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ABSTRACT

CO; injection in the subsurface introduces additional complexity in terms of interactions of the reservoir
host pore fluid with natural heterogeneity of hydro-mechanical properties of the rock. Natural
heterogeneity of the reservoir rock and caprock formations includes spatial variation of hydro-mechanical
properties as well as the presence of natural fractures. We developed a coupled mathematical modeling
and experimental framework that takes into account the effect of rock heterogeneity on effective
mechanical properties of the rock in contact with CO,. We performed accurate laboratory experimetns to
determine the changes in rock mechanical properties due to mineral dissolution in the presence of
carbonic acid generated by CO, injection. A two-scale adaptive homogenization framework was then
developed to consistently upscale petrophysical and geomechanical properties to the field scale. Further,
we also developed high-fidelity, numerical solution schemes, non-linear and linear solvers and
preconditioners to solve the coupled flow, reactive transport and geomechanical system. The numerical
model was then used to study field scale CO, sequestration problems for the two selected field sites: (1)
Frio formation and (2) Cranfield site. We also developed robust schemes for field data assimilation,
model calibration such that the residual uncertainty at the end of the data assimilation procedures can be
faithfully represented while taking into account the coupled geochemical and geomechanical processes.
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EXECUTIVE SUMMARY

In-depth understanding of the long-term fate of CO; in the subsurface requires study and analysis of the
reservoir formation, the overlaying caprock formation, and adjacent faults. Caprock flaws, such as pre-
existent and induced fractures constitute the most likely paths for CO, leakage. Natural fractures can be
re-activated (shear fractures) or re-opened (open-mode fractures) by increases in pore pressure during
injection. Increases in pore pressure of a few MPa are non-negligible and can constitute a serious threat to
safe CO, storage. The proposal is to study these issues using a combination of carefully conceived
laboratory experiments, upscaling schemes for bridging between the experimental and field scales,
accurate numerical models to model couple chemo-thermo-mechanical processes associated with long
term storage of CO, in the subsurface and finally implementing robust validation schemes using field data
from the Frio and Cranfield sites. The specific key project objectives are to (1) measure petrophysical and
hydro-mechanical properties of rocks in the presence of CO, in the laboratory, (2) develop upscaling
methods for rock petrophysical and hydro-mechanical properties considering natural heterogeneity and
pre-existing fractures, (3) develop advanced and cost-effective coupled solvers for CO, injection flow
simulation and geomechanics, (4) simulate numerically and perform history matching using CO, injection
at Frio and Cranfield sites, (5) implement schemes for quantifying the residual uncertainty after model
calibration and data assimilation, (6) develop guidelines and workflow to mitigate the geomechanical

risks of CO, injection in the subsurface.

The research team has developed a framework for risk assessment and performance evaluation of
different CO2 sequestration scenarios. This framework includes combined laboratory experiments,
numerical modeling of the coupled processes, and uncertainty and parameter estimation for selected field

sites as listed below:

e Measurement of petrophysical properties of Cranfield rocks from field cores and well logs.
Laboratory testing of Cranfield rocks for changes in mechanical properties with CO, specific

loading.

e Mathematical and numerical modeling of coupled multiphase flow, transport, and geomechanical
processes. A hysteretic relative permeability and capillary pressure model was developed and
implemented in IPARS that accurately describes a dominant mechanism of CO, trapping in

subsurface aquifers.

e A general upscaling framework using adaptive numerical homogenization for non-linear,
multiphase flow and transport. This technique was verified using a standalone implementation

and benchmarked for computational efficiency and solution accuracy.
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e Development of a multiple-realization optimizer coupled with IPARS, parameter estimation using
ensemble filtering approach, and uncertainty quantification using an adaptive response surface-

based technique.

A detailed description of all the tasks/activities performed as stipulated in the project milestones
can be found in the corresponding quarterly report. This final report summarizes the major tasks and

accomplishments performed under this award.



Task 2.0 — Laboratory Experiments for Petrophysical and Hydro-mechanical Rock Properties

Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in
fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most
simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do
not account for CO, dissolution in the brine phase to calculate pore pressure evolution. This study
presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the
Frio CO; injection site in the coast of the Gulf of Mexico as a case study.

The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation.
We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS
(Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure
transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the
effect of the CO, dissolution into brine and predict the implications of larger CO, injection volumes. Our
simulation results —including CO, dissolution— exhibited 33% lower pressure build-up relative to the
simulation excluding dissolution.

Capillary heterogeneity helps spread the CO, plume and facilitate early breakthrough. Formation
expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule
adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage
complex. Fault reactivation requires injection volumes of at least ~ sixty times the actual injected volume
at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used
in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence,
we do not expect an increase of fault permeability in the Frio sand even in the presence of fault
reactivation.

The purpose of this study is to investigate pore pressure build-up induced by CO, injection in
heterogeneous and compartmentalized poorly consolidated sands. We utilize the Frio CO, project as a
case study. The paper starts with a description of the reservoir model, petrophysical and geomechanical
properties (based on laboratory experiments and well-logging analyses), and the compositional phase
behavior model. Then, we show the results of history matching for the actual injection schedule and
extend conclusions for larger injection volumes and rates. We conclude with an evaluation of expected
geomechanical perturbations and limits for injection volumes and rates based on the current in-situ state
of stress and compartmentalization assumption.

Reservoir Geometry, Boundary Conditions and Simulation Grid

The detailed area of study (DAS) is a subdomain of interest in the larger Frio reservoir which includes
injection and observation wells. The DAS boundaries are determined by faults and a salt dome North-
West of the reservoir (Figure 2.1-a). The reservoir dips 16° towards the South-East. We adopted no-flow
boundary conditions for all four boundaries. The lower end of the reservoir is an idealized as an elongated
section up to 12 km long (Figure 2.1-b). Fault 2 and 3 are represented by low permeability planes
embedded in the middle of the DAS area. All four faults are normal faults having same strike about
N45°W but with different dip angles as interpreted from seismic images and earlier developed models
(Hovorka et al., 2006) (Table 2.1).

The total thickness of the model is 30 m (100 ft) evenly divided into 50 grid blocks of 0.6 m (2 ft)
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perpendicular to bedding in the x-direction. Parallel to the bedding pane, the model is divided into 78 grid
blocks in the y-direction (853 m) and 71 grid blocks in the z-direction (12192 m). The injection zone
(approximately 49 m by 61 m (160 ft by 200 ft)) is refined parallel to the bedding (y and z-directions)
with 1.5 m (5 ft) grid blocks, and the surrounding area is spaced with gradually larger sizes of the blocks
from 3 m (10 ft) to 305 m (1,000 ft). The full DAS model has 276,900 degrees of freedom. The well
injection schedules replicated the field injection/shut-in schedule. Further the initial reservoir pressure
was populated using full observation of base pressure at the injection and observation wells.

