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Program Objectives and Overview of Accomplishments 
The objectives of this program were to develop first-principles theory to predict the structure and 
thermodynamic stability of materials.  Since its inception the program focused on the development of the 
cluster expansion to deal with the increased complexity of complex oxides.  This research led to the 
incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-
component cluster expansions, included the explicit configurational degrees of freedom of localized 
electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever 
approach to produce exact ground state predictions of the cluster expansion.   Many of these methods have 
been disseminated to the larger theory community through the Materials Project, pymatgen software, or 
individual codes.   We summarize three of the main accomplishments below.   
 
 
Accomplishments 

 
Data-Mining Algorithms:  A distance semi-metric in 
compound space 
 
In this program we have rigorously developed data 
mining and machine learning algorithms as a 
demonstration that some physical properties can be 
“learned” solely from the basis of data.  In 2006 we 
demonstrated on ef the first applications of data 
mining by machine learning the prediction of crystal 
structures [Nature Materials 2016].  We also 
developed a machine-learned “substation predictor” in 
which machine learning was used to predict which 
elements can easily substitute for each other while 
retaining the crystal structure.  More recently, we have 
developed more formal theory to facilitate machine 

learning by developing distance metrics between crystal 
structures.  Machine learning of materials behavior requires 
the use of feature vectors or descriptors that capture the 

Figure 1: Ionic similarity indicates how likely 
two ions substitute for each other, thereby 
retaining the same crystal structure 



essential compositional or structural information that is most likely to influence a property.  While 
humans tend to use intuitive –and imprecise – ideas to evaluate whether two chemistries or crystal 
structures are the same, machine learning requires quantitative metrics to evaluate “similarity”.  Rigorous 
structure descriptions including concepts such as unit cells and symmetry, but chemists and materials 
scientists often use more intuitive and less well-defined terminology such as local environment, 
coordination, and polyhedral connectivity, to explain the properties of a compound.  Indeed, unit cells and 
symmetry vary discontinuously with small changes in the atomic coordinates, and therefore do not 
provide a good set of descriptors in which to understand or expand materials properties.  We have 
developed a mathematical description of structure and chemistry that can be used to create a distance 
semi-metric between compounds.  This allows us to rigorously define similarity between compounds, and 
we expect this formalism to form the basis for machine learning approaches in materials science. 

Our novel semi-metric captures both topological and chemical information of the local environment 
around atoms (i.e. an octahedral site formed by oxygen ions is different from one formed by metal atoms). 
We combine a distance metric in chemical space (the ionic similarity) and in topological space (the 
coordination similarity), and coarse-grain the environment observed in known compounds (e.g. as 
documented in the ICSD database. 

Figure 1 shows an ionic similarity metric.  The matrix indicates how likely two elements are to substitute 
for each other in a given crystal structure.  We have integrated this ionic similarity with a topological 
similarity between two atomic environments, ei and ej, obtained by creating a weighted Voronoi 
polyhedron as defined by O’Keefe.i  From this construction, every ion i in a crystal structure X has a set 
of associated neighbors {ni, wi}, where ni refers to a neighboring ion and wi is its associated weight. A 
similarity score can then be defined as:  

score ni ei, nj ej   simion ni,nj min wi, wj e
wiwj 2

2c2
.       

The variable c tunes differences in topological or geometric similarity. The product of two atomic 
environments ei and ej, can then be defined via a one to one weighted bipartite graph matching between 
the vertices of {ni} to the vertices {nj}. Each vertex in {ni} is matched to the vertex in {nj} that maximizes 
the sum of the similarity scores. If one neighborhood has more ions than the other, ions to complete the 
matching are inserted with similarities equal to zero: 

prod ei,ej   max
matchings

score ni, nj 
ni ,njmatchings
 . 

Finally, we define the similarity between two local environments:    

simenv ei, ej   prod ei,ej 
prod ei,ei prod ej, ej 

. 

 

Figure 2 shows how our new distance measure can be used to construct a dendrogram, which groups 
compounds by similarity. 



