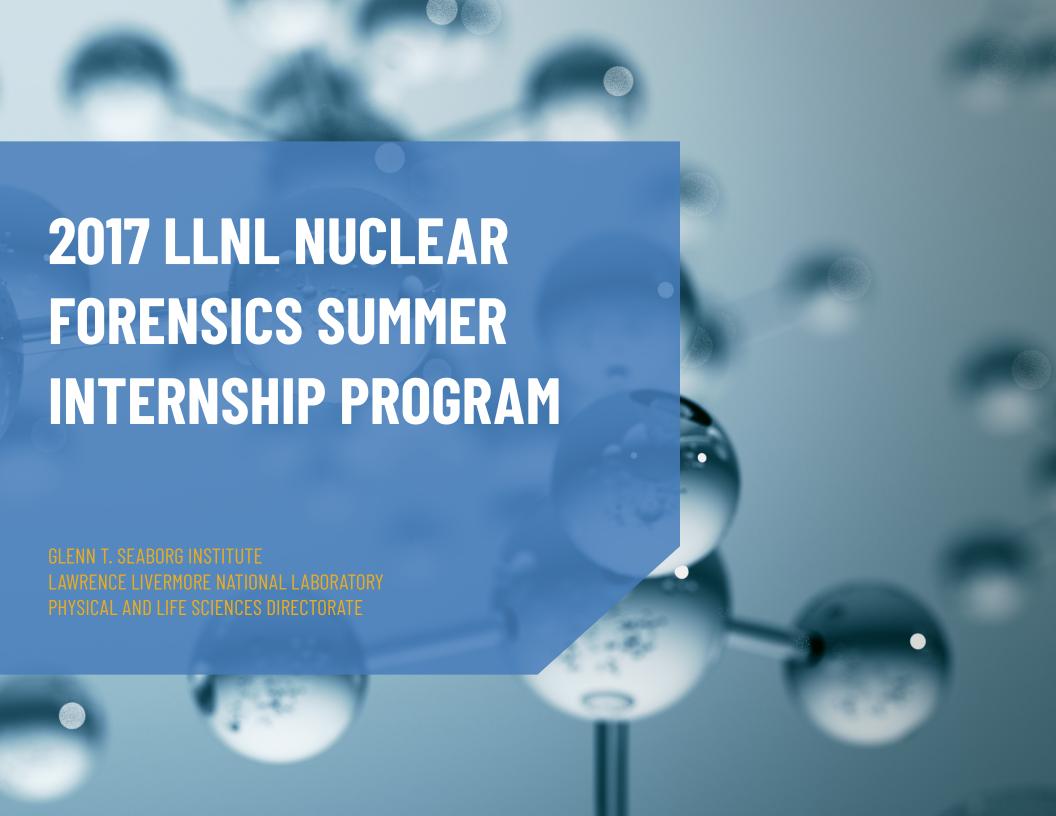


2017 LLNL Nuclear Forensics Summer Internship Program


M. Zavarin

December 13, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Glenn T. Seaborg Institute

Lawrence Livermore National Laboratory Physical and Life Sciences Directorate Livermore, CA 94550 https://seaborg.llnl.gov/

Director: Mavrik Zavarin (zavarin1@llnl.gov)

Administrator: Camille Vandermeer

Sponsors:

National Technical Nuclear Forensics Center Domestic Nuclear Detection Office Department of Homeland Security

Lawrence Livermore National Laboratory Glenn T. Seaborg Institute Physical and Life Sciences Directorate

LLNL-TR-743114

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA273.

The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Internship Program (NFSIP) is designed to give graduate students an opportunity to come to LLNL for 8–10 weeks of hands-on research. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students can also meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.

The NFSIP began 20 years ago as the Actinide Sciences Summer Program (see LLNL Newsline article, Appendix A). The program is run by the Glenn T. Seaborg Institute in the Physical and Life Sciences Directorate at LLNL (see recently updated poster highlighting the summer program, Appendix B). The goal of the NFSIP is to facilitate training for next generation nuclear scientists and engineers to solve critical national security problems in the field of nuclear forensics. Students are selected from the fields of physics, chemistry, geology, mathematics, nuclear engineering, chemical engineering, and environmental sciences. Students engage in research projects in the disciplines of actinide chemistry,

2017 Nuclear Forensics Summer Internship Program students met with NTNFC management on July 10, 2017. From left: Lindsay Strain (NTNFC), Elii Ronay (Vanderbilt University), Ellen Monzo (University of Minnesota, Duluth), Amalie Zeitoun (NTNFC manager), Ate Visser (LLNL mentor), Jeremy Osborn (Texas A&M, College Station), Aaron Tamashiro (Oregon State University, Corvallis), and Marissa Loustale (California State University, Sacramento).

radiochemistry, isotopic analysis, computation, radiation detection, and nuclear engineering in order to strengthen the "pipeline" for future scientific disciplines critical to the Department of Homeland Security (DHS) Domestic Nuclear Detection Office (DNDO).

The NFSIP is highly competitive with over 150 applicants for between 5–7 available slots. Additional students funded through paid internships and fellowships from NNSA, DHS, and DOE are invited to participate in the summer lecture series and poster symposium. This

NUCLEAR FORENSICS SUMMER INTERNSHIP PROGRAM

year, the NFSIP hosted students from 5 universities (See Table 1) across the US (Figure 1). The NFSIP students conducted research on such diverse topics as noble gas signature analysis of underground nuclear detonations, high precision measurement of Th and U decay constants for nuclear materials chronology, simulation of reactor fuel signatures, Sr and Mg isotopic signature determination using thermal ionization mass spectrometry and multicollector inductively coupled plasma mass spectrometry, and analysis of nuclear cross section data and gamma ray spectra for detector applications (see Table 2 for poster titles). Continuation of research collaboration between the graduate student, faculty advisor, and LLNL mentors is strongly encouraged. In many cases, NFSIP research evolves into a significant component of the students' graduate theses. For example, two graduates of the 2016 NFSIP (Jack Goodell and Katie Hoffman) joined LLNL through programmatic funding and a DOE Office of Science Graduate Student Research (SCGSR) Program fellowship to continue their graduate studies at LLNL in 2017.