Frio C sand is composed of subarkosic fine-grained, moderately sorted quartz and feldspar sand grains;
with minor amounts of illite, smectite, and calcite (Kharaka et al. 2006). These minor amounts of clay and
calcite are located at grain contacts and may affect dynamic elastic properties (Al Hosni et al., 2016). We
obtained petrophysical properties from laboratory tests courtesy of GCCC (Gulf Coast Carbon Center, UT
Austin) and petrophysical and geomechanical properties from experiments performed in our laboratory.
Table 2.2 summarizes specimen depths and experiments performed.

Porosity and Permeability

Experimental measurements as well as well-logging analysis (data courtesy of the GCCC) provided
petrophysical properties and geomechanical properties for populating the reservoir model. The well-
logging analysis is used to calculate porosity and permeability, respectively from data spaced every 0.15
m (0.5 ft). We corrected measured neutron porosity ¢, and density porosity ¢, for the presence of clays
according to Equations (1-2) (Torres-Verdin, 2016).

c _ $p=Csndpsh_

o =", (1)
c _ $N=CsnPnsh_

PN =T, (2)

where ¢ and ¢y are shale-corrected density porosity and neutron porosity, Cg, is volumetric
concentration of shale, and ¢p s, and ¢y g, are apparent density porosity and neutron porosity of pure
shale. The selected depths for the shale correction are 1516 m (4972.5 ft) for the clay-rich layer (local
maximum GR) and 1544 m (5065.5 ft) for the water saturated clay-poor layer (local minimum GR). Table
2.3 shows the well log GR readings at the two depths. The corrected porosity ¢¢ is

We calculated permeability along the entire injection zone using an empirical correlation between
laboratory measured porosity ¢ and permeability k (Figure 2.2). Figure 2.3 shows the resulting corrected
porosity and permeability including layers above and below the injection zone. Reservoir properties were
averaged from the calculated data; namely, the grid block spatial scale of 0.6 m (2 ft) see Figures 2.3-a
and b for interpolated values of porosity and permeability. We adjusted the ratio between vertical and
horizontal permeabilities to 1/3 in order to achieve history matching in the pressure response.

Capillary Pressure and Relative Permeability

Capillary pressure measurements suggest that the layered formation can be categorized into different
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groups of rock depending on the values of the J-function:
PC(SW)
J(su) = 2 [k @

where Sw is saturation of water, Pc is capillary pressure, y is interfacial tension, and 6 is contact angle
(Peters, 2012). We used the J-functions to classify the full reservoir model into four different rock types
to build an accurate reservoir model (Table 2.4). Figure 2.4-b shows the capillary pressure, and a mapping
using converted J-functions from an air-mercury system with interfacial tension at 485 mN/m and contact
angle 140° to CO2-brine system with interfacial tension 30 mN/m and contact angle 40° (Espinoza and
Santamarina, 2010). We employed a Brooks-Corey drainage model to calculate the relative permeability
curves from capillary pressure data (Figure 2.4-b and -c).

1
Pe = Pe(Sw) )
* Sw—Swirr
W (©)

where Pe is the capillary entry pressure, Sy, is the reduced wetting phase saturation, A is the pore size
distribution index, and Swirr is irreducible water saturation. The corresponding relative permeabilities are

2431
rw(S) = (53) 7 ™
_ 241
Ko (S = Fenar (1= 22202) 1 — (537 | ®)

where krw is the relative permeability of wetting phase (brine), krnw is the relative permeability of non-
wetting phase (CO2), Sm (= 1 for drainage) is the wetting phase saturation corresponding to the critical
non-wetting phase saturation, and knwr is the non-wetting phase relative permeability at the irreducible
wetting phase saturation. Table 2.4 lists the modelling parameters used to calculate the relative
permeability curves (Figure 2.4-c). The reservoir model assimilates heterogeneity of capillary pressure
and relative permeability as shown in Figure 2.4-c.

Geomechanical Properties

We quantified Frio sand rock compressibility using step loading of pore pressure and confining stress
(Bouteca et al., 1999) (Figure 2.5-a). We saturated sample V1 with synthetic 93,000 ppm salinity NaCl
solution as pore fluid and measured volumetric as a function of effective mean stress (Figure 2.5-b) . The
corresponding bulk rock compressibility is 4.6 - 10-8 MPa-1 (6.3 -10-6 psi-1) evaluated using the
following equations assuming negligible mineral compressibility

1 AVP Agyop

C j—
p— Vp AP, AP,

©)

Calculated rock compressibility was taken to be constant throughout the reservoir.

We also conducted a multistage deviatoric loading test to evaluate strength and post-peak failure behavior
of the Frio C sand. The multistage loading consisted of increasing deviatoric stress at three different
constant confining stresses: 3.4 MPa (500 psi), 6.9 MPa (1,000 psi), and 10.3 MPa (1,500 psi) (Figure
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2.6-a). During the first two loading stages, the sample exhibited dilative behavior by increasing deviatoric
stress. Finally, shear yield was allowed at the last loading stage. The sand resulting friction

angle is about 38°, and the cohesive strength is zero (Figure 2.6-b). The sand undergoes ductile
deformation at peak stress.

In-situ Stresses

We estimated the magnitude and direction of principal stresses using an overburden (total vertical stress)
gradient of 20.5 MPa/km (0.907 psi/ft) (Hovorka et al., 2003) that includes the effect of the rising salt
dome on “dome hoop stresses” (minimum principal stress oriented in circumferential direction -
Nikolinakou et al., 2014). We assumed a limit frictional equilibrium of the sand unit (Zoback, 2007)
(friction angle from Section 2.2) and a normal faulting regime from the seismic interpretation of strikes
and dips of the respective faults (Figure 2.1). The vertical-to-horizontal stress anisotropy is

91 _ Sy—Pp < 1+sin (@)
03 Shmin—Pp ~ 1-sin (@)

(10)

where 61 and 63 are maximum and minimum principal effective stress ¢ is the friction angle, Sv is the
total vertical stress, Shmin is the minimum total horizontal stress, and Pp is the pore pressure. At the
perforation depth of the injection well, measured bottomhole pressure Pp was 14.8 MPa (2153 psi), and
calculated Sv was 31.6 MPa (4580.4 psi). Using ¢ = 38° (Figure 2.6), limit frictional equilibrium
provides an estimate of the lower bound of minimum principal stress (horizontal) around the injection
zone. This value was estimated to be 18.8 MPa (2,734 psi).

Stress anisotropy may decrease with time due to creep. Hovorka et al. (2003) calculated formation
fracture pressure equal to 26.6 MPa (3,851 psi) at a depth of 1,667 m (5,000 ft) based on Eaton’s equation
using Poisson’s ratio v = 0.416, overburden gradient 0.907 psi/ft, and reservoir pressure gradient 0.432
psi/ft.

Shmin = (11/:) (Sy _Pp) + P (11).
History Match

Figure 2.7 shows history-matching of pressure responses for four injection cycles in the base case,
including injection and shut-in periods for both the injection and observation wells. The pressure response
in the first injection cycle does not coincide with simulation results. This peak might have occurred due to
effects of formation damage or near-wellbore perforation complexity. However, the CO, breakthrough
time was predicted by numerical simulation to the 2.3 days as compared to 2.1 days observed in field.

