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Program Objectives and Overview of Accomplishments

The objectives of this program were to develop first-principles theory to predict the structure and
thermodynamic stability of materials. Since its inception the program focused on the development of the
cluster expansion to deal with the increased complexity of complex oxides. This research led to the
incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-
component cluster expansions, included the explicit configurational degrees of freedom of localized
electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever
approach to produce exact ground state predictions of the cluster expansion. Many of these methods have
been disseminated to the larger theory community through the Materials Project, pymatgen software, or
individual codes. We summarize three of the main accomplishments below.

Accomplishments

10 Data-Mining Algorithms: A distance semi-metric in

09 compound space

07 In this program we have rigorously developed data
0 mining and machine learning algorithms as a

0s demonstration that some physical properties can be

“learned” solely from the basis of data. In 2006 we
demonstrated on ef the first applications of data
mining by machine learning the prediction of crystal
structures [Nature Materials 2016]. We also
developed a machine-learned “substation predictor” in
which machine learning was used to predict which
elements can easily substitute for each other while
retaining the crystal structure. More recently, we have

Figure 1: lonic similarity indicates how likely developed more formal theory to facilitate machine
two ions substitute for each other, thereby learning by developing distance metrics between crystal
retaining the same crystal structure structures. Machine learning of materials behavior requires

the use of feature vectors or descriptors that capture the



essential compositional or structural information that is most likely to influence a property. While
humans tend to use intuitive —and imprecise — ideas to evaluate whether two chemistries or crystal
structures are the same, machine learning requires quantitative metrics to evaluate “similarity”. Rigorous
structure descriptions including concepts such as unit cells and symmetry, but chemists and materials
scientists often use more intuitive and less well-defined terminology such as local environment,
coordination, and polyhedral connectivity, to explain the properties of a compound. Indeed, unit cells and
symmetry vary discontinuously with small changes in the atomic coordinates, and therefore do not
provide a good set of descriptors in which to understand or expand materials properties. We have
developed a mathematical description of structure and chemistry that can be used to create a distance
semi-metric between compounds. This allows us to rigorously define similarity between compounds, and
we expect this formalism to form the basis for machine learning approaches in materials science.

Our novel semi-metric captures both topological and chemical information of the local environment
around atoms (i.e. an octahedral site formed by oxygen ions is different from one formed by metal atoms).
We combine a distance metric in chemical space (the ionic similarity) and in topological space (the
coordination similarity), and coarse-grain the environment observed in known compounds (e.g. as
documented in the ICSD database.

Figure 1 shows an ionic similarity metric. The matrix indicates how likely two elements are to substitute
for each other in a given crystal structure. We have integrated this ionic similarity with a topological
similarity between two atomic environments, e; and e;, obtained by creating a weighted Voronoi
polyhedron as defined by O’Keefe.! From this construction, every ion 7 in a crystal structure X has a set
of associated neighbors {n;, w;!, where n; refers to a neighboring ion and w is its associated weight. A
similarity score can then be defined as:
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The variable ¢ tunes differences in topological or geometric similarity. The product of two atomic
environments e; and ¢;, can then be defined via a one to one weighted bipartite graph matching between
the vertices of {n;} to the vertices {n;}. Each vertex in {n;} is matched to the vertex in {n;} that maximizes
the sum of the similarity scores. If one neighborhood has more ions than the other, ions to complete the
matching are inserted with similarities equal to zero:

prod(el.,e‘) = max Z score(n,.,n.).
J matchings . Y
n;,n; ematchings

Finally, we define the similarity between two local environments:
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Figure 2 shows how our new distance measure can be used to construct a dendrogram, which groups
compounds by similarity.
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Figure 2: Dendogram showing which compounds are similar to each other

(=3
~—
o
X
<
o

o o
o ~
o)}

X
<
aa

p
<

Average Surface Energy J/m?
o
(8]

agonite q&

4 6 8 10 12
Mole Percent MgCO; in Calcite

o o
N w

o
N

Size-
dependent
thermodynamics and nucleation preferences

Predicting which phases can form and under
which conditions they can form is one of the
great unsolved problems of materials science,
geology, and solid state chemistry. While it is
amply clear that the lowest energy state for a
given composition can easily form, no guidance
exists as to how and when metastable
polymorphs form instead. Solving this problem
could lead to predictive and rational materials
synthesis, and would significantly enhance the
reach of computational materials development.

Metastable phases can form when they nucleate

preferentially over the ground state phase. Predicting nucleation

Figure 3: Surface energy of
calcite and aragonite as function
of Mg content

energies requires knowledge of relevant surface energies in the
medium in which the phases form. In a first attempt to rationalize
metastable phase formation we have studied the nucleation
selection of the calcite or aragonite form of CaCQOs. This is an

important problem in nature. Although calcite is the equilibrium
phase under ambient conditions, metastable aragonite is the precipitated polymorph in modern seawater.
Using ab initio density functional theory calculations, we demonstrated that in marine environments,
calcite spontaneously incorporates Mg”" in solid-solution, which increases its surface energy, and thus
nucleation barrier, so that it greatly exceeds that of aragonite. Figure 3 shows the surface energy of both



calcite and aragonite as a function of Mg
concentration in the water the CaCOs
precipitates from. Figure 4 shows the steady-
state nucleation rates as function of
supersaturation and Mg/Ca ratio in solution,
clearly showing that aragonite is the preferred
nucleation polymorph under high Mg/Ca
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Figure 4: Nucleation preference as
function of Mg/Ca ratio in solution and
supersaturation

Lattice models have wide applicability in science, and are
commonly used in a wide range of applications, such as magnetism, alloy thermodynamics, fluid
dynamics, phase transitions in oxides, and thermal conductivity. In first-principles thermodynamics,
lattice models take on a particularly important role as they appear naturally through a course graining of
the partition function of systems with substitutional degrees of freedom. As such, they have been used to
predict the structure and phase diagrams of crystalline solids from ab-initio calculations. However, the
procedure to find the exact ground state of a lattice model, also referred to as a generalized Ising model or
cluster expansion, defined on an arbitrary lattice, with any interaction range and number of species
remains an unsolved problem, with only a limited number of special-case solutions known in the
literature. Thus, in light of the wide applicability and success of the generalized Ising model, an efficient
approach to finding the true ground state of such a Hamiltonian would give significant insight into the
behavior of these models, and facilitate their use in ab-initio alloy theory.