In addition to hands-on training, students attend a weekly lecture series on topics applicable to the field of nuclear forensics (see Table 3). Selected speakers represent the breadth of expertise required for nuclear forensics research. Speakers discuss the importance of their work

in the context of national and international nuclear forensics.

Graduate and undergraduate students on fellowships, such as the Nuclear Forensics Graduate Fellowship (NFGF), are invited to join the summer program. This year, LLNL hosted three NFGF program students (Table 1). In addition, 10 students funded by other nuclear science fellowships or programmatic funding participated in summer program activities.

As part of an effort to build a "pipeline" for next generation nuclear forensics scientists, LLNL hosts students who are participating in the DOE sponsored "Summer School in Radiochemistry" held at San Jose State University (SJSU). The SJSU summer students come to LLNL to meet onsite summer students, discuss nuclear forensics research opportunities at LLNL, and tour state-of-the-art facilities. The SJSU summer students are strongly encouraged to apply to the LLNL nuclear forensics program—SJSU summer student graduate Ellen Monzo participated in the 2017 NFSIP.

The LLNL summer program provides a nuclear forensics pipeline of top-quality students from universities across the U.S. Since 2002, 30–40% of former attendees have returned to conduct their graduate research at LLNL.

In addition to those returning for graduate work:

- 18 became post-doctoral fellows at LLNL
- Six became post-doctoral fellows at other national labs
- 14 were hired as career scientists at LLNL
- Five were hired as career scientists at other national labs
- Four were hired as faculty in nuclear forensics/ radiochemistry/nuclear science
- Four others were hired at additional government institutions

A big factor in the success of this program is the dedication of the staff scientists who volunteer to mentor the summer students. Three of those mentors are, in fact, past recipients of NTNFC fellowships, and are now helping to grow the next generation of nuclear forensics scientists. In 2017, funding from NTNFC's Graduate Mentor Assistance Program (GMAP) helped to support the time required to mentor NFSIP students as well as NFGF program students. The GMAP allows staff scientists to develop summer projects for their students, oversee necessary safety training, and dedicate time to helping the interns and students maximize their productivity and scientific potential. Posters summarizing each NFSIP student's research were presented at the Laboratory Student Poster Day and are included at the end of this report.

NUCLEAR FORENSICS SUMMER INTERNSHIP PROGRAM

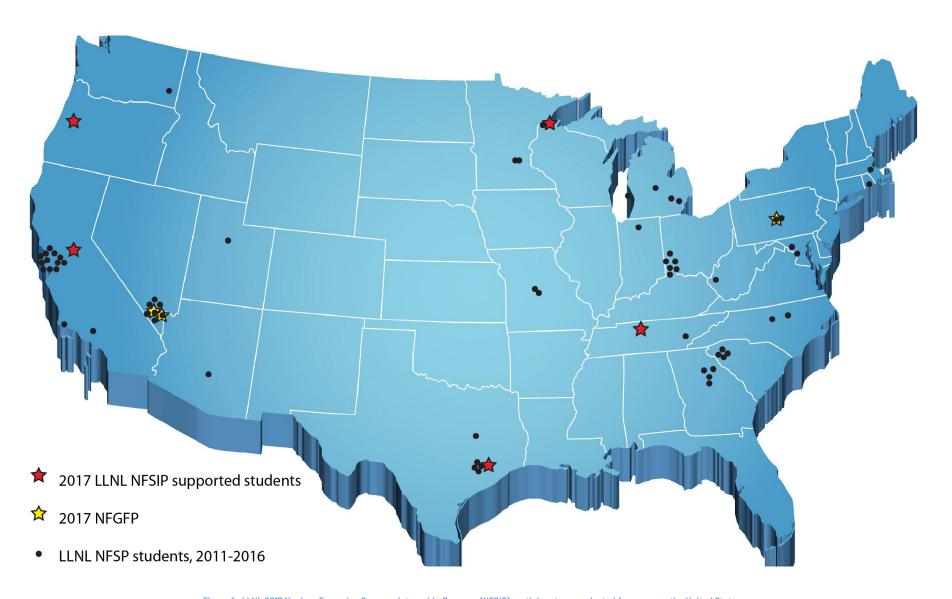


Figure 1. LLNL 2017 Nuclear Forensics Summer Internship Program (NFSIP) participants are selected from across the United States

NFSIP STUDENTS

MARISSA LOUSTALE

Graduate Student, Isotope Hydrology

ELLEN MONZO

Undergraduate Student, Biochemistry

Table 1, 2017 NFSIP Students

JEREMY OSBORN

Graduate Student, Nuclear Engineering

ELLI RONAY

Graduate Student, Geochemistry

AARON TAMASHIRO

Graduate Student, Nuclear Engineering

JOHN "JACK" GOODELL a

Graduate Student, Chemistry

KATIE HOFFMAN a

Graduate Student, Chemistry

CHAD DURRANT b

Graduate Student, Nuclear Engineering

^b Nuclear Forensics Graduate Fellow

JEFF ROLFES b

Graduate Student, Radiochemistry

MARK FITZGERALD b

Graduate Student, Radiochemistry

^a Returning 2016 NFSIP students funded through other grants and fellowships.

NFSIP STUDENTS

Table 2. NFSIP Student Projects and Mentors

Student	Mentor	Project Poster Title
Marissa Loustale	Ate Visser, Carolyn Crow, and Bill Cassata	Noble Gas Mass Spectrometry and Interpretation of Hydrogeologic Isotopic Signatures at the Nevada National Security Site
Ellen Monzo	Tashi Parsons- Davis	Alpha Spectroscopy Source Preparation for Radionuclide Metrology
Jeremy Osborn	Martin Robel and Brett Isselhardt	Samarium as a Thermal Reactor FluxMonitor For Used Fuel
Elli Ronay	Naomi Marks	(²³⁴ U/ ²³⁸ U)i and ⁸⁷ Sr/ ⁸⁸ Sr in an Indian stalagmite: implications for monsoonrainfall proxycalibration
Aaron Tamashiro	Jason Burke	Evalution of U-238 Fission Product Yields