Figure 2.8 shows snapshots of the CO, plume migration up to 60 days after injection. The CO, plume
moves toward the observation well due to buoyancy but does not move above the few permeability
caprock. Figure 2.8-a shows the total CO, concentration (CO, [Ib-mole]/pore volume [ft']) in both gas
phase and dissolved phase while Figure 2.8-b shows CO, saturation of the gas phase only (bulk
supercritical CO,). Initially, the two figures show similar CO, saturation distribution since the CO, has
not dissolved extensively into brine yet. After 30 days of the injection, the difference between Figures
2.8-a and -b demonstrates a considerable amount of dissolved CO, around injection zone (approximately
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30%).

Rock compressibility C, is one of the key mechanical properties determining pore pressure buil-up. Rock
compressibility lowers the pore pressure buildup at the injection well by increasing available pore volume.
Zero rock compressibility results in a steady increase of wellbore pressure for rate specified injection well.
In fact the pressure buildup is twice for zero rock compressibility compared to the field observations at
both injection and observation wells. We therefore assume a non-zero rock compressibility estimated
from the laboratory experiment in our numerical simulation model; as described before. The simulation
results show flattening pressure transient curve during constant injection rate.

Injection Rate to Induce Fault Activation

This section applied results of reservoir simulation to determine critical pore pressures and injection rates
for fault reactivation. Normal and shear stresses are calculated at four faults from the estimated principal
stresses in Section 2.2.4. The stress tensor in geographical coordinates is obtained by applying a
transformation matrix R, to the principal stress tensor as shown below:

S 0 0
_ pT _pT
Sg = R1SR=R; 0 S, O0|R; (15),
0 0 S3
where
cosacosb sinacosb —sinb
Ry = |cosasinbsinc —sinacosc sinasinbsinc+ cosacosc cosbsinc
cosasinbcosc+ sinasinc sinasinbcosc— cosasinc cosbcosc

(16),

and Euler rotation angles a = 44.85°, b 90°, and ¢ = 0° for the location shown in Figure 2.1 (Zoback,
2007).

For stress analysis, the stress tensor in the geographical coordinate system S, is projected onto the fault
plane coordinate system using observed fault strikes and dip angles (Table 2.1). Transformation vectors n,
and ng, (function of fault strike st and dip dip) permit calculating the magnitudes of shear stress T and
normal stress S, on the fault plane from the stress tensor in geographical coordinate system S,.

— sin(str) sin(dip) - sin(str) cos(dip)

T={S, [nn]}Tnd = 1S, | cos(str) sin(dip) cos(str) cos(dip) | (17),
— cos(dip) sin(dip)
—sin(str) sin(dip) "= sin(str) sin(dip)
Sy = {Sg [nn]}Tnn =4Sy | cos(str)sin(dip) cos(str) sin (dip) (18),
— cos(dip) —cos (dip)

Figure 2.9 shows the stress conditions at each fault at initial pore pressure condition before the injection
assuming a non-zero cohesive strength in the rock matrix. The values of principal stresses change
depending on the depth. The value of principal stresses at the injection well is specified in Section 2.2.4.
As pore pressure increases, the effective normal stress on the fault plane decreases and the Mohr circle
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moves towards the yield line increasing the possibility of the shear yield at the fault plane.

Figure 2.10 shows the maximum amount of CO; injection without causing fault reactivation as a function
of injection rate. The maximum cumulative amount of CO, injection is about 130,000 tons, and it is
relatively dependent of injection rates. The first location of fault reactivation (Fault 2) is observed for all
injection rate cases (Table 2.7). Extremely high injection rates over 10,000 tons/day may fracture the well
before causing fault reactivation.

Overall, the results indicate that the first Frio pilot test injected less than 1.6% of the minimum possible
amount of CO, storage without perturbing faults (Figure 2.10). Assumption of negligible rock
compressibility results a reduction of storage capacity by a factor of ten. These values are provided as an
illustrative comparison for compartmentalized reservoirs in formations near the limit of stress equilibrium.
Actual predictions need to measure in-situ stress magnitude and orientation and should account for flow
boundary conditions that may allow for leaks at faults.

Tertiary unconsolidated sands and mudrocks at Frio do not exhibit brittle deformation during shearing.
Figure 2.6-a shows slight strain hardening behavior of Frio sand at in-situ effective stresses. Large
induced seismicity events and failure localization (and local increases in permeability) are less likely to
occur in geological formations that sustain large plastic strains at yield.

Injection Rate to Induce Open-Mode Fractures

Figure 2.10 summarizes simulation results showing the maximum amounts of CO, injection needed to
fracture the injection well (assuming that bottom hole pressure reaches the minimum principal stress) and
zero fault leakage upon reactivation. If faults are leaky, then an open-mode fracture may not develop due
to the pore pressure control at faults. Fault reactivation predates hydraulic fracturing for typical injection
rates < 10,000 ton per day. Injection rates above 10,000 tons per day can cause hydraulic fracturing
before fault reactivation and are not affected by domain size because of the sharp pressure gradient
developed around the injection wellbore (Table 2.7). Hovorka et al. (2003) suggested a maximum
injection rate of 250 tons per day. Injection pressure and rate used at the first Frio pilot test seems to be
significantly below thresholds for developing open-mode fractures.

Pore Pressure Reduction Due to CO; Dissolution into Brine

Immiscible two-phase fluid flow simulation (Simulation IM) shows 75.9 kPa (11 psi) higher pressure
response compared to compositional Simulation BC due to no dissolution of CO, into the brine (Figure
2.7). The amount of dissolved CO, in Simulation BC increases with time as the plume spreads in the
brine-saturated reservoir. The binary interaction coefficient, one of the key parameters of CO, solubility
in brine, has large effects on the pore pressure for a given injection scenario. At the end of injection,
approximately 20% of the CO, was dissloved in the brine. After 20 days of the end of injection, 44% of
the injected CO, was dissolved into the brine, and eventually, 91% of the CO, was dissolved after 95 days
(Figure 2.8). The CO, plume in immiscible simulation (IM) is thinner and moves faster than that in
simulation using BC. Results indicate that CO, dissolution contributes a fair proportion to trapping for
small CO,; injection volumes. CO, dissolution in the brine phase alleviates pore pressure buildup and
extends injection times without effecting mechanical stability compared to the immiscible case. We
predict that injection can be carried out for an additional two days at 200 tons per day. The effect of
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dissolution on pore pressure buildup is stronger in rocks with low pore compressibility.
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Figure 2.9. Effective stress Mohr circles at initial pore pressure (blue) and critical pore pressure (red). Red
star shows the state of stress at Fault 1 (a), Fault 2 (b), and Fault 3 (c). In-situ stresses are assumed based
on stress limit equilibrium. Results illustrate the effect of pore pressure increase at faults.
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Figure 2.10. The cumulative amount of CO, injection without causing fault reactivation (solid blue line)
or hydraulic fracture at the injector (solid red line) as a function of injection rate assuming closed
reservoir compartments. Green triangles show actual cumulative CO; injection volume and injection rates