In this project we derive an algorithm to find exact ground states of lattice models. The algorithm not only
finds the ground state but also proves that it is an absolute minimum. Combinatorial optimization (MAX-
SAT) and non-smooth convex optimization (MAX-MIN) are combined to provide upper and lower
bounds respectively on the ground state energy. By systematically converging upper and lower bounds to
each other, we find and prove the exact ground state for realistic Hamiltonians whose solutions are
otherwise intractable via traditional methods. The underlying mathematical relationship between the exact
ground state problem and tiling suggests that this approach can also be useful in identifying aperiodic
ground states.

There are two key elements in this problem. The first element is to efficiently find the ground state given
a fixed periodicity of the solution. Calculating this periodic ground state is equivalent to solving the finite
optimization problem:

minZJ H S
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where J is the effective cluster interactions parameters, S P is the indicator variable of specie ! on

site (x,,z,p), C is the set of all interacting clusters within the fixed periodic system and = /" is the

set of sites within the fixed periodic unit cell. Such an optimization over discrete 10,1} variables can be
equivalently posed as a logic problem, replacing the discrete variables by Boolean analogs. Following this
insight, the finite Hamiltonian is exactly in the form of pseudo-Boolean optimization (PBO), allowing us
to solve this optimization problem using weighted partial maximum satisfiability (MAX-SAT). The
essence of MAX-SAT is to model the discrete optimization problem by maximizing the number of logical
clauses that can be satisfied in a Boolean formula of conjunctive normal form.

The second element of our algorithm is the optimization of a lower bound to the ground state energy. We
prove that minimization of the Hamiltonian on a finite group of sites without any periodicity constraints
provides a lower bound for the ground state energy. For example:
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The lower bound introduced directly in this way is very loose. To improve it, we introduced the notion of
a translational equivalent ECI’s parametrized by A by which leaves the global Hamiltonian unchanged
while improving the lower bound. Formally, we can maximize the lower bound energy over the free

parameters A to obtain the tightest lower bound on the ground state energy:

H >max min Ei
A oseon® S

To test the performance of this approach on practically relevant systems, we measure the runtime of this
algorithm on binary 1D, 2D square, and 3D cubic lattices over random sets of asymmetric ECIs across a
spectrum of interaction ranges. First, we restrict ourselves to only pair interactions, calculating runtimes
for up to 28 pair interactions on unit cells up to 50 sites, where the energy of each interaction takes on a
random value. In the 1D, 2D and 3D cases, this limit corresponds to all interactions up to and including
the 28th, 10th and 5th nearest neighbors respectively. In all cases, our implementation gives a very
promising single-core runtime on the order of hours for realistic Hamiltonians, which typically include
fewer than 100 interactions.
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Figure 5: Single-core computation time needed to find
and prove the ground state of a 1D, 2D, and 3D pair-
interaction Hamiltonian for unit cells up to 50 sites in
size across an increasing range of pair-interactions. In all
cases, the solver finds the ground state for all unit cells
up to 50 atoms in size, and calculates a tight lower bound

on the true ground state energy without enlarging | B |.
Each point corresponds to the geometric average runtime
of 100 such calculations with random interaction
coefficients, while the shading gives the spread between
the 20th and 80th percentiles.
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Number of pair interactions We have also applied our method to obtain the exact

ground state of a cluster expansion Hamiltonian used to
model sodium-vacancy orderings in the layered Na,NiO,
compound as a function of composition. The J interactions for this system are determined from DFT
calculations on 400 structures, through standard approaches. Our algorithm finds new ground states at
x=2/5, 1/2, and 3/5, compared to the DFT input structures initially used to derive the cluster expansion.
The advantage of our approach is that we can guarantee that there are no other configurations of any unit
cell size that are lower in energy. The inset of Figure shows the ground state predicted at x=1/2 which is
unusual and unlikely to be proposed from intuition.
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000000000 O b Figure 6: Enumeration of ground states found for a

0000000000 cluster expansion of sodium-vacancy orderings in

x=0.5| layered NaxNiO,. The red triangles indicate the

- J{  mathematically proven ground states, whereas the gray
squares are the originally proposed ground states from
DFT calculations of 400 possible Na-vacancy
arrangements. The ground state configuration for x=1/2
is shown in the inset.

To conclude, we have introduced a MAX-MIN

procedure to obtain the exact ground state of a

: : : generalized Ising model. Our procedure relies on

0.0 02 0.4 0.6 08 1.0 converging an upper and lower bound on the ground
Na concentration in Na,NiO, state energy, where the upper bound is obtained from

MAX-SAT finite optimization, while the lower bound

is given by convex optimization over translationally-equivalent clusters. Mathematically, our approach

relies on the tilability of minimum-energy local configurations to generate the exact global ground state.

In practice, this procedure performs very well and has made it possible to determine the exact ground

state of many formerly intractable systems. Finally, we envision that the MAX-MIN procedure introduced

here can serve as a tractable approach for resolving ground states on aperiodic lattices.
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