., Y. Sun, Z. Wang, and Y. Yin (2015), Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects, *Atmospheric Chemistry and Physics*, *15*(11), 6023-6034, doi:10.5194/acp-15-6023-2015.
- Kong, S., L. Li, X. Li, Y. Yin, K. Chen, D. Liu, L. Yuan, Y. Zhang, Y. Shan, and Y. Ji (2015), The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes, *Atmospheric Chemistry and Physics*, *15*(4), 2167-2184, doi:10.5194/acp-15-2167-2015.
- Kumar, M., R. Singh, V. Murari, A. Singh, R. Singh, and T. Banerjee (2016), Fireworks induced particle pollution: A spatio-temporal analysis, *Atmospheric Research*, *180*, 78-91, doi:10.1016/j.atmosres.2016.05.014.
- Lang-Yona, M., Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq (2009), Complex Refractive Indices of Aerosols Retrieved by Continuous Wave-Cavity Ring Down Aerosol Spectrometer, *Analytical Chemistry*, 81(5), 1762-1769, doi:10.1021/ac8017789.
- Lin, C., K. Huang, H. Chen, J. Tsai, Y. Chiu, J. Lee, and S. Chen (2014), Influences of Beehive Firework Displays on Ambient Fine Particles during the Lantern Festival in the YanShuei Area of Southern Taiwan, *Aerosol and Air Quality Research*, *14*(7), 1998-2009, doi:10.4209/aaqr.2014.09.0201.
- Lin, C., L. Yang, and Y. Cheng (2016), Ambient PM2.5, Black Carbon, and Particle Size-Resolved Number Concentrations and the Angstrom Exponent Value of Aerosols during the Firework Display at the Lantern Festival in Southern Taiwan, *Aerosol and Air Quality Research*, 16(2), 373-387, doi:10.4209/aaqr.2015.09.0569.
- Liu, S., et al. (2014), Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies, *Geophysical Research Letters*, 41(2), 742-748, doi:10.1002/2013GL058392.
- Mandal, P., M. Prakash, and J. Bassin (2012), Impact of Diwali celebrations on urban air and noise quality in Delhi City, India, *Environmental Monitoring and Assessment*, 184(1), 209-215, doi:10.1007/s10661-011-1960-7.
- Moreno, T., X. Querol, A. Alastuey, M. Minguillon, J. Pey, S. Rodriguez, J. Miro, C. Felis, and W. Gibbons (2007), Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays, *Atmospheric Environment*, *41*(5), 913-922, doi:10.1016/j.atmosenv.2006.09.019.