Table 2.1. Information about faults in DAS

10°

Depth (closest to injection well) Strike Dip
Fault 1 1,566 m (5,139 ft) N45°W 87°NE
Fault 2 1,542 m (5,060 ft) N45°W 77°NE
Fault 3 1,458 m (4,873 ft) N45°W 77°NE
Fault 4 1,408 m (4,621 ft) N45°W 78°NE
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Table 2.2. Information of samples from laboratory experiments

Depth Depth Plug T ¢ ) ¢ Porosity = Permeability
e of experiments
[£t] [m] direction ype OTexp -] [mD]
5051.8 1539.8  Horizontal Gas permeability, MICP (GCCC) 0.308 837
5050.4 1539.3  Horizontal Gas permeability, MICP (GCCC) 0.277 25
5051.2 1539.6  Horizontal Gas permeability, MICP (GCCC) 0.244 45
5053.4 1540.3  Horizontal Gas permeability, MICP (GCCC) 0.326 2930
Multistage triaxial loading, N,-brine

5055.1 1540.8 Vertical 1%1Ject10n at. 1n-situ stress conc.ht.l(.)n 0376 263

VD) (Biot coefficient and compressibility),

MICP (Our laboratory)
Porous plate capillary pressure

5055.8 1410 erzontal measurement 0.377 -

(HI)

(Our laboratory)
Porous plate capillary pressure

50550 1s410  vereal measurement 0.355 -

(V2)

(Our laboratory)

5061.4 1542.7  Horizontal Gas permeability, MICP (GCCC) 0.331 1150
5065.6 1544.0  Horizontal Gas permeability, MICP (GCCC) 0.327 1830
5070.5 1545.5  Horizontal Gas permeability, MICP (GCCC) 0.280 212
5071.5 1545.8  Horizontal Gas permeability, MICP (GCCC) 0.353 2650
5075.4 1547.0  Horizontal Gas permeability, MICP (GCCC) 0.326 1080
5076.3 1547.3  Horizontal Gas permeability, MICP (GCCC) 0.340 2330

Table 2.3. Measured well log values at depths for shale correction

Property

Water saturated sands

Clay-rich sands

Depth [m]

1,544 m (5065.5 ft)

18
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Gamma ray [GAPI] 45.5 148.9
Density porosity ¢p s [-] 0.354 0.260

Neutron porosity ¢y sp [-] 0.348 0.501

Table 2.4. Rock types applied to Frio reservoir modeling for capillary pressure and relative permeability.
(Assumed parameters include k., = 0.82 and S;,= 1)

Property Tight Medium Coarse 1 Coarse 2
Permeability [mD] 0.3 618 1026 2107
Porosity [-] 0.1 0.24 0.29 0.36
J-function 1 2 3 3
A 0.29 1.1 2 1.9
Pc[MPa] 0.0055 0.0021 0.0028 0.0016
Swirr 0.5 0.279 0.263 0.263
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Task 3.0 Upscale by Completing Bridge from Laboratory to Field Scales

We developed an adaptive homogenization approach upscaling non-linear multiphase flow and transport.
A two-phase oil-water problem is considered here that has been extended to handle two-phase air-water
type system required for CO, sequestration in subsurface aquifers. The workflow of our adaptive

homogenization framework has three key steps:

1. Local numerical homogenization to obtain permeability values at the coarse scale by solving local
unit-cell problems assuming single phase incompressible flow with periodic boundary conditions.

2. Evaluate an adaptivity criteria for identifying the location of the front and mark transient and non-
transient regions.

3. Once the property data (permeability, porosity, etc.) is available at the coarse scale, an AMR
scheme is used to solve the coupled transient (fine scale) and non-transient (coarse scale) flow
and transport problems.

Local Numerical Homogenization

The local numerical homogenization step involves solving auxiliary problems over a subdomain Qj at a
given fine scale to obtain an effective value of permeability, porosity or dispersion at a chosen coarse
scale. Here, local is used to refer to the subdomains over which the auxiliary problems are solved using
periodic boundary conditions for each subdomain. Figure 3.1 shows a schematic of the local numerical
homogenization with the fine scale auxiliary problem (dotted red, left) to obtain coarse scale effective
values (dotted red, right).

Figure 3.1 Schematic of local numerical homogenization to obtain coarse scale (right) prarameters

from fine scale (left)

Oversampling

Although the local numerical homogenization with non-overlapping subdomains provides good estimates
for effective properties at the coarse scale, for some channelized cases this might result in loss of channel
connectivity. This issue has been identified by several others; (Efendiev and Hou, 2009; Chung et al.,
2016) to cite a few, and has been addressed by using overlapping subdomains during the evaluation of
multiscale basis. In this work, we use the same approach wherein subdomains are allowed to overlap over
a predefined (or user specified) region. Figure 3.2 shows a schematic of oversampling for local numerical
homogenization with overlapping subdomains. The effective properties are then evaluated by solving a
local numerical homogenization over these extended subdomains.
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Figure 3.2: Oversampling for local numerical homogenization

We observe improvements in numerical solution accuracy of our adaptive approach; compared to the fine
scale solution, for channelized permeability distributions with fine (or thin) high permeability streaks.
This oversampling approach does not affect our overall computational efficiency since local numerical
homogenization is performed only once prior to a numerical simulation for a given set of reservoir
property distribution.

Adaptivity Criterion

We now require an indicator function to track the location of the saturation front in order to later perform
a domain decomposition into transient and non-transient regions. An ad hoc criterion for identifying the
location of the saturation front can be easily defined using a gradient in saturation between saturation at a
given point in space and its nearest neighbor. One such criterion is using a maximum of absolute of
difference between a saturation S at an element and its adjacent elements at the previous time step n. We
define the neighboring elements collectively as, Qneighbor(X)=1{y:y € Ej,|0OEiNJEj|= 2,ifx € Ej}.Then the

adaptivity criteria can be written as,

Qf = {x : max|c™(x) — ¢"(y)| > cadap Vy € Qneighbor(X)}

Here, Eji and Ej represent an element and its neighbors with eadap as the threshold value above which a
domain is marked as a transient region. Please note that this type of adaptivity criterion has been used by
others (Aarnes and Efendiev, 2006) to reduce computational costs in a similar sense. However, the
computational speedup obtained in the former is not clear. Such criteria have been used in the past for
different problems as well. For example, in compositional flow modeling (Singh and Wheeler, 2016), the
local equilibrium computations (flash calculations) are performed based upon the identification of a
spatial transient region where a given fluid composition was unstable at a previous timestep.

