
Final Report
DOE Award/Contract Number: SC0008699

Recipient/Contractor Organization: University of California, Berkeley and Lawrence Berkeley National Laboratory
STI Product Type: Final Technical Report
STI Product Title: Program Correctness, Verification and Testing for Exascale (Corvette)
STI Product Date: 26th January, 2018

Authors: Koushik Sen, James Demmel, Costin Iancu

Abstract

The goal of this project is to provide tools to assess the correctness of parallel programs written using hybrid
parallelism. There is a dire lack of both theoretical and engineering know-how in the area of finding bugs in hybrid
or large scale parallel programs, which our research aims to change. In the project we have demonstrated novel
approaches in several areas:

• Low overhead automated and precise detection of concurrency bugs at scale.

• Using low overhead bug detection tools to guide speculative program transformations for performance.

• Techniques to reduce the concurrency required to reproduce a bug using partial program restart/replay.

• Techniques to provide reproducible execution of floating point programs.

• Techniques for tuning the floating point precision used in codes.

1 Detecting Concurrency Bugs
Our research in this area has resulted in the UPC-Thrille tool released with the Berkeley UPC compiler, available at
http://upc.lbl.gov.

Efficient Data Race Detection for Distributed Memory Parallel Programs. Chang-Seo Park, Koushik Sen, Paul
Hargrove, Costin Iancu. SC 2012. In this research we presented a precise data race detection technique for distributed
memory parallel programs. Our technique, which we call Active Testing, builds on our previous work on race detection
for shared memory Java and C programs and it handles programs written using shared memory approaches as well
as bulk communication. Active testing works in two phases: in the first phase, it performs an imprecise dynamic
analysis of an execution of the program and finds potential data races that could happen if the program is executed
with a different thread schedule. In the second phase, active testing re-executes the program by actively controlling
the thread schedule so that the data races reported in the first phase can be confirmed. A key highlight of our technique
is that it can scalably handle distributed programs with bulk communication and single- and split-phase barriers.
Another key feature of our technique is that it is precisea data race confirmed by active testing is an actual data race
present in the program; however, being a testing approach, our technique can miss actual data races. We implement
the framework for the UPC programming language and demonstrate scalability up to a thousand cores for programs
with both fine-grained and bulk (MPI style) communication. The tool confirms previously known bugs and uncovers
several unknown ones. Our extensions capture constructs proposed in several modern programming languages for
High Performance Computing, most notably non-blocking barriers and collectives.

Scaling Data Race Detection for Partitioned Global Address Space Programs. Chang-Seo Park, Koushik Sen,
Costin Iancu. ICS 2013. Contemporary and future programming languages for HPC promote hybrid parallelism and
shared memory abstractions using a global address space. In this programming style, data races occur easily and are
notoriously hard to find. Existing state-of-the-art data race detectors exhibit 10X-100X performance degradation and
do not handle hybrid parallelism. In this paper we present the first complete implementation of data race detection
at scale for UPC programs. Our implementation tracks local and global memory references in the program and it
uses two techniques to reduce the overhead: 1) hierarchical function and instruction level sampling; and 2) exploiting
the runtime persistence of aliasing and locality specific to Partitioned Global Address Space applications. The results
indicate that both techniques are required in practice: well optimized instruction sampling introduces overheads as high
as 6500% (65X slowdown), while each technique in separation is able to reduce it only to 1000% (10X slowdown).
When applying the optimizations in conjunction our tool finds all previously known data races in our benchmark
programs with at most 50% overhead when running on 2048 cores. Furthermore, while previous results illustrate the

1



benefits of function level sampling, our experiences show that this technique does not work for scientific programs:
instruction sampling or a hybrid approach is required.

2 Speculative Transformations
Our research in this area has resulted in software available with NWChem.

Barrier Elision for Production Parallel Programs. Milind Chabbi, Wim Lavrijsen, Wibe de Jong, Koushik Sen,
John Mellor-Crummey, Costin Iancu. PPoPP 2015. Large scientific code bases are often composed of several layers
of runtime libraries, implemented in multiple programming languages. In such situation, programmers often choose
conservative synchronization patterns leading to suboptimal performance. In this paper, we present context-sensitive
dynamic optimizations that elide barriers redundant during the program execution. In our technique, we perform data
race detection alongside the program to identify redundant barriers in their calling contexts; after an initial learning, we
start eliding all future instances of barriers occurring in the same calling context. We present an automatic on-the-fly
optimization and a multi-pass guided optimization. We apply our techniques to NWChem—a 6 million line compu-
tational chemistry code written in C/C++/Fortran that uses several runtime libraries such as Global Arrays, ComEx,
DMAPP, and MPI. Our technique elides a surprisingly high fraction of barriers (as many as 63%) in production runs.
This redundancy elimination translates to application speedups as high as 14% on 2048 cores. Our techniques also
provided valuable insight about the application behavior, later used by NWChem developers. Overall, we demonstrate
the value of holistic context-sensitive analyses that consider the domain science in conjunction with the associated
runtime software stack.