 

     

 

Size-
dependent 

thermodynamics and nucleation preferences 
 
Predicting which phases can form and under 
which conditions they can form is one of the 
great unsolved problems of materials science, 
geology, and solid state chemistry.  While it is 
amply clear that the lowest energy state for a 
given composition can easily form, no guidance 
exists as to how and when metastable 
polymorphs form instead.  Solving this problem 
could lead to predictive and rational materials 
synthesis, and would significantly enhance the 
reach of computational materials development.   

Metastable phases can form when they nucleate 
preferentially over the ground state phase.  Predicting nucleation 
energies requires knowledge of relevant surface energies in the 
medium in which the phases form.  In a first attempt to rationalize 
metastable phase formation we have studied the nucleation 
selection of the calcite or aragonite form of CaCO3.  This is an 
important problem in nature. Although calcite is the equilibrium 

phase under ambient conditions, metastable aragonite is the precipitated polymorph in modern seawater. 
Using ab initio density functional theory calculations, we demonstrated that in marine environments, 
calcite spontaneously incorporates Mg2+ in solid-solution, which increases its surface energy, and thus 
nucleation barrier, so that it greatly exceeds that of aragonite. Figure 3 shows the surface energy of both 

Figure 2:  Dendogram showing which compounds are similar to each other 

Figure 3:  Surface energy of 
calcite and aragonite as function 
of Mg content  



calcite and aragonite as a function of Mg 
concentration in the water the CaCO3 
precipitates from.  Figure 4 shows the steady-
state nucleation rates as function of 
supersaturation and Mg/Ca ratio in solution, 
clearly showing that aragonite is the preferred 
nucleation polymorph under high Mg/Ca 
ratios, including those that are found in 
modern seawater.  More recently, we have 
applied similar theory to predict the pathways 
that MnOx polymorphs take when they form in 
aqueous solution.   

 
 
 

Exact Ground state prediction of lattice model via Cluster 
expansion, Maximum Satisfiability and Convex 
Optimization 

 
Lattice models have wide applicability in science, and are 

commonly used in a wide range of applications, such as magnetism, alloy thermodynamics, fluid 
dynamics, phase transitions in oxides, and thermal conductivity. In first-principles thermodynamics, 
lattice models take on a particularly important role as they appear naturally through a course graining of 
the partition function of systems with substitutional degrees of freedom. As such, they have been used to 
predict the structure and phase diagrams of crystalline solids from ab-initio calculations. However, the 
procedure to find the exact ground state of a lattice model, also referred to as a generalized Ising model or 
cluster expansion, defined on an arbitrary lattice, with any interaction range and number of species 
remains an unsolved problem, with only a limited number of special-case solutions known in the 
literature. Thus, in light of the wide applicability and success of the generalized Ising model, an efficient 
approach to finding the true ground state of such a Hamiltonian would give significant insight into the 
behavior of these models, and facilitate their use in ab-initio alloy theory. 

In this project we derive an algorithm to find exact ground states of lattice models. The algorithm not only 
finds the ground state but also proves that it is an absolute minimum. Combinatorial optimization (MAX-
SAT) and non-smooth convex optimization (MAX-MIN) are combined to provide upper and lower 
bounds respectively on the ground state energy. By systematically converging upper and lower bounds to 
each other, we find and prove the exact ground state for realistic Hamiltonians whose solutions are 
otherwise intractable via traditional methods. The underlying mathematical relationship between the exact 
ground state problem and tiling suggests that this approach can also be useful in identifying aperiodic 
ground states.  

There are two key elements in this problem. The first element is to efficiently find the ground state given 
a fixed periodicity of the solution. Calculating this periodic ground state is equivalent to solving the finite 
optimization problem: 

  

subject to:      

Figure 4:  Nucleation preference as 
function of Mg/Ca ratio in solution and 
supersaturation 
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where J  is the effective cluster interactions parameters, sx ,y ,z ,p,t  is the indicator variable of specie t  on 

site (x, y, z, p),  is the set of all interacting clusters within the fixed periodic system and 
Ffinite is the 

set of sites within the fixed periodic unit cell. Such an optimization over discrete {0,1} variables can be 
equivalently posed as a logic problem, replacing the discrete variables by Boolean analogs. Following this 
insight, the finite Hamiltonian is exactly in the form of pseudo-Boolean optimization (PBO), allowing us 
to solve this optimization problem using weighted partial maximum satisfiability (MAX-SAT).  The 
essence of MAX-SAT is to model the discrete optimization problem by maximizing the number of logical 
clauses that can be satisfied in a Boolean formula of conjunctive normal form.  

