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Abstract. The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN
is expected to provide instantaneous luminosities of 5 x 103*¢m™2s~%. The high luminosities
expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared
with LHC conditions in 2015, causing general confusion for particle identification and event
reconstruction. Precision timing allows to extend calorimetric measurements into such a high
density environment by subtracting the energy deposits from pileup interactions. Calorimeters
employing silicon as the active component have recently become a popular choice for the HL-
LHC and future collider experiments which face very high radiation environments. We present
studies of basic calorimetric and precision timing measurements using a prototype composed
of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of
electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve
time resolutions better than 25 ps per single pad sensor.

1. Introduction

To meet the challenges posed by current and future high energy colliders, particle physics
detectors have to operate in ever increasing particle fluxes and at higher interaction rates. Aside
from finer segmentation both for tracking devices as well as for calorimeters, precision timing
capabilities are being viewed as a very powerful additional functionality to enhance the physics
performance of the detectors. Timing resolutions of order few 10 ps allow to cleanly associate
signals to primary interactions. A 10 ps resolution is also equivalent to a spatial resolution of
a few mm. This allows tracking of photons with such a precision which is hugely important in
hadron collisions which have a significant fraction of the total energy carried by neutral mesons
decaying into photons. Precision timing calorimetry with scintillating crystals [1] and multi-
channel plates [2] is well established. In this paper we present our measurements using silicon
sensors as sensitive element in a precision timing calorimeter. Large scale silicon sensors are
considered as an upgrade option for the HL-LHC [3].

2. Experimental Setup

For our measurements, we used a silicon sensor produced by Hamamatsu [4]. The thickness of
the silicon was measured to be 325 um. The transverse size of the sensor is 6 x 6 mm?. The
negative bias voltage was applied to the p-side of the silicon. We observe that the silicon is
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fully depleted above about 120 V. Timing measurements are expected to improve with larger
bias voltage as the the carrier velocity increases. Attention was paid to provide good filtering
for bias voltage, to reduce ground loop effects, and to minimize inductive loop for the signal
readout. The timing characteristics of the signal pulses are dominated primarily by properties
of the silicon sensor rather than the details of the circuit. The silicon diode was placed inside
a light-tight box of thickness 1.5 cm, which also provides electromagnetic shielding. The box is
made of 0.2 mm steel. The bias voltage was supplied to the circuitry by a cable with a balun
filter, terminated with an high voltage connector. The silicon diode output signal is read out
through an SMA connector electrically grounded to the box. The dark current was measured at
several values of the bias voltage. The maximum value of the dark current was less than 1.0 nA
at -500 V, which is the largest bias voltage used in the measurements reported in this paper.
The signals from the silicon sensor were amplified by two fast, high-bandwidth pre-amplifiers
connected in series. The first amplifier is an ORTEC VT120C pre-amplifier, and the second
amplifier is a Hamamatsu C5594 amplifier. Using a pulse-generator, we measured the combined
gain of the two amplifiers in series as a function of the input signal amplitude and found some
degree of non-linearity for typical signals produced by the silicon sensor under study, and we
corrected for them. Further details of the experimental setup can be found in [6]. As a reference
timing sensor we use a Photek MCP-PMT 240. The data are recorded with a DRS [5] based ring
sampler digitizer at at rate of 5 GS/s. Data was recorded at the FNAL M-test facility. Further
details on the reference timing system and its performance can be found in [2]. The timing
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information from the Si sensor is extracted from the sampled pulses by fitting a straight line
to the rising edge of the pulse and determining the time at half the maximum amplitude. The
timing information of the reference detector is extracted from a Gaussian fit to the peak of the
pulses. A non-linearity from the amplifiers used is corrected in the data analysis. The quoted
time resolutions are one sigma width of the differential timing between the reference sensor and
the silicon pad sensor.

3. Experimental Results

Data were recorded at beam energies of 4, 8, 16 and 32 GeV with an electron beam, as well
as with 120 GeV protons for calibration and alignment purposes. Showers are induced with a
tungsten absorber of varying thickness to study the impact on the timing measurement. We
have demonstrated in [2] that the temporal evolution of showers is very coherent. This is of
crucial importance to exploit calorimeters as precision timing detectors. In Fig.: 2 we show
the response of the Si pad sensor for the four beam energies we used. The measurement was
performed after 6 radiation lengths of tungsten, approximately at the shower max. The mean
value of the response is well correlated with the beam energy, demonstrating that even a single
sensor features a calorimeter like response despite sampling only a very small part of the shower.
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The spread of the distributions in Fig.: 2 illustrates the RMS spread of the response. Due to
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Figure 2. Mean signal amplitude and spread of
the signal amplitude as measured with the Si pad
sensor. The measurement was done for electron
beams of 4, 8, 16 and 32 GeV. We find a good
correlation between the beam energy and the mean
signal amplitude. This demonstrates that despite
the very limited containment of the Si sensor we

Ol bbb b have a clear pattern of a calorimetric measurement.
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the limited containment of the single sensor the spread is considerable.

In Fig.: 3 we show the time resolution of the Si pad sensor measured beam energies of 4, 8, 16
and 32 GeV. The measurement was performed with an absorber thickness of 6 radiation lengths,
approximately at shower max. The timing resolution improves with increased signal amplitude
and reaches about 22 ps for beam energies of 32 GeV. The contribution of the reference timing
sensor is not unfolded from this. It was determined to be less than 10 ps for an equivalent setup
[2]. As we have shown in [2] one can improve the timing precision for electromagnetic showers
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Figure 3. Time resolution of the Si pad sensor as

a function of the incident beam energy. As shown
\ in Fig.: 2 the signal amplitude measured in the Si
pad sensor correlates well with the beam energy.
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by performing multiple measurements on a single shower. Si pads such as the one we use can
easily be arranged dense enough to perform 10 or more such measurements on a single shower.
This is expected to further improve the performance. Such studies are being carried out and will
be reported in the future. In Fig.: 4 we show the same data as used in Fig.: 3. However here the
data is more finely binned in signal amplitude. The data from the four different beam energies
is shown in different colors. We find that events with the same signal amplitude but different
beam energy show the same time resolution. As we see from Fig.: 2 the signal amplitude in
the Si pad fluctuates widely. Due to the small size of the pad the local shower fluctuations are
substantial. This demonstrates that the time resolution is dominated by the signal amplitude
in the sensor. Local shower fluctuations do not impact the timing measurement. This is further
evidence to the very coherent temporal evolution of electromagnetic showers as we discussed in
1,2

4. Summary

We have measured the timing precision of a single silicon pad sensor in an electromagnetic
shower. We find that the timing precision improves with the signal amplitude, reaching 22 ps
on average measured with 32 GeV electrons after 6 radiation lengths of tungsten absorber. For
events in the tail of the signal amplitude distribution we measure down to 16 ps. This suggests
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that for higher energies the timing precision would improve further. We conclude that a silicon
sampling calorimeter would allow to provide very precise timing information for electromagnetic
showers.
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