- Muller, T., M. Laborde, G. Kassell, and A. Wiedensohler (2011), Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer, *Atmospheric Measurement Techniques*, 4(6), 1291-1303, doi:10.5194/amt-4-1291-2011.
- Nakayama, T., H. Suzuki, S. Kagamitani, Y. Ikeda, A. Uchiyama, and Y. Matsumi (2015), Characterization of a Three Wavelength Photoacoustic Soot Spectrometer (PASS-3) and a Photoacoustic Extinctiometer (PAX), *Journal of the Meteorological Society of Japan*, 93(2), 285-308, doi:10.2151/jmsj.2015-016.
- Nasir, U., and D. Brahmaiah (2015), Impact of fireworks on ambient air quality: a case study, *International Journal of Environmental Science and Technology*, *12*(4), 1379-1386, doi:10.1007/s13762-014-0518-y.
- Parkhi, N., et al. (2016), Large inter annual variation in air quality during the annual festival 'Diwali' in an Indian megacity, *Journal of Environmental Sciences*, 43, 265-272, doi:10.1016/j.jes.2015.08.015.
- Pope, C., and D. Dockery (2006), Health effects of fine particulate air pollution: Lines that connect, *Journal of the Air & Waste Management Association*, 56(6), 709-742.
- Raju, M., P. Safai, P. Rao, S. Tiwari, and P. Devara (2014), Impact of anthropogenic activity and cyclonic storm on black carbon during winter at a tropical urban city, Pune, *Natural Hazards*, 71(1), 881-894, doi:10.1007/s11069-013-0937-y.
- Reid, J., T. Eck, S. Christopher, R. Koppmann, O. Dubovik, D. Eleuterio, B. Holben, E. Reid, and J. Zhang (2005a), A review of biomass burning emissions part III: intensive optical properties of biomass burning particles, *Atmospheric Chemistry and Physics*, *5*, 827-849.
- Reid, J., R. Koppmann, T. Eck, and D. Eleuterio (2005b), A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, *Atmospheric Chemistry and Physics*, *5*, 799-825.
- Rolph, G. D. (2017), Real-time Environmental Applications and Display sYstem (READY), (http://www.ready.noaa.gov). NOAA Air Resources Laboratory, College Park, MD, edited.
- Russell, M. S. (2000), *The Chemistry of Fireworks*, Royal Society of Chemistry, Cambridge, UK
- Saleh, R., et al. (2014), Brownness of organics in aerosols from biomass burning linked to their black carbon content, *Nature Geoscience*, 7(9), 647-650, doi:10.1038/ngeo2220.
- Seidel, D., and A. Birnbaum (2015), Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States, *Atmospheric Environment*, *115*, 192-198, doi:10.1016/j.atmosenv.2015.05.065.
- Stein, A., R. Draxler, G. Rolph, B. Stunder, M. Cohen, and F. Ngan (2015), NOAA'S HYSPLIT Atmospheric Transport and Dispersion Modeling System, *Bulletin of the American Meteorological Society*, *96*(12), 2059-2077, doi:10.1175/BAMS-D-14-00110.1.
- Tsai, H., L. Chien, C. Yuan, Y. Lin, Y. Jen, and I. Ie (2012), Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan's Lantern Festival, *Atmospheric Environment*, 62, 256-264, doi:10.1016/j.atmosenv.2012.08.012.

Re-submission to Atmospheric Environment

Vakkari, V., et al. (2014), Rapid changes in biomass burning aerosols by atmospheric oxidation, *Geophysical Research Letters*, 41(7), 2644-2651, doi:10.1002/2014gl059396.

Wang, Y., P. Hopke, and O. Rattigan (2012), A new indicator of fireworks emissions in Rochester, New York, *Environmental Monitoring and Assessment*, 184(12), 7293-7297, doi:10.1007/s10661-011-2497-5.

Yao, L., et al. (2015), Levels, indoor-outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia, *Chemosphere*, 135, 31-37, doi:10.1016/j.chemosphere.2015.03.026.

Yerramsetti, V., A. Sharma, N. Navlur, V. Rapolu, N. Dhulipala, and P. Sinha (2013), The impact assessment of Diwali fireworks emissions on the air quality of a tropical urban site, Hyderabad, India, during three consecutive years, *Environmental Monitoring and Assessment*, 185(9), 7309-7325, doi:10.1007/s10661-013-3102-x.

Low Hygroscopicity of Ambient Fresh Carbonaceous Aerosols from Pyrotechnics Smoke

Christian M. Carrico*, Samantha L. Bixler New Mexico Institute of Mining and Technology, Socorro, NM 87801

Manvendra K. Dubey, Allison C. Aiken Los Alamos National Laboratory, Los Alamos, NM 87545

HIGHLIGHTS

- 1. Pyrotechnics (fireworks) have substantial though episodic impacts on ambient aerosol properties.
- 2. In a well-mixed < 3 hr old fireworks plume, dry light scattering (450 nm) reached 120 Mm^{-1} with nearly constant ω (780nm) = 0.86 and \mathring{A} = 2.2.
- 3. Ambient fireworks smoke aerosol hygroscopic response was low ($f(RH=85\%) \sim 1$), implying lower radiative effects but longer lifetime and potential human exposures.
- 4. Chemical composition was a key driver as smoke from small sparklers exhibited greater water uptake (due to the contribution of potassium chloride) than from the larger explosive aerial fireworks which were likely dominated by organic and elemental carbon.