Maximizing Communication Overlap with Dynamic Program Analysis. Emmanuelle Saillard, Koushik Sen, Wim
Lavrijsen, Costin Iancu. HPC Asia 2018. We present a dynamic program analysis approach to optimize communica-
tion overlap in scientific applications. Our tool instruments the code to generate a trace of the application’s memory
and synchronization behavior. An offline analysis determines the program optimal points for maximal overlap when
considering several programming constructs: nonblocking one-sided communication operations, non-blocking collec-
tives and bespoke synchronization patterns and operations. Feedback about possible transformations is presented to the
user and the tool can perform the directed transformations, which are supported by a lightweight runtime. The value
of our approach comes from: 1) the ability to optimize across boundaries of software modules or libraries, while spe-
cializing for the intrinsics of the underlying communication runtime; and 2) providing upper bounds on the expected
performance improvements after communication optimizations. We have reduced the time spent in communication by
as much as 64% for several applications that were already aggressively optimized for overlap; this indicates that man-
ual optimizations leave untapped performance. Although demonstrated mainly for the UPC programming language,
the methodology can be easily adapted to any other communication and synchronization API.

3 Concurrency Reduction for Debugging
SReplay: Deterministic Sub-Group Replay for One-Sided Communication. Xuehai Qian and Koushik Sen and
Paul Hargrove and Costin Iancu. ICS 2016. Replay of parallel execution is required by HPC debuggers and resilience
mechanisms. Up-to-date, there is no existing deterministic replay solution for one-sided communication. The essen-
tial problem is that the readers of updated data do not have any in- formation on which remote threads produced the
updates, the conventional happens-before based ordering tracking techniques are challenging to work at scale. This
paper presents SReplay, the first software tool for sub-group deterministic record and replay for one-sided communi-
cation. SReplay allows the user to specify and record the execution of a set of threads of interest (sub-group), and then
deterministically replays the execution of the sub-group on a local machine without starting the remaining threads.
SReplay ensures sub-group determinism using a hybrid data- and order-replay technique. SReplay maintains scala-
bility by a combination of local logging and approximative event order tracking within sub-group. Our evaluation on
deterministic and nondeterministic UPC pro- grams shows that SReplay introduces an overhead ranging from 1.3X to
29X, when running on 1,024 cores and tracking up to 16 threads.

2



4 Floating Point Reproducibility
Our research has resulted in the ReproBLAS released software.

Reproducible Tall-Skinny QR Factorization. H.D. Nguyen and J. Demmel. 22nd IEEE Symposium on Computer
Arithmetic 2015. Reproducibility is the ability to obtain bitwise identical results from different runs of the same pro-
gram on the same input data, regardless of the available computing resources. Recently, techniques have been proposed
to attain reproducibility for BLAS operations, all of which rely on reproducibly computing the floating-point summa-
tion and dot product. Nonetheless, a reproducible BLAS library does not automatically translate into a reproducible
LAPACK library, especially when communications are taken into account. For instance, for the QR factorization,
conventional algorithms such as Householder transformation or Gram-Schmidt process can be used to reproducibly
factorize a floating-point matrix by fixing the order of computation, for example column-by-column from left to right,
and by using reproducible versions of level-1 BLAS operations such as dot product and 2-norm. In a massively paral-
lel environment, those algorithms have high communication cost due to the need for synchronization after each step.
The Tall-Skinny QR algorithm obtains much better performance in massively parallel environments by reducing the
number of messages to O(logP) where P is the processor count, and reducing the number of reduction operations to
O(1). Those reduction operations however are highly dependent on the network topology, in particular the number
of computing nodes, and therefore are difficult to implement reproducibly and with reasonable performance. In this
paper we present a new technique to reproducibly compute a QR factorization for a tall skinny matrix, which is based
on the Cholesky QR algorithm to attain reproducibility as well as to improve communication cost, and the iterative
refinement technique to guarantee the accuracy of the computed results. Our technique exhibits strong scalability in
massively parallel environments, and at the same time can provide results of almost the same accuracy as the con-
ventional Householder QR algorithm unless the matrix is extremely badly conditioned. Initial experimental results in
Matlab show that for not too ill-conditioned matrices whose condition number is smaller than sqrt(1/e) where e is
the machine epsilon, our technique runs less than 4 times slower than the built-in Matlab qr() function, and always
computes numerically stable results in terms of column-wise relative error.