Table 3. Nuclear Forensics Summer Program Seminar Schedule

Date	Speaker	Торіс
6/15/17	David Weisz Postdoc, Chemical and Isotopic Signatures Group, Nuclear and Chemical Sciences Division	Aerodynamic Fallout Glass and Fallout Formation Chemistry
6/22/16	Ate Visser Staff Scientist, Environmental Radiochemistry Group, Nuclear and Chemical Sciences Division	The Isotopic Fingerprints of Hydrological Processes
6/29/16	Adam Bernstein Group Leader, Rare Event Detection, Nuclear and Chemical Sciences Division	Rare Event Detection in Nuclear Science and Security
7/6/16	Mona Dreicer Deputy Director, Center for Global Security Research	Treaty Monitoring and Verification
7/14/16	Sean Gates Staff Scientist, Environmental Radiochemistry Group, Nuclear and Chemical Sciences Division Roger Henderson Staff Scientist, Nuclear and Radiochemistry Group, Nuclear and Chemical Sciences Division	Application of the U – He chronometer to the analysis of nuclear forensic materials A Renaissance of Plutonium Metal Production at the Gram Scale
7/20/16	Naomi Marks Staff Scientist, Chemical and Isotopic Signatures Group, Nuclear and Chemical Sciences Division	Case Studies in Nuclear Forensics: A primer on Comparative Analysis Techniques
8/4/16	Mavrik Zavarin Director, Glenn T. Seaborg Institute, Physical and Life Sciences Directorate	Closeout

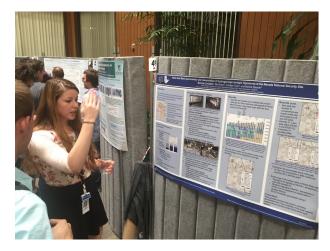
LECTURES AND TOURS

David Weisz (Hutcheon post-doctoral fellow)
describes the nature and chemistry of nuclear fallout

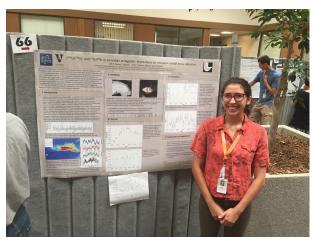
Adam Bernstein describes rare event detection in nuclear security and basic nuclear science

Roger Henderson describes the chemistry and application of plutonium metal production at the gram scale

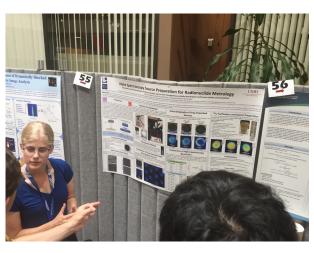
Mona Dreicer describes treaty monitoring and verification in the context of nuclear science

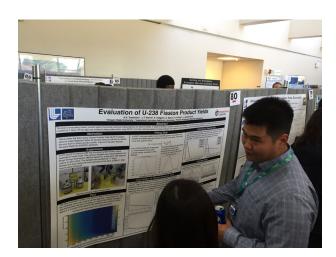


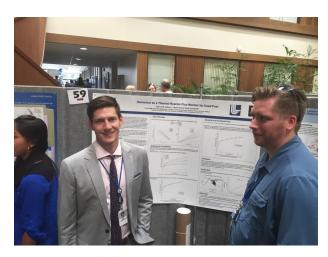
Sean Gates describes the use of noble gas mass spectrometry in nuclear forensics chronometry



2017 NFSIP students received a copy of Scott Berkun's
Confessions of a Public Speaker highlighting the
importance of effective presentation of scientific research


LLNL SUMMER POSTER SESSION


Marissa Loustale discusses her poster "Noble Gas Mass Spectrometry and Interpretation of Hydrogeologic Isotopic Signatures at the Nevada National Security Site" at the LLNL summer student poster session


Elii Ronay presents her poster "Uranium and Strontium Isotopic Signatures in an Indian Stalagmite" at the LLNL summer student poster session

Ellen Monzo explains her poster "Alpha Spectroscopy Source Preparation for Radionuclide Metrology" at the LLNL summer student poster session

Aaron Tamashiro presents his poster "Evaluation of U-238 Fission Product Yields" at the LLNL summer student poster session

Jeremy Osborne (left) discusses "Samarium as a Thermal Reactor Flux Monitor for Used Fuel" with Jack Goodell (2016 NFSIP student) at the LLNL summer student poster session

Noble Gas Mass Spectrometry and Interpretation of Hydrogeologic Isotopic Signatures at the Nevada National Security Site

Marissa Loustale¹, Ate Visser², Carolyn Crow², and Mavrik Zavarin²

¹California State University, Sacramento, Department of Geology, 6000 J Street, Sacramento, CA 95819 ²Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, 7000 East Avenue, Livermore, CA 94550

Introduction

Groundwater at Pahute Mesa, in the northwest corner of Nevada National Security Site (NNSS), is thought to flow from northeast to southwest based on potentiometric data.

Nevado Testan Isotopic signatures from new and archived tritium and noble gas data are used to better understand contaminant transport and the groundwater flow system at Pahute Mesa.

> Figure 1: Location map of Pahute Mesa. Cross section line A-A' is used to understand the system at depth.

Tritium and Noble Gases in Groundwater

- Origin of Dissolved Noble Gases:
- 1. Temperature Dependent Equilibrium Concentration

2. Excess air caused by water table fluctuations

- 3. Terrigenic helium
 - Mantle fluids (³He and ⁴He)
- Decay of radioactive isotopes
- 3H to tritiogenic 3He
- U & Th to radiogenic ⁴He
- Origin of tritium:
- 1. Cosmogenic and anthropogenic sources in precipitation
- 2. Test derived, at NNSS only

Analytical Methods: Tritium

e bottles on vacuum manifold during analysis. (right) 500mL of unfiltered groundwater is loaded into a stainless steel bottle

- ³He is removed by **degassing**, involving repeated heating, chilling and pumping with vacuum pumps
- ³He is allowed to accumulate from decay of ³H over **21 days** (~0.323% of ³H decays to ³H)
- He isotopes are measured on a static VG5400 sector field mass spectrometer
 - ⁴He measured on Faraday Cup (measured to detect atmospheric leaks)
 - ³He measured on electron multiplier
 - All samples are referenced against a NIST-traceable standard and calibration is verified against air aliquots.