Adaptive Mesh Refinement

Based upon the above criteria we divide the domain (Q) into non-overlapping, transient (Qf) and non-
transient (Q¢) subdomains to solve flow and transport problems at the fine and coarse scales, respectively.
Figure 3.3 shows a schematic of the domain decomposition approach used here. In what follows, coarse
and non-transient, and fine and transient can be used interchangeably to refer to a subdomain. The coarse
and fine subdomain problems are then coupled at the interface using the EVMFEM spatial discretization
described in Wheeler et al. (2002). The EV MFE method is known to be strongly mass conservative at the
interface between fine and coarse domains. Further, this scheme has been used previously; as a
multiblock domain decomposition approach, for a number of fluid flow and transport problems (Thomas
and Wheeler, 2011) including EOS compositional flow. This adaptive homogenization approach has also
been used for upscaling single phase, slightly compressible flow, and tracer transport in Amanbek et al.
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(2017). Here, the EV MFE was used as the multiblock, domain decomposition approach similar to its
usage in this work.

Qe,

Figure 3.3: Schematic of adaptive mesh refinement with coarse (¢) and fine (€2f) domains.

Solution Algorithm

In this section, we discuss the numerical solution algorithm with a brief description of spatial and
temporal discretizations employed. We assume that the oil phase pressure po and saturation Sp are the
primary unknowns to form the non-linear system of algebraic equations representing the weak form of the
two-phase flow model formulation. The lowest order (RT0) mixed finite element method (Arbogast et al.,
1997) ; equivalent to the finite difference scheme, is used for spatial discretization with a backward Euler
scheme for temporal discretization. A Newton linearization is then performed to obtain a linear system of
algebraic equations hence resulting in a fully implicit solution scheme.

Algorithm 1 Workflow for adaptive numerical homogenization

Solve unit-cell problems, Eqns. (9), on subdomains (£2;) using fine scale parameters to obtain
coarse scale parameters for the entire domain (Q = UC;, see Figure 3).

while ¢, <T do
Identify transient (£25) and non transient (£2.) regions using adaptivity criteria Eqn. (10) and
Do, So att, (QrUQ. = Q).

Mass conservative initialization of primary unknowns:

1. Reconstruct primary unknowns pﬁ+l’0.SZ+l’O for the fine scale transient region ().

n+1,0 on+1,0
390

2. Project primary unknowns p, for the coarse scale non-transient region ().

while max(R,;) > &, do

1. Use fine and coarse scale parameters in the transient () and non-transient (£2.) regions,
respectively.

2. Use enhanced velocity (EV) scheme to couple coarse and fine subdomains.

3. Solve linearized, algebraic SP/stem for the coupled flow and transport problem to obtain a

Tk |
Newton update pjt * ! sptiAHt

k:=k+1
end
the1 =t +At,n:=n+1

end
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Algorithm 1 presents the solution algorithm for the adaptive homogenization approach. Here, n and k are
the time and non-linear iteration counter, tn and tn+] are the current and next time, At current time-step

size, T the final time, max(R-)nl) the max norm of the non-linear residual vector, and €p] the non-linear
tolerance. The adaptivity criteria (10) is evaluated at the coarse scale; for each time step, to identify the
transient region for the next time step. Once identified the reservoir domain is divided into fine (Qf ) and
coarse Q¢ subdomains. A fully coupled, monolithic construction of the multiblock domain decomposition
approach EV MFEM is then used for coupling non-matching coarse and fine subdomains. The coupled
monolithic construction is an improvement over the previous implementations of the EV MFEM
(Wheeler et al., 2002; Thomas and Wheeler, 2011) approach where the interface contributions are
neglected. This approach was also used for upscaling single-phase flow and tracer transport earlier by

(Amanbek et al., 2017). The non-linear iterations are performed until the max norm (max(R nl)) satisfies
a desired tolerance (en]) corresponding to the error in phase mass conservation equations.

Numerical Results

In this section, we present numerical experiments beginning with verification cases for numerical
homogenization and AMR using periodic and homogeneous reservoir properties, respectively for the two
cases. Next we demonstrate the capability of our adaptive homogenization approach using reservoir

property description from different horizontal layers of the IOth

SPE comparative project for upscaling
approaches (Christie and Blunt, 2001). We specifically rely upon two layers of the SPE10 project: (1)
layer 20 with a near Gaussian distribution of permeability, and (2) layer 38 with layered or highly
channelized permeability distribution. These contrasting cases are aimed to test the solution accuracy and
computational efficiency of our adaptive homogenization approach compared to a fine scale solve over
the entire reservoir domain. The reservoir domain is 220ftx60ft with coarse and fine scale grid
discretizations of 22x6 and 220x%60, respectively. The coarse and fine grid elements are consequently
10ftx10ft and 1ftx1ft. The fluid and reservoir properties are mostly taken from the SPE10 dataset with

minor modifications to oil phase compressibility to fit the two-phase flow model formulation. The oil and

water phase compressibility is taken to be 1><1074 and 3><1076 psii1 , respectively. Further the fluid
viscosities is assumed to be 3 and 1 cP for the oil and water phases, respectively. Additionally, a Brook’s
Corey model, is considered for the two-phase relative permeabilities with endpoints Sor = Swirr = 0.2 and

kro0 = krow = 1.0, and model exponents np = nw = 2, as suggested in the SPE10 dataset.

In all of the following numerical cases, the initial reservoir pressure and saturation are taken to be 1000
psi and 0.2, respectively. Further, the injection well is water-rate specified at 2 STB/day whereas the
production well is pressure specified at 1000 psi. All numerical simulations are carried out for a total of
200 days with continuous water injection. Please note that although a homogeneous dataset is provided in
SPE10 data for relative permeability and capillary pressure, our upscaling approach is not restrictive in
this sense. In fact, for such heterogeneities an average relative permeability and capillary pressure can be
obtained at the coarse scale; following the two-scale homogenization work of Bourgeat et al. (2003).
However, we do not need to evaluate these effective functions at the coarse scale since we are resolving
fine scale features at the front using AMR.

Verification: Homogeneous Case

We verify the adaptivity criteria and AMR using a homogeneous permeability of dis- tribution of 50mD.
Figure 3.4 shows the saturation profile after hundred days of continuous water injection. As can be easily
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seen from these figures the saturation profiles for the fine and adaptive approaches are in excellent

agreement.

Sw at time 100 days
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Figure 3.4: Saturation profiles after 100 days for coarse (top), fine (middle), and adaptive (bottom)

approaches.

Figures 3.5 and 3.6 further show the oil rate and cumulative oil at the production well, respectively. These
results further bolster the fact that the AMR with the proposed adaptivity criteria provides an accurate
solution when compared against the fine scale solution. The coarse scale solution deviates mildly from the
other two set of results due to numerical diffusion introduced by the upwinding scheme and coarse grid
discretization. The AMR is able to curtail the numerical diffusion introduced by upwinding at the
saturation front by using a dynamic fine grid around the saturation front.
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Figure 3.5: Oil rate at production wells (STB/day)
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Figure 3.6: Cumulative oil production (STB)

Gaussian Permeability Distribution

For this numerical test, we use layer 20 of the SPE10 dataset that has a relatively Gaussian distribution of
permeability. Figure 3.7 shows fine scale permeability distribution; extracted from the dataset, and coarse
scale distribution obtained after numerical homogenization. As discussed earlier, this numerical
homogenization step to obtain effective properties at the coarse scale is only performed once and does
effect the overall computational efficiency.