The second element of our algorithm is the optimization of a lower bound to the ground state energy. We 
prove that minimization of the Hamiltonian on a finite group of sites without any periodicity constraints 
provides a lower bound for the ground state energy. For example:  
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The lower bound introduced directly in this way is very loose. To improve it, we introduced the notion of 
a translational equivalent ECI’s parametrized by  by which leaves the global Hamiltonian unchanged 
while improving the lower bound. Formally, we can maximize the lower bound energy over the free 
parameters  to obtain the tightest lower bound on the ground state energy: 

H  max


min
s{0,1}B

E ,s
 

To test the performance of this approach on practically relevant systems, we measure the runtime of this 
algorithm on binary 1D, 2D square, and 3D cubic lattices over random sets of asymmetric ECIs across a 
spectrum of interaction ranges. First, we restrict ourselves to only pair interactions, calculating runtimes 
for up to 28 pair interactions on unit cells up to 50 sites, where the energy of each interaction takes on a 
random value. In the 1D, 2D and 3D cases, this limit corresponds to all interactions up to and including 
the 28th, 10th and 5th nearest neighbors respectively. In all cases, our implementation gives a very 
promising single-core runtime on the order of hours for realistic Hamiltonians, which typically include 
fewer than 100 interactions. 



 

Figure 5: Single-core computation time needed to find 
and prove the ground state of a 1D, 2D, and 3D pair-
interaction Hamiltonian for unit cells up to 50 sites in 
size across an increasing range of pair-interactions. In all 
cases, the solver finds the ground state for all unit cells 
up to 50 atoms in size, and calculates a tight lower bound 
on the true ground state energy without enlarging | B |. 
Each point corresponds to the geometric average runtime 
of 100 such calculations with random interaction 
coefficients, while the shading gives the spread between 
the 20th and 80th percentiles. 

We have also applied our method to obtain the exact 
ground state of a cluster expansion Hamiltonian used to 
model sodium-vacancy orderings in the layered NaxNiO2 

compound as a function of composition. The J  interactions for this system are determined from DFT 
calculations on 400 structures, through standard approaches. Our algorithm finds new ground states at 
x=2/5, 1/2, and 3/5, compared to the DFT input structures initially used to derive the cluster expansion. 
The advantage of our approach is that we can guarantee that there are no other configurations of any unit 
cell size that are lower in energy. The inset of Figure  shows the ground state predicted at x=1/2 which is 
unusual and unlikely to be proposed from intuition. 

 

 

Figure 6: Enumeration of ground states found for a 
cluster expansion of sodium-vacancy orderings in 
layered NaxNiO2. The red triangles indicate the 
mathematically proven ground states, whereas the gray 
squares are the originally proposed ground states from 
DFT calculations of 400 possible Na-vacancy 
arrangements. The ground state configuration for x=1/2 
is shown in the inset. 

To conclude, we have introduced a MAX-MIN 
procedure to obtain the exact ground state of a 
generalized Ising model. Our procedure relies on 
converging an upper and lower bound on the ground 
state energy, where the upper bound is obtained from 
MAX-SAT finite optimization, while the lower bound 

is given by convex optimization over translationally-equivalent clusters. Mathematically, our approach 
relies on the tilability of minimum-energy local configurations to generate the exact global ground state. 
In practice, this procedure performs very well and has made it possible to determine the exact ground 
state of many formerly intractable systems. Finally, we envision that the MAX-MIN procedure introduced 
here can serve as a tractable approach for resolving ground states on aperiodic lattices. 
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