Analytical Methods: Noble Gases

Figure 3: LLNL's environmental Noble Gas Mass Spectrometer, (left amples with elevated levels of 3H were measured on the Nu Instrument

- Noble gases are collected in copper tubes to prevent exchange of gases with the atmosphere.
- Dissolved noble gases are analyzed on a mass spectrometer with an automated custom build manifold.
- Water is boiled to expand the gases
- Dry ice is used to freeze and trap the water
- Noble gases enter the manifold and are separated with a series of getters and traps
- Samples are referenced against air aliquots (0.115 cm³).
- · Calibration is verified against air equilibrated water.

Results

New data was collected and combined with archived noble gas and tritium data from wells present at Pahute Mesa that span a large depth range within the local volcanic-alluvial aquifer

hydrologic units and major geologic structures (Fenelon et al., 2010). Light grey shows the well screened interval and the blue line is the depth to water table in feet above mean sea level. Elevations are also measured feet above mean sea level. Cross section not to

The main input of water into the system comes in the form of recharge due to precipitation at the high

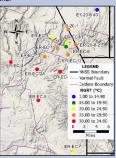


Figure 5: Noble gas recharge temperatures calculated for Pahute Mesa.

Results cont.

- Most wells with elevated 3H concentrations are located onsite near test locations (U19 and U20 wells)
- Elevated 3H in two wells offsite (ER-EC-11 and ER-EC-12).
- Is elevated 3H travelling offsite through the aquifer?

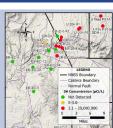


Figure 6: Map of ³H concentration red in Pahute Mesa wells

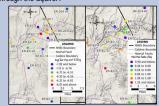


Figure 7: Map of terrigenic ⁴He in Pahute Mesa wells (left). Map of terrigenic ³He/⁴He ratio in Pahute Mesa wells (right),

- Radiogenic ⁴He accumulates along a flow path.
- Do high ⁴He concentration in wells confirm the proposed NE to SW flow path?
- Broad range of He isotope ratios in Pahute Mesa wells • Radiogenic He signature (3He/4He < atmospheric) in
- wells with elevated ³H • Mantle He signature (3He/4He > atmospheric) in
- ER-EC-5 is not explained by nearby faults or geologic features
- ER-EC-6 indicates groundwater mixing?

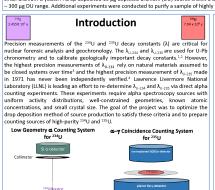
Future Work

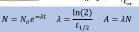
Does geologic structure play a part in controlling groundwater flow? Does underflow of the larger regional aguifer influence the flow of the Pahute Mesa local

Resetues.
Fenelon, J.M., Sweetkind, D.S., and Laczniak, R.J., 2010, Groundwater flow systems at the Nevada Test Site, Nevada: A synthesis of potentiometric contours, hydrostratigraphy, and geolog structures: U.S. Geological Survey Professional Paper 1771, 54 p., 6 pls

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Alpha Spectroscopy Source Preparation for Radionuclide Metrology



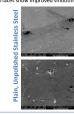

Optimization of the drop deposition method to produce sources with homogeneous activity distributions and known atomic concentrations

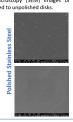
Ellen M. Monzo¹, Tashi Parsons-Davis², Christina Ramon², Kim Knight²

¹University of Minnesota Duluth, Department of Chemistry and Biochemistry, Duluth, MN, ²Lawrence Livermore National Laboratory, Physical and Life Sciences Division, Chemical and Isotopic Signatures Group, Livermore, CA

Abstract Method development work was conducted to optimize the drop deposition of uranium nitrate onto the substrates were polished and then sprayed with a solution of surfactant, seeding agent, and ethanol to promote the uniform spread of uranium droplets onto the substrate surface as well as formation of small uranium crystals. A drop deposited 10 µg depleted uranium (DU) source shows a uniform activity distribution similar to 10 µg DU sources produced with electrodeposition, another source production method. Drop deposition experiments with DU masses larger than 10 µg showed a uniform activity distribution was difficult to achieve in the 20 - 300 µg DU range. Additional experiments were conducted to purify a sample of highly enriched uranium (99,94% 235U) for use in 235U source production with the drop deposition method.

Substrate Preparation


Substrate surface properties were optimized to promote uniform spreading of uranium droplets and growth of small uranium crystals during drying. Variables targeted for optimization include the following:

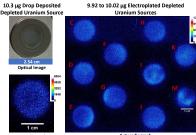

- Substrate surface polish
- Surfactant and seeding agent concentrations
- Spray time Airbrush spray diameter

Substrate Surface Polish

Stainless steel substrate disks were polished with 3 μm diamond polish and 1 μm aluminum powder. Secondary electron microscopy (SEM) images of polished surfaces show improved smoothness compared to unpolished disks.

Substrate Pre-treatment

After polishing, substrate surfaces were pre-treated based on established procedure.5 Substrates were sprayed with a solution of surfactant (Tween®-20), seeding agent (50 nm polystyrene nanospheres), and ethanol with an airbrush . The sprayed solution was designed to promote uniform spreading of uranium droplets and growth of small uranium crystals during drying.



Pycnometer Method

A polyethylene pycnometer (right) filled with uranium nitrate solution was used to quantitatively drop deposit depleted uranium (DU) onto prepared substrates. Measurement of the pycnometer mass before and after use enabled precise quantification of the DU mass deposited.

Comparison of Drop Deposited and **Electroplated Sources**

Autoradiography was used to image the spatial distribution and intensity of uranium activity deposited onto substrates in arbitrary units. A 10.3 ug DU drop deposited source displays an activity distribution comparable to 10 µg DU electroplated

Autoradiography of Drop Deposited

Additional autoradiography results show a homogeneous activity distribution was difficult to achieve for drop deposited DU masses larger than 10 µg.