Fine Permeability Distribution

Coarse Permeability Distribution

Figure 3.7: Fine and coarse scale permeability distributions for SPE10 layer 20

Figure 3.8 shows the saturation profile after 50 days for the coarse, fine, and adaptive approaches. It is
clear from these figures that saturation fronts are captured almost as accurately as the fine scale solution
at substantially less computational cost. This is achieved by solving the fine scale problem only in
reservoir subdomains where changes in saturation are large; as identified by our adaptivity criteria.
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Figure 3.8: Saturation profiles after 50 days for coarse (top), fine (middle), and adaptive (bottom)
approaches.

Figures 3.9 and 3.10 show the oil rate and cumulative oil at the production well. These figures clearly
show that the adaptive approach is again in excellent agreement with the fine scale solution for the
Gaussian permeability distribution under consideration. Again, this is more or less expected since the
permeability distribution is Gaussian in nature and therefore has some ergodicity; or periodic properties in
a statistical paradigm. Therefore the basic assumptions of two-scale homogenization theory and
consequently local numerical homogenization are inherently valid.

Oil Rate (STB/day)

25 T T T T T T
—Fine
o
)
B 15H
m
[
2
2 1
©
o
0.5f
0 I 1 I I L I L I I
0 20 40 60 80 100 120 140 160 180 200

Time (days)

Figure 3.9: Oil rate at production well (STB/day) for layer 20 of SPE10.
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Figure 3.10: Cumulative oil production (STB) for layer 20 of SPE10.

Channelized Permeability Distribution

Next, we consider layer 38 of the SPE10 dataset that has a channelized or layered permeability
distribution with stark contrast in permeability values. Figure 3.11 shows fine scale permeability
distribution and coarse scale distribution obtained after numerical homogenization; similar to the previous
numerical test case. This figure clearly shows that channels connectivity is lost in the coarse scale
permeability distribution obtained from local numerical homogenization.

Fine Permeability Distribution

Coarse Permeability Distribution

Figure 3.11: Permeability distribution at fine (top) and coarse (bottom) scale from SPE 10 layer 38.

We are able to recover connectivity using oversampling to some extent however, we still observe a
substantial deviation in solution accuracy for the coarse scale. However, our adaptive homogenization
approach is still able to recover fine scale features as can be seen from the saturation profile in Figure
3.12.
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Figure 3.12: Saturation profiles after 50 days for coarse (top), fine (middle), and adaptive (bottom)
approaches.

Figures 3.13 and 3.14 show the oil rate and cumulative oil at the production well. The deviation of the oil
rate for the adaptive case (spikes) can be improved by tightening the adaptive criteria, however this
results in additional computational overheads. Since the cumulative oil production is already a good
match we did not consider this aforementioned approach to resolve the oil-rates better.
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Figure 3.13: Oil rate at production well (STB/day) for layer 38 of SPE10.
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Figure 3.14: Cumulative oil production well (STB) for layer 38 of SPE10.

An adaptive numerical homogenization approach is reported that relies upon identifying characteristic
flow features; such as the saturation front, and resolving them at the fine scale for accuracy. The
computational efficiency is achieved by solving a coarse scale problem away from the saturation front
with effective coefficients; obtained from one time local numerical homogenization for a given reservoir
property distribution, at the coarse scale. An oversampling technique for the local numerical
homogenization step preserves connectivity of channels; across coarse subdomains, in a layered
permeability medium. Further, a non-linear preconditioning approach was developed to reduce the
number of non-linear iterations improving the computational efficiency of the overall approach for a
multiphase flow system. The numerical results indicate that the solutions obtained using our adaptive
homogenization approach are in good agreement with the fine scale solutions. The breakthrough times
and production histories are predicted more accurately compared to a purely coarse scale; using local
numerical homogenization without AMR, solve. We obtain a speedup of approximately 4 times for all our
numerical test cases since the saturation front; where a fine scale solution is required, occupies only a
small subdomain of the entire reservoir. Further speedups can be obtained by using a loose adaptivity
criteria at the cost of solution accuracy. This approach can be easily extended to black-oil, compositional
(gas and chemical flooding), and reactive flow type systems with a some modifications in local numerical
homogenization and non-linear preconditioning steps. As mentioned previously, the effective equations;
using two-scale homogenization, for different flow models share common workflow elements that do not
change with the flow model under consideration. Thus adaptive homogenization is a general upscaling
framework with a certain degree of process independence.

References

Aarnes, J. E. and Efendiev, Y., 2006. An adaptive multiscale method for simulation of fluid flow in
heterogeneous porous media. Multiscale Modeling & Simulation, 5 (3): 918-939.

Allaire, G., 1992. Homogenization and two-scale convergence. SIAM Journal on Mathematical Analysis,
23 (6): 1482—-1518. Amanbek, Y., Singh, G., Wheeler, M. F., and van Duijn, H., 2017. Adaptive
numerical homogenization for upscaling single

phase flow and transport. ICES Report, 12 (17). Amaziane, B., Bourgeat, A., and Jurak, M., 2006.

Effective macrodiffusion in solute transport through heterogeneous porous media. Multiscale Modeling &

31



Simulation, 5 (1): 184-204. Arbogast, T., 2012. Mixed Multiscale Methods for Heterogeneous Elliptic
Problems, 243-283. Springer Berlin Heidelberg,

Berlin, Heidelberg. Arbogast, T., Pencheva, G., Wheeler, M. F., and Yotov, 1., 2007. A multiscale mortar
mixed finite element method. Multiscale

Modeling & Simulation, 6 (1): 319-346. Arbogast, T., Wheeler, M., and Yotov, 1., 1997. Mixed finite
elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer.
Anal., 32 (2): 828-852.

Bear, J., 1972. Dynamics of fluids in porous media. Textbook.

Bensoussan, A., Lions, J.-L., and Papanicolaou, G., 1978. Asymptotic analysis for periodic structures,
volume 5. North- Holland Publishing Company Amsterdam.

Bourgeat, A., Jurak, M., and Piatnitski, A. L., 2003. Averaging a transport equation with small diffusion
and oscillating velocity. Mathematical Methods in the Applied Sciences, 26 (2): 95-117.

Brooks, R. and Corey, A., 1964. Hydraulic properties of porous media. Hydrology Papers No. 3, 26 (2).
Buckley, S. and Leverett, M., 1942. Mechanism of fluid displacement in sands. SPE Journal, 146 (01).

Christie, M. A. and Blunt, M. J., 2001. Tenth spe comparative solution project: A comparison of
upscaling techniques. SPE Reservoir Evaluation and Engineering, 4 (04).

Chung, E., Efendiev, Y., and Hou, T. Y., 2016. Adaptive multiscale model reduction with generalized
multiscale finite element methods. Journal of Computational Physics, 320: 69-95.

