ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-18-20636

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Corrections to the General (2,4) and (4,4) FDTD Schemes
Meierbachtol, Collin S.

Smith, William S.

Shao, Xuan-Min

Correction/update to published journal article
Report

2018-01-29




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Corrections to the General (2,4) and (4,4) FDTD Schemes

Collin S. Meierbachtol, William S. Smith, Xuan-Min Shao
January 12, 2018

Abstract

The sampling weights associated with two general higher order FDTD schemes were derived by Smith,
et al. and published in a IEEFE Transactions on Antennas and Propagation article in 2012. Inconsistencies
between governing equations and their resulting solutions were discovered within the article. In an effort
to track down the root cause of these inconsistencies, the full three-dimensional, higher order FDTD
dispersion relation was re-derived using Mathematica™. During this process, two errors were identified
in the article. Both errors are highlighted in this document. The corrected sampling weights are also
provided. Finally, the original stability limits provided for both schemes are corrected, and presented
in a more precise form. It is recommended any future implementations of the two general higher order
schemes provided in the Smith, et al. 2012 article should instead use the sampling weights and stability
conditions listed in this document.

1 Background

The Finite-Difference Time Domain (FDTD) method is popular within the computational electromagnetics
(CEM) community due to its simplicity, flexibility, and computational efficiency [1, 2]. Most CEM FDTD
implementations employ the simplest discretization scheme: second order in time and space (often referred
to as the Yee scheme [1]). It can be expressed as (2,2), or second order accurate in time and space, respec-
tively. The Yee scheme approximates both temporal and spatial derivatives using the same, simple centered
difference scheme. For example, a spatial derivative of the variable, A, centered at the spatial location,
Tiy1/2, would be approximated as:

0A A — A 1)

or i+1/2 - Tit1 — X4 (

For electrically large CEM problems, the Yee scheme can exhibit rather large errors stemming from
numerical dispersion and anisotropy. To reduce these errors, higher order FDTD schemes may be employed
(the trade off often being accuracy for simulation time). Higher order FDTD schemes approximate the same
temporal and spatial differentials by simply including more terms.

Two general higher order FDTD schemes were previously developed by Smith, et al. [3]. Their higher
order stencil requires 36 points (see Figure 1) be sampled when approximating spatial differentials. This is
in contrast to the original Yee scheme [1], which itself requires the sampling of only two points (see Figure
1), and the Fang (2,4) FDTD scheme which utilizes only four [4].

2 Error #1: Dispersion Relation

Sampling weights for each of the 36 points in the general (4,4) scheme were again calculated by first re-
deriving the full three-dimensional, fourth order FDTD dispersion relation using Mathematica™. This is
given in its most basic form by:
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Figure 1: Visual depictions of the (a) Yee, (b) Fang, and (c) General (4,4) spatial discretization schemes for
an x-directed derivative as presented [3].

In contrast, Eq (8) of [3] gives this dispersion relation as:

1
—2sin2T :(sinx [al,o +4a11 +4a1 2 — (4dar,1 + 8a1,2) (sinQy + SiHQZ) + 32al,gsin2ysin22]
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The coefficients by, by, ¢1, and ¢ listed in Eq (8) of [3] are not explicitly defined, but may be inferred as:
by = ai,i Cl = a1,2 by = a1 Cy = 22

Note the difference (highlighted in red in both equations) between (2) and (3): the leading factors for the
last terms in each line (i.e. the a,, 25in®ysin®z terms) are different. That is, the original paper uses a factor
of 32, while the correct equation requires a factor of 16. This incorrect doubled factor is carried through the
rest of the derivation in [3], affecting all following equations, and ultimately the sampling weights themselves.
This incorrect doubling of the a,, 2sin?ysin®z terms represents the first error identified in [3].

3 Error #2: Solving for Weights

The second error identified in [3] comes about when solving for the higher order sampling weights. Employing
the correct (notwithstanding the first error listed in the previous section) governing equations as given in
Egs (11)-(14), (22), and (26), along with the condition as 2 = 0, yields different sampling weights than those
listed in Table I of [3]. The reason for this discrepancy between the correct sampling weights and those of
Table I is unknown. This incorrect solution of the sampling weights represents the second error identified in
[3].

4 Corrected Sampling Weights

The corrected sampling weights for the higher order FDTD schemes are listed here in Table 1. It represents
an updated version of Table I from [3]. Although not proven here, substituting the corrected sampling
weights listed in Table 1 into Eqgs (21) and (28) of [3] does in fact reduce to Eqs (27) and (32) for the general
(2,4) and (4,4) schemes, respectively. This same reduction is not observed if using the original sampling
weights listed in Table I of [3], and is easily verified. Likewise, substituting the original sampling weights
from Table I of [3] does not yield the conditions given in its Eq (22).

5 Stability

The theoretical maximum Courant-Friedrichs-Lewy (CFL) conditions guaranteeing numerical stability for
the various FDTD schemes presented in [3] are listed in its Table II. Specifically, the Stability column lists



Yee (2,2) Fang (2,4) General (2,4) General (4,4)
Al +34, =1 A +345=1 A +34, =1
coefficients Al + 3A2 =1 Al + 27142 =0 A1 + 27142 =0 Al + 27A2 = a2
B1+3By =0 By +3By=0 Bl+332:a2/6

aio 1 9/8 147/160 147/160-a2 /8
ara 0 0 39/640 39/640-a% /96
ais 0 0 -3/320 -3/320+a2/96
as,0 0 -1/24 7/480 7/480

as1 0 0 -9/640 -9/640+a2/96
ag.2 0 0 0 0

Table 1: Correct sampling weights for Yee, Fang, and General (2,4) and (4,4) FDTD schemes. Compare to
Table I of [3]. Weights that have changed compared to those given in [3] are highlighted in red.

relative CFL conditions compared to that of the Yee scheme. The stability of any FDTD scheme can be
derived from its dispersion relation. For example, the Yee scheme CFL condition in three dimensions is:
1 1
At < = (4)
c 1 1 1
\/ALE2 + Ay2 + Az2

where At is the simulation time step, c is the speed of light in vacuum, and Az, Ay, and Az are the grid
cell widths in the -, §-, and 2-directions, respectively. If Ax = Ay = Az, Eq (4) reduces to:
Az
At < — 5
<= o)
Thus, the various factors listed in the Stability column of Table II in [3] are all calculated with respect to
the Yee scheme CFL factor of 1/v/3.

Upon re-deriving the dispersion relation, the stability conditions for both the general (2,4) and (4,4)
schemes were found to be imprecise. Moreover, the correct a-dependence of this condition for the general
(4,4) scheme was not present (and thus incorrect). The corrected (and ezact) stability conditions for the
general (2,4) and (4,4) FDTD schemes are provided in Table 2.

Scheme Stability
general (2,4) 60v/6/113
general (4,4) | 60v/6/(113 — 20a?)

Table 2: Correct and eract relative CFL conditions (compared to Yee scheme) for higher order FDTD
schemes presented in [3]. Note that o = v, At/Az, and is typically set to 0.5.

Note that the exact stability condition for the general (2,4) scheme is approximately 1.3006, or slightly
greater than the reported value of 1.3 from [3]. Likewise, the stability condition for the general (4,4) scheme
is approximately 1.3608 (for « = 0.5), which is again slightly larger than the reported value from [3]. The
value of « (typically falling between 0 and 1) affects both the stability condition and sampling weights for
the general (4,4) FDTD scheme.
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