Source

Condition column in 9 M HCl, load 235U solution in 9 M HCl Flush with 9 M HCI/0.05 M HF to elute Pa

²³⁵U Purification and Source Preparation

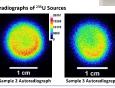
A solution of highly enriched uranium (99.94% ²³⁵U) of unknown age and progeny

was chemically purified from its radionuclide daughters using two BioRad AG1 X8

100-200 mesh anion exchange columns.

Condition BioRad column in 8 M HNO.

Dissolve 235U in conc. HCl, dry down, repeat


Load 285U solution in 8 M HNO₃

Flute 235U in 0.5 M HNO.

Dry down 235U

Second Column

Basic Purification steps:

Diamond and aluminum polishes improved substrate smoothness

- Conclusions Surfactant and seeding agent concentrations were optimized for 10 ug DU source
- A 10 µg DU drop deposited source shows activity distribution homogeneity
- similar to 10 µg DU electroplated sources Alpha spectroscopy resolution of drop deposited sources decreases with increasing DU mass

Future Work

- Optimize surfactant and seeding agent concentrations for DU masses greater than 10 µg
- Analyze drop deposited ²³⁵U sources in an α-γ coincidence counting system Calculate \(\lambda_{\coresion}\) from coincidence counting data
- Analyze drop deposited 234 U sources in a low geometry α counting system
- Calculate \(\lambda_1, \tag{2}\) from low geometry counting data

Moody, K.; Hutcheon, I.; Grant, P. Nuclear Forensic Analysis. 2nd ed. CRC Press: Boca Raton, FL, T.M. Harrison et al., (2015) It's About Time: Opportunities and Challenges for U.S. Geological

urvey. Institute of Geophysics and Planetary Physics Publication 6539, University of California, Los

Angeles.

3. Cheng, H.; Edwards, R. L.; Hoff, J.; Gallup, C. D.; Richards, D. A.; Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chen. Geol. 2000, 169, 17-33.

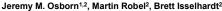
4. Jaffey, A. H.; Flynn, K. F.; Glendenin, L. E.; Bentley, W. T.; Essling, A. M. Precision measurement of half-lives and specific activities of ²³²U and ²³²U, Physicol Review C 1971, 4, 1889.

5. Van Ammel, R., Evkens, S., Evkens, R., & Pommé, S. Preparation of drop-deposited quantitative 3. val in immen, n., years, s., tyarin, n., s. rolline; s. reparation to unpropositive quantitative uranium sources with low self-absorption. Nuclear instruments and Methods in Physics Research Section A. Accelerators, Spectrometers, Detectors and Associated Equipment 2011, 627, 76-78. 6. Monzo, E., et al. Optimization of Uranium Molecular Deposition for Alpho-Counting Sources. No. LINL-TR-714439. Lawrence Livermore National Laboratory (LINL), Livermore, CA, 2016.

Comparison of Alpha Spectroscopy Resolution Alpha spectroscopy of drop deposited sources shows resolution decreases with

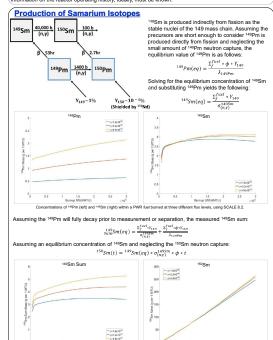
increasing DU mass as demonstrated by calculated full-width-half-max (FWHM) values for the ²³⁸U alpha peak . Full-width-half-max values from 10 µg DU electroplated sources are comparable to FWHM values from 10-24 µg DU drop

DU Mass (μg)	FWHIVI	500
10.32	32.26	500
14.43	39.86	9300 Full Wic
20.54	38.57	1 ""
24.32	37.27	180
195.33	113.44	0 100 200 300 400 500 Charge
Electroplat	ed Sources	Example ²³⁸ U Alpha Peak
DU Mass (μg)	FWHM	
9.97 (plate C)	25.35	
9.98 (plate D)	39.50	
10.02 (plate E)	27.30	
9.92 (plate F)	32.99	
9.98 (plate G)	29.50	Ortec® Alpha Duo Counting System
9.95 (plate H)	30.32	O CO O
9.94 (plate I)	32.85	
9.95 (plate J)	30.57	Alpha Spectrosco
9.93 (plate K)	28.75	Chamber
9.89 (plate M)	66.27	

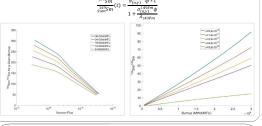

Drop Deposited Sources

This work was performed under the audiption of the L. Speatment of the PL. Speatment of large by Lavense Livernon National Laborator, under Collects EL-45.25/PMAC/346. This internship was supported by the National Technical Machine Forensic Center, under Collects EL-45.25/PMAC/346. This internship was supported by the National Technical Machine Forensic Center, Debugging the Speatment of Center Speatment of Homeland Speach of Speatment of Homeland Speach (Speatment of Speatment of Speatment of Homeland Speach Speatment of Speatment of Homeland Speach (Speatment of Speatment of Homeland Speach Speatment of Homeland Speach Speatment of Homeland Speach (Speatment of Homeland Speatment o

Samarium as a Thermal Reactor Flux Monitor for Used Fuel

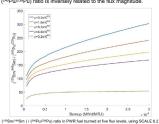

¹Texas A&M University, Department of Nuclear Engineering, Nuclear Security Science & Policy Institute ²Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory

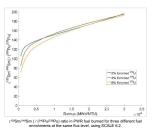
Introduction


The ability to determine reactor flux from a used fuel sample or interdicted nuclear material is important in developing nuclear forensics analyses. Improvements in measurement instrumentation, such as the LLNL LION resonance ionization mass spectrometer (RIMS), have made quick measurements of stable fission product abundances possible. RIMS uses wavelength-tuned lasers to selectively ionize a single element before being sent to the mass analyzer. As a result, RIMS measurements avoid isobaric mass interference with respect to interdicted nuclear material, the information contained in intra-element isotope ratios will be insensitive to any chemical separation. Intra-element isotope ratios have the possibility to avoid limitations imposed by using only concentrations of radiactive and stable fission products and actinides for forensics analysis, however research must be done to interpret the available information contained in intra-element isotope ratios relating to the operating details of a reactor.