Dawson, C. N., Klie, H., Wheeler, M. F., and Woodward, C. S., 1998. A parallel, implicit cell-centered
method for two-phase flow with a preconditioned newton-krylov solver. Computational Geosciences, 1
(3): 215-249.

Durlofsky, L. J., 2003. Upscaling of geocellular models for reservoir flow simulation: A review of recent
progress. In 7 th International Forum on Reservoir Simulation. Citeseer.

Efendiev, Y. and Hou, T. Y., 2009. Multiscale finite element methods: theory and applications, volume 4.
Springer Science & Business Media.

Eisenstat, S. C. and Walker, H. F., 1994. Globally convergent inexact newton methods. SIAM Journal of
Optimization, 4 (2): 393-422.

Farmer, C. L., 2002. Upscaling: a review. International Journal for Numerical Methods in Fluids, 40 (1):
63—78. Genuchten, V., 1980. A closed-form equation for predicting the hydraulic conductivity of
unsaturated soils. Soil Science

Society of America Journal, 44 (5): 892—-898. Jikov, V. V., Kozlov, S. M., and Oleinik, O. A., 2012.

Homogenization of differential operators and integral functionals. Springer Science & Business Media.

32



John, A. K., 2008. Dispersion in Large Scale Permeable Media. Ph.D. thesis, The University of Texas at
Austin.

Mikelic, A., Devigne, V., and Van Duijn, C., 2006. Rigorous upscaling of the reactive flow through a
pore, under dominant peclet and damkohler numbers. SIAM journal on mathematical analysis, 38 (4):
1262-1287.

Singh, G. and Wheeler, M. F., 2016. Compositional flow modeling using a multi-point flux mixed fi- nite
element method. Computational Geosciences, 20 (3): 421-435. doi:10.1007/s10596-015-9535-2. URL
http://dx.doi.org/10.1007/s10596-015-9535-2.

Tavakoli, R., Yoon, H., Delshad, M., ElSheikh, A. H., Wheeler, M. F., and Arnold, B. W., 2013.
Comparison of ensemble filtering algorithms and null-space monte carlo for parameter estimation and
uncertainty quantification us- ing co2 sequestration data. Water Resources Research, 49 (12): 8108-8127.

Thomas, S. G. and Wheeler, M. F., 2011. Enhanced velocity mixed finite element methods for modeling
coupled flow and transport on non-matching multiblock grids. Computational Geosciences, 15 (4): 605—
625.

Wheeler, J. A., Wheeler, M. F., and Yotov, 1., 2002. Enhanced velocity mixed finite element methods for
flow in multiblock domains. Computational Geosciences, 6 (3-4): 315-332.

Wu, X.-H., Efendiev, Y., and Hou, T. Y., 2002. Analysis of upscaling absolute permeability. Discrete and
Continuous Dynamical Systems Series B, 2 (2): 185-204.

33



Task 4 - Simulator Development and Modeling CO, Storage Field Scale Studies

Coupled Compostional Flow and Elastoplasticity Model

An extensive amount of work has been done previously (Delshad et al, 2013) on modeling and numerical
simulation of CO, sequestration for Cranfield, using an EOS compositional flow model in the house
reservoir simulator IPARS, by one of the co-PIs. However, most of these prior studies did not include the
effect of reservoir geomechanics on the field integrity and storage capacity. The modeling work presented
in this report accounts for the elastoplastic nature of the reservoir rock by considering a Drucker-Prager
plasticity model. An independent experimental study was conducted by one of the co-Pls (in the
Laboratory Experiments section below) to determine rock properties, from Cranfield cores, for both flow
and geomechanics. The main objective of this combined experimental and numerical study is to quantify
the impact of mechanical deformation, either elastic or plastic, on reservoir integrity, to identify and

optimize operational choices for any long-term CO; sequestration field project.
p p y long q proj

As a part of the modeling and simulation task, we integrated an implementation of the Drucker-Prager
plasticity model into the parallel compositional reservoir simulator, IPARS (Integrated Parallel Accurate
Reservoir Simulator). Fluid flow is formulated on general distorted hexahedral grids using the multipoint
flux mixed finite element method. The mechanics and flow systems are solved separately and coupled
using a fixed-stress iterative coupling algorithm. This allows multiple flow models to be used with
nonlinear mechanics without modification, and allows each type of physics to use appropriate
preconditioners for its linear systems. The fixed-stress iteration converges to the fully coupled solution
on each time step. With these components in place, we conduct a study on wellbore stability using
different flow and geomaterial models. Our simulations run efficiently in parallel using MPI on high

performance computing platforms up to hundreds or thousands of processors.

The coupled poro-elasto-plasticity system consists of a Drucker-Prager elasto-plasticity model coupled
with a number of different fluid flow model options, including an Equation of State Compositional Flow
model. The mechanics model is discretized using a Continuous Galerkin (CG) finite element method, and
the flow models are discretized using a multipoint flux mixed finite element (MFMFE) method (Singh et
al, 2016). Both types of physics are resolved on the same distorted hexahedral grid. Our models were
implemented in the IPARS (Integrated Parallel Accurate Reservoir Simulator) code, developed at the
Center for Subsurface Modeling at UT Austin. The reader is referred to (White el al, 2017), one of our
recent publication, for more details regarding model formulation and the solution algorithm for the non-
linear plasticity solution algorithm. The numerical simulations for the coupled compositional flow and
geomechanics indicate substantial differences in CO2 plume migration and near wellbore deformations

between elastic and plastic models.
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In this example, real data is used from the CO2 sequestration demonstration project at the Cranfield

reservoir in Mississippi to demonstrate our poro-elasto-plastic model implementation on a large-scale
case in parallel on a high-performance computing platform. The domain size is 440 x 9400 x 8800 [ft3]

at a depth of 9901 [ft] discretized into a hexahedral grid of 26x188x176 ¢lements. The reservoir
formation is 80 [ft] thick and slopes downward at an angle between 1 and 3 degrees. We used the
reservoir depth information to generate the hexahedral grid padded with 3 layers of overburden and 3
layers of underburden, so that all faces of the domain become flat and are more amenable to the
application of boundary conditions on the geomechanical system. In Figure 15 we show plots of the

history-matched heterogeneous porosity and permeability fields (x-component shown), as well as a close-

¢ =005

up of the hexahedral mesh. In the overburden and underburden layers, the porosity is and the

permeability is K=0 [md].
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Figure 15. Schematic of numerical reservoir model for Cranfield

The compositional model parameters are calibrated for N.=2 components, namely “CO2” and “brine”.