Reproducible Parallel Summation. H.D. Nguyen and J. Demmel. IEEE Transactions on Computers, 2014. Repro-
ducibility, i.e. getting bitwise identical floating point results from multiple runs of the same program, is a property
that many users depend on either for debugging or correctness checking in many codes. However, the combination
of dynamic scheduling of parallel computing resources, and floating point nonassociativity, makes attaining repro-
ducibility a challenge even for simple reduction operations like computing the sum of a vector of numbers in parallel.
We propose a technique for floating point summation that is reproducible independent of the order of summation. Our
technique uses Rumps algorithm for error-free vector transformation, and is much more efficient than using (possibly
very) high precision arithmetic. Our algorithm reproducibly computes highly accurate results with an absolute error
bound of n 228 macheps maxijvij at a cost of 7n FLOPs and a small constant amount of extra memory usage. Higher
accuracies are also possible by increasing the number of error-free transformations. As long as all operations are
performed in to-nearest rounding mode, results computed by the proposed algorithms are reproducible for any run on
any platform. In particular, our algorithm requires the minimum number of reductions, i.e. 1 reduction of an array of
6 double precision floating point numbers per sum, and hence is well suited for massively parallel environments.

Numerical Accuracy and Reproducibility at ExaScale. H.D. Nguyen and J. Demmel. 21st IEEE Symposium on
Computer Arithmetic, 2014.
Fast Reproducible Floating-Point Summation. H.D. Nguyen and J. Demmel. 21st IEEE Symposium on Computer
Arithmetic, 2014.

Reproducibility, i.e. getting the bitwise identical floating point results from multiple runs of the same program,
is a property that many users depend on either for debugging or correctness checking in many codes. However,
the combination of dynamic scheduling of parallel computing resources, and floating point nonassociativity, make
attaining reproducibility a challenge even for simple reduction operations like computing the sum of a vector of
numbers in parallel. We propose a technique for floating point summation that is reproducible independent of the
order of summation. Our technique uses Rumps algorithm for error- free vector transformation, and is much more
efficient than using (possibly very) high precision arithmetic. Our algorithm trades o efficiency and accuracy: we
reproducibly attain reasonably accurate results (with an absolute error bound c ∗ n2 ∗ macheps ∗ max (v[i]) for a

3



small constant c with just 2n+O(1) floating-point operations, and quite accurate results (with an absolute error bound
c ∗ n3 ∗ macheps2 ∗ max (v[i])) with 5n + O(1) floating point operations, both with just two reduction operations.
Higher accuracies are also possible by increasing the number of error-free transformations. As long as the same
rounding mode is used, results computed by the proposed algorithms are reproducible for any run on any platform.

5 Floating Point Precision Tuning
This research has resulted in the Precimonious software publicly available.

Precimonius: Tuning Assistant for Floating-Point Precision. Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep
Nguyen, James Demmel, William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, David Hough. SC13.

Given the variety of numerical errors that can occur, floating-point programs are difficult to write, test and debug.
One common practice employed by developers without an advanced background in numerical analysis is using the
highest available precision. While more robust, this can affect program performance significantly. In this paper we
describe a dynamic program analysis technique to find a lower floating-point precision that can be used in any part
of a program. Precimonious performs a search on the program variables trying to lower their precision subject to
accuracy constraints and performance goals. The tool then recommends a type instantiation for these variables using
less precision while producing an accurate enough answer without causing exceptions. We evaluate Precimonious on
a few widely used functions from the GNU Scientific Library. For most of the programs tested, Precimonious is able
to reduce precision, which results in performance improvements as high as 25%.

Floating Point Precision Tuning Using Blame Analysis. Cindy Rubio-Gonzalez, Cuong Nguyen, James Demmel,
William Kahan, Koushik Sen, Wim Lavrijsen, Costin Iancu. ICSE 2016. While tremendously useful, automated tech-
niques for tuning the precision of floating-point programs have to search over the program space and face scalability
challenges. We present Blame Analysis, a novel dynamic approach to improve precision tuning. Blame Analysis
performs floating-point operations in a program with different levels of accuracy for the operands side-by-side with
concrete execution. For each instruction, Blame Analysis determines the types of all operands in all other instruc-
tions required for a given precision in the target instruction. It then computes a solution based on a “merge” of all
type assignments associated with any instruction. We implemented Blame Analysis in LLVM and evaluated it on ten
scientific programs. When used standalone, Blame Analysis is successful in lowering the precision for all tests. The
biggest benefits are observed when using Blame Analysis to filter the inputs to a search-based tool for floating-point
tuning. Our experiments show that combining Blame Analysis with Precimonious leads to finding better results faster.
Combined analysis times are 9 faster on average, and up to 38 faster in comparison to Precimonious alone. The solu-
tion computed is superior to the search-based tool and in three cases we observe as much as 40% program execution
speedup.

4