Previous studies have identified ¹⁹⁰Xe (¹⁹⁴Xe and ¹³⁷Cs/¹⁸⁷Cs, for use in determining thermal reactor flux from used flue! In addition to the robustness gained by additional flux monitors, these radios come with their challenges. Xenon is a noble gas, and thus will be lost if any chemical processing of the material has taken place. The cesium ratio is sensitive to reactor shutdowns and ¹⁹⁷Cs decays with a 30.08 y half-life, thus information on the reactor operating history, ideally, must be known.

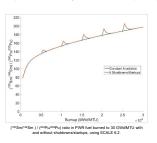
150Sm/149Sm Ratio


The 150Sm/149Sm ratio consists of a fluence dependent isotope divided by a flux dependent isotope:


Samarium as a Flux Monitor

The ¹⁵⁰Sm/¹⁴⁰Sm ratio is dependent on both the neutron flux and fluence. Decoupling the neutron flux and fluence can be done with the use of an additional isotope ratio, such as ²⁴⁰Pu/²³⁰Pu, which depends on the fluence.

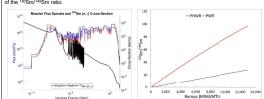
The (150 Sm/ 149 Sm) / (240 Pu/ 239 Pu) ratio is inversely related to the flux magnitude


Over the range of enrichments studied here the (150 Sm/ 149 Sm) / (240 Pu/ 239 Pu) ratio is relatively independent of fuel enrichment.

Samarium as a Flux Monitor Cont.

The (150Sm/149Sm) / (240Pu/239Pu) ratio is independent of reactor shutdowns/startups during irradiation.

Shown below are simulations of PWR fuel burned to 30 GWd/MTU burnup. The blue line is a constant irradiation. The red line has five 30-day shutdowns and startups during the irradiation. The ratio ("20Sm/"49Sm) / ("29Sm/"49Sm) ("29Sm) ("29



Conclusion

Within a given reactor-type, the ("SSm/"SSm) / (%PD_UZSPD) ratio is inversely related to the flux magnitude, and could serve to determine the thermal flux from measurements in used fluel. This monitor is made up of isotopes which are all effectively stable for the time scale considered. Additionally, the ("SSm","SSm) / (2"PD_UZ") are to relate the scale considered in the scale considered in the scale of t

Future Work

Understand the effect of the flux-averaged cross-section for ¹⁴⁹Sm neutron capture $(\sigma_{(n,\gamma)}^{149Sm})$ on the behavior of the ¹⁵⁰Sm/¹⁴⁹Sm ratio.

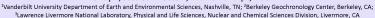
References

 A.C. HAYES, G. Jungman, Determining reactor flux from xenon-136 and cesium-135 in spent fuel, Nuclear Instruments and Methods in Physics Research A 690 (2012) 68-74.

This research was performed under the Nuclear Forensics Summer Internship Program, administered by the

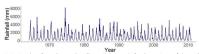
This internship was supported by the National Technical Nuclear Forensics Center, Domestic Nuclea Detection Office, Department of Homeland Security.

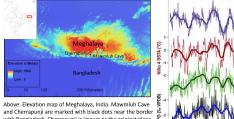
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermon National Laboratory under Contract DE-AC52-07NA27344



(234U/238U), and 87Sr/86Sr in an Indian stalagmite: implications for monsoon rainfall proxy calibration

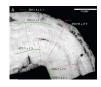
Elli R. Ronay^{1*}, Jessica L. Oster¹, Warren Sharp², Naomi Marks³




Speleothem MAW-0201 is a modern, sub-annually layered, aragonite stalagmite from Meghalaya, India – the rainiest place on Earth. Aragonite incorporates more uranium than calcite due to a wider crystal lattice. For this reason, aragonite speleothems have the potential as informative, but underutilized, paleoclimate archives that can be precisely dated at high resolution. (234U/238U), and 87Sr/86Sr are rainfall proxies used in calcite speleothems, typically in arid regions, that reflect changes in soil processes and water residence times throughout the soil-cave system. Here, we present preliminary results suggesting (234U/238U), and 87Sr/86Sr in aragonite speleothems record hydrologic variability from this monsoon region on decadal to multi-decadal timescales.

I. Background

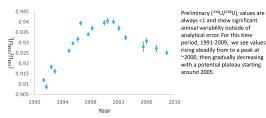
- · Aragonite speleothems can be dated at high precision and thus provide important paleoclimate archives, but they are understudied relative to calcite speleothen
- We have identified a suite of fast-growing, high U. modern (1960-2012) aragonite speleothems from Mawmluh Cave in Northeast India. Analysis of a common rainfall proxy, δ^{18} O, in these speleothems suggests it reflects moisture source and transport.
- (23411/23811), reflects soil water-mineral interaction through g-recoil, which drives (23411/23811). higher in soil pore waters by ejecting ²³⁴Th, which quickly decays to ²³⁴U, out of the crystal lattice. Chemical weathering drives soil water (234U/238U), towards the mineral composition
- 87Sr/86Sr is dependent on water-rock and water-soil interactions as well as dust and sea spray input. Lower precipitation causes the Sr isotope composition of the speleothem to be more similar to the host rock due to longer water residence times in the host rock
- Our goal is to calibrate (234U/238U), and 87Sr/86Sr (in addition to stable isotopes and trace elements) in these speleothems against meteorological data to determine the controls on these proxies and develop the best proxy suite for determining paleorainfall variability in aragonite

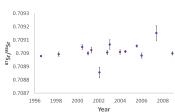

Precipitation data from the nearby village, Cherrapunii, for the entirety of the speleothem record, showing extreme seasonality from the ISM. Rainfall peaks occur in June or July of

with Bangladesh, Cherrapunii is known as the rainiest place on Earth, due to the Indian Summer Monsoon (ISM) rainfall.

Right: NPGO Niño4 PDO indices during the speleothern record, and δ180 from MAW-0201. Bold lines are LOESS smoothed. MAW δ^{18} O mainly reflects moisture source and transport and shows similarities with the PDO (Myers et al., 2015)

II. Methods



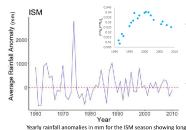

A) MAW-0201 in grevscale, Trace elements and stable isotopes taken from the growth axis labeled MAW 02-01a. U-Th sample locations and dates marked in green

B) Micromilling MAW-0201 for (234U/238U), and 87Sr/86Sr samples along growth bands, adjacent to micromilled stable isotope trough. Sampled every 200 μm, resulting in ~70 5mg powdered samples at roughly annual resolution. ~2 months of daily drilling

- · Each powdered sample is dissolved to perform U and Sr separation procedures
- (234U/238U)_i measured by multi-collector inductively coupled plasma mass spectrometry (MC-(CP-MS)
- Thermal Ionization Mass Spectrometry (TIMS) used for 87Sr/86Sr measurements

III. Results

LLNL-POST-735269


87Sr/86Sr values range from

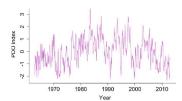
low overall variability

0.708856 ± 3.9x10⁻⁵ to 0.709152 ±

5.8x10⁻⁵, with annual variability outside of analytical error despite

IV. Discussion

decreasing. Conversely, it could renresent an increase and subsequent decrease in α-recoil or Sr isotope variability cannot be meaningfully interpreted without


isotopic analysis of the two main

(234U/238U), may reflect a decrease

in soil mineral chemical weathering

up to the peak ~2000, then

mixing endmembers, soil minerals and host rock. term variability in rainfall amounts that may be recorded in

Pacific Decadal Oscillation (PDO) indices for the entirety of the speleothem record. The PDO is one of the ocean-atmosphere oscillations that acts on multidecadal time scales and affects ISM strength. The PDO and other large scale climate oscillations may affect isotopic abundances in MAW-0201

V. Conclusions and applications

- (234U/238U), and 87Sr/86Sr have potential as hydrologic proxies on various time scales, but more data are needed to correlate their behavior with meteorological data and ocean-atmosphere oscillation indices
- To better interpret our results, soil leachates and the dolomite host rock must be analyzed for (234U/238U), and 87Sr/86Sr. This way we can place endmembers for the isotopic variability we see.

Evaluation of U-238 Fission Product Yields

A.S. Tamashiro¹, J.T. Burke², S. Padgett², S. Stave³, A. Prinky³, L. Greenwood³ ¹Oregon State University, ²Lawrence Livermore National Laboratory, ³Pacific Northwest National Laboratory

Abstract

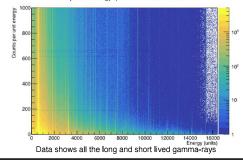
The goal of evaluating fission product yield is to provide improved measurements for select nuclides. In order to do this, a uranium sample was irradiated in the Godiva critical assembly. The sample was retrieved and gamma ray counted for 7 days, All the data was analyzed using codes written using ROOT. From the individual peaks of certain isotopes, the original number of atoms could be calculated and further analyzed to get the fission product yield.

Motivation

This is under the Short Lived Fission Product Yield (SLFPY) project, which is under National Center for Nuclear Security (NCNS) to reduce the error bars in fission product yields. Improve Evaluated Nuclear Structure Data File (ENSDF) database.

Experiment

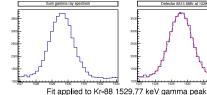
A 470 mg foil of uranium-238 was irradiated at the Godiva critical assembly in burst mode. The uranium sample was placed between two Broad Energy Germanium (BEGe) detectors, which were 180 degrees relative to each other. The sample was counted for 7.7 days. Background was measured overnight prior to the shot. 6.42E+10 total fissions were produced.

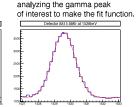


Gamma counting experimental setup

The data acquisition system recorded the data in list mode to a text file. A parsing code was used to bin the data into 1 hour time bins. The time binned data was then fit using a C code in the ROOT framework. Below is a 3-D plot of the gamma ray spectrum as a function of time.

Time dependent energy spectrum for U238 detector 8815

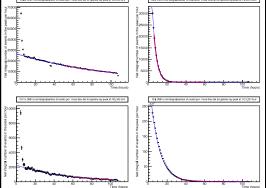



Fitting Data

A ROOT code was used to look at specific gamma ray peaks to fit a function and determine net number of counts in the peak. A Gaussian curve was used for the fit.

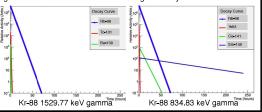
 $Fit = (norm) \exp$

norm is the amplitude of the peak x_0 is the centroid of the peak σ is the energy resolution of the

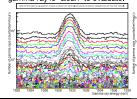


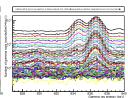
These parameters are determined

by reading in the data and


Calculation of Fission Product Yield

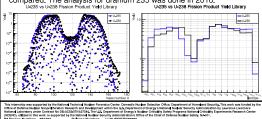
The integral of the fit function provides the net number of counts per time bin. Then the net number of events per unit time can then be plotted and fit to determine the number of events at time zero. The results are tabulated in a spreadsheet where the efficiency and branching ratio are used to determine the final fission product yield.


Interfering Gamma-rays


Complication to the analysis is the presence of interfering gamma-ray lines. Some gamma-ray peaks come from other isotopes and interfere with the peak of interest. To know this, a fission product library was generated. The thickest blue line is the gamma-ray of interest.

Cascade Plots

These plots were generated to help determine when and where the gamma-ray is "clean" to evaluate



Conclusion

The evaluation of fission product yields will improve the library of fission product yield data. More isotopes will be analyzed and evaluated. The fission product yields of uranium 235 and 238 will be compared. The analysis for uranium 235 was done in 2016.

U-235 vs U-238 Fission Product Vield Library

U-235 vs U-238 Fission Product

LLNI-POST-736083

APPENDIX

Twenty Summers of Nuclear Forensics and Actinide Science

In 1998, the Actinide Sciences Summer Program began training the next generation of actinide scientists (those who study elements 89 through 103 in an effort to identify the origin and behavior of nuclear materials). On Aug. 5, this longstanding program, renamed the Nuclear Forensics Summer Internship Program (NFSIP) in 2008. bid farewell to its 20th class.

As a component of the Lawrence Livermore National Laboratory branch of the Glenn T. Seaborg Institute, NFSIP is focused on inviting a small number of students-graduate and senior undergraduate-to work closely with LLNL scientists on nuclear forensics, environmental radiochemistry, and heavy element discovery topics. Each student conducts mentored research and produces a poster while attending NFSIP; many go on to apply the research to their own graduate Ph.D. theses. Over the past 16 years, 30-40 percent of NFSIP allumin have returned to Livermore in some capacity. Thirteen have been hired as career scientists, and at least 15 have been hired as postdoctoral staff.

The original Actinide Sciences Summer Program was founded in response to a crisis. In the 1990s, American higher education was not producing enough nuclear science Ph.D.s to keep up with national security needs. Seaborg Institute founding director Darleane Hoffman and her colleagues raised awareness of the shortage, and in 1998, they succeeded in securing funding to begin the summer program. Over the past 20 years, the GTSI has hosted hundreds of students from over 70 colleges and universities.

During a conference at Argonne National Laboratories in 2014, former-NESI D'incider Annie Kersting was joined by many former NFSIP students now working in a variety of national security careers. Bottom row, from left. Jewel Wrighton, now working in the nuclear policy area in Washington, Justim Wallensky, a professor at the University of Missouri, Linday Shullen-Nickles, a professor at the University of Missouri, Linday Shullen-Nickles, a professor at Steman Oniversity, April Gillens, NMSA student at the University of Manyland. Top row, from left: Brett Isselhard, a staff scientist in forensics at LLNL; Chad Durrant, a Ph.D. student at the University of Pennsylvanis; Greg Brennecka, faculty at the University of Menyland and David Meier, a staff scientist at Padick Northwest National Laboratory.

realized that LLNL was for me," he says. He returned in 2000 as a postdoctoral researcher.

Kerri Blobaum was in the 2000 class. Under the direction of Adam Schwartz -- now director of the Ames Laboratory in lowa -- Blobaum was able to apply her materials science background to nuclear forensics. She credits her summer program experience as a "tryout" that eventually helped land her dream job. Today, she leads a leam of LINI. Materials characterization experts.

performs actinide separations in

preparation for an analysis of plutonium

from hydrothermally altered nuclear melt

"Hearing from former students that being a summer student in nuclear forensics and environmental radiochemistry made a significant difference in their careers is a great feeling," says Annie Kersting, the previous director of the Seaborg institute and the current head of University Relations for the Laboratory. Students seem to particularly value the one-on-one mentoring and the lecture series. Speakers have included "giants in the field of actinides," according to Blobaum. Glenn Seaborg himself paid a visit to the inaugural class.

Actinide Sciences Summer Program. "The summer program was my first taste of LLNL, and there I

"I remember at the time being amazed that these highly respected scientists -- whose journal articles ag to spend the day with us." says Sutton.

highly respected scientists -- whose journal articl I had read and admired as a grad student -- were willing to spend the day with us," says Sutton.

"The whole summer was very fast-paced and full of firsts," says Teresa Baumer, a member of the 2017 class. "A major highlight was being able to complete a research project that involved carrying out experiments, analyzing data and putting it all together in a poster -- all over the course of one short summer. I learned many new techniques, including separation chemistry and modeling, that I can apply to my dissertation work back at my home university."

The direct interaction between Lab scientists and visiting students is central to NFSIP's success. "This kind of mentoring is invaluable to the students," said current Seaborg Institute and NFSIP director Mavrik Zavarin, "but I also see that the mentors benefit from the experience."

"The relationships formed during the summer institute formed the basis of my early connections to researchers," says Sutton, "from experimentalists working with me at the bench to mentors who, 19 years later, are still trusted advisors."

As students come through NFSIP, they help to strengthen the pipeline between LLNL and academic institutions. Kersting adds that some of the Seaborg institute's capabilities (like the high-resolution secondary ion mass spectrometer, Transmission Electron Microscopy or Nano Secondary Ion Mass Spectrometry) are especially attractive to the university community.

"People recognize the success of the program externally, so they want to send their students here," she says. And over time, NFSIP and its predecessor program have helped to increase the number of Ph.D.s granted by university chemistry and earth science departments in the area of nuclear forensics, environmental radiochemistry and actinide chemistry -- all critical areas of scholarship needed for the national laboratories.

Based on the success of NFSIP, the Seaborg Institute is looking to new opportunities for the next generation of nuclear scientists that come to Livermore, including potentially offering both long-term and short-term nuclear science student internships throughout the year. The summer institute is a foundational part of the Seaborg Institute, "Zavarin says." We are now looking for new ways to host students and expand our education mission at

The 2017 NFSIP class continued the legacy of its 19 predecessors: talented, committed students pairing up with Lab scientists to characterize nuclear materials, determine the behavior of radionuclides in the environment and study the fundamental properties of transactinide elements. Challenging careers await.

-Ben Kennedy

CLICK TO READ FULL ARTICLE

Appendix A. Newsline article highlighting the 20th year of the Nuclear Forensics Summer Internship Program and Actinide Science Summer Programs

Livermore's Glenn T. Seaborg Institute runs an 8- to 10-week summer internship program for graduate students interested in nuclear forensics. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, and participate in a wide range of student activities across the LLNL campus.

Founded in 1998, the GTSI summer internship program focuses on training the next generation of nuclear scientists and engineers. Students majoring in physics, chemistry, geology, mathematics, nuclear engineering, chemical engineering, and environmental sciences from across the U.S. are invited to participate. They engage in research projects in actinide chemistry, radiochemisty, isotopic analysis, computation, and radiation detection. The ultimate goal of the program is to strengthen the workforce pipeline for nuclear forensics, radiochemistry, and super heavy element research.

ince its founding in 1998, the GTSI summer internship program has hosted students from over 70 tilleges and universities.

Professor Gienn 1. Seaporg poses with college students participating in the first GTSI summer internship session in 1998.

Sponsor: National Technical Nuclear Forensics Center, Domestic Nuclear Detection Office, Department of Homeland Security.

Lawrence Livermore National Laboratory

Appendix B. Recently updated poster highlighting LLNL's NFSIP