Compositional parameters for the two components include: critical temperatures {547.56, 1120.23},
critical pressures {1070.3785, 3540.8836}, critical volumes {0.30234, 0.22983}, acentric factors {0.2240,
0.2440}, molecular weights {44.01, 18.0125}, parachor {49.0, 52.0}, volumetric shift {-0.19, 0.065}, and
u, =0.7

binary interaction coefficients -0.009 between each component. Water properties are viscosity
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¢, =3.3E-6

[cp], compressibility [1/psi], and standard density Prsa = 624 [Ib/ft3]. In Table 2, relative

permeability and capillary pressure are given as piecewise linear functions. The initial hydrostatic

reservoir pressure is p=4650 [psi] with 100% brine composition at a temperature of 125°C, and no-flow
boundary conditions are used. This reservoir model has 33 vertical wells which are completed in the
reservoir formation: 7 mass rate specified gas injection wells, 8 total reservoir volume rate specified
production wells, 2 observation wells, and 18 pressure specified pseudo-wells to simulate boundary
conditions. Well rates are used from field data. Our simulation is isothermal, with dispersion turned off,
and gravitational force turned on. Rock density is 2.65 [gm/cm3]. The end simulation time is T=595 [day],
and adaptive time steps are used such that Ar&(0.001,1.0) [day].

Table 2. From left to right: oil relative permeability versus water saturation, water relative permeability
versus water saturation, oil relative permeability versus gas saturation, gas relative permeability versus
gas saturation, gas-oil capillary pressure versus gas saturation, oil-water permeability versus water

saturation

Sw Kro Sw Krw Sg Kro Sg Krg Sg  Pcgo Sw Pcow
02 1.0 1.0 0.2500 | 0 0.65 0.05 0. 0.4 100. 0.2 45.0
0.2899 0.6769 | 0.9 0.1640 | 0.025 0.65 0.075 0.0001 | 0.425 0.9238 | 0.2899 19.03
0.3778 0.4153 | 0.8 0.1024 | 0.05 0.65 0.1 0.0011 0.45 0.6554 | 0.3778 10.07
0.4667 0.2178 | 0.7 0.0600 | 0.075 0.5398 | 0.125 0.0037 | 0.475 0.5362 | 0.4667 4.90
0.5556 0.0835 | 0.6 0.0324 | 0.1 0.4443 0.15 0.0087 | 0.5 0.4650 | 0.5556 1.80
0.6444 0.0123 | 0.5 0.0156 | 0.125 0.3621 | 0.175 0.0165 | 0.525 0.4164 | 0.6444 0.50
0.7000 0.0 0.4 0.0064 | 0.15 0.2918 |0.2 0.0279 | 0.55 0.3805 | 0.7000 0.05
0.3 0.0020 | 0.175 0.2323 | 0.225 0.0431 | 0.575 0.3525 | 0.7333 0.01
0.2 0.0004 | 0.2 0.1824 |0.25 0.0627 | 0.6 0.3300 | 0.8222 0.0

0.1 0.0000 | 0.225 0.1410 | 0.275 0.0868 | 0.625 0.3113

0.25 0.1070 |03 0.1158 | 0.65 0.2954

0.275 0.0796 | 0.325 0.1496 | 0.675 0.2818

0.3 0.0578 | 035 0.1884 |0.7 0.2699

0.325 0.0409 | 0.375 0.2321 | 0.725 0.2595

0.35 0.0279 |04 0.2806 |0.75 0.2501

0.375 0.0183 | 0.425 0.3338 | 0.775 0.2417

04 0.0114 | 045 03912 |0.8 0.2341

0.425 0.0067 | 0.475 0.4526 | 0.825 0.2272

0.45 0.0036 | 0.5 0.5175 0.85 0.2208

0.475 0.0017 | 0.525 0.5853 | 0.875 0.2150
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0.5 0.0007 |0.55 0.6555 |0.9 0.2096
0.525 0.0002 | 0.575 0.7273 | 0.925 0.2046
0.55 0.0 0.6 0.8 095 0.2

The mechanics boundary conditions are a normal traction of 10054 [psi] on the top face, zero normal
displacements on the five remaining faces, and zero shear tractions on all six faces. Material properties
are divided into 3 facies with values determined by lab experiments, given in Table 3. Biot’s constants

=1600

are ¢=09 a4 1/M =1E-6 [1/psi]. Plasticity parameters are yield strength Oy [psi], yield and

flow function slopes of 0.6, and bilinear hardening slope of 3750 [psi].

Table 3. Young’s Modulus and Poisson’s Ratio for the Cranfield example

Facies Layers E [psi] v
Overburden 1-3 2.2E6 0.25
C 4-6 1.45E6 0.31
B 7-11 2.68E6 0.26
A 12-23 1.45E6 0.24
Underburden 24-26 2.2E6 0.25

We present simulation results for the Cranfield example in Figure 16. While contour values are only
colored in the reservoir layers, note that all simulation values are computed throughout the entire domain.
We present these results for the plastic model, although both flow and elastic models were also run.
Pressure values were very similar for elastic and plastic cases, and were higher than the flow only case by
about 10 [psi]. Displacements were slightly different for elastic and plastic cases, but show the same
overall contour. Note the volumetric plastic strain is one order of magnitude smaller than the volumetric
strain. These results indicate the model is not extremely sensitive to geomechanical effects with the
current set of model parameters. Given the hypothesized geomechanical effects observed in the field

when CO2 injection rates were doubled, more model calibration might be necessary.

X-Displacement, t=5 [day] X-Displacement, t=595 [day] Volumetric Strain, t=595 [day]
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Figure 16. Selected simulation results for Cranfield example with plastic model

Hpysteretic Relative Permeability and Capillary Pressure Modeling

We verified the implemented multiphase relative permeability (UTKR3P) and multiphase hysteresis
(UTHYST) models into IPARS. The UTKR3P model (Beygi et al., 2014) is general (for two or three
phases), simple in the sense of practical reservoir simulation, and robust in computational applications.
This compositionally-consistent relative permeability model enables to better estimate the fluid mobility
at low saturation range where common three-phase relative permeability models cannot fully represent
the fluid flow behavior. In addition, the observed inverse S-shape of non-wetting phase (CO2) at high
saturation in mixed-wet rocks can be modeled by the UTKR3P model. The parameterized-level model
incorporates a saturation-averaged interpolation scheme to evaluate relative permeability parameters
(endpoint and curvatures) based on the reference state (measured) parameters. This methodology allows
for accurate estimation of relative permeability when saturation history (saturation direction or path)

varies in multicycle processes. The residual saturation depends on rock wettability and saturation history.

The UTHYST model (Beygi et al., 2014) enables to capture the trapping behavior of CO, as a non-
wetting phase during multicycle processes, e.g. huff-n-puff CO, injection into aquifers, in water-wet,
mixed-wet-, and oil-wet rocks. The memory-dependent trapping is modeled based on the laboratory and
field observations. (i) The trapped saturation monotonically increases in the decreasing saturation process
and is invariable during the increasing saturation process. If compositional effects lead to remobilize part
of the trapped saturation, the non-monotonic trapping behavior will be captured through the capillary

desaturation effect. (ii) The Land coefficient by which the initial-trapping behavior is estimated varies
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dynamically in multicycle processes. (iii) A conjugate phase saturation impacts the level of phase

trapping.
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Task 5.0 - Parameter Estimation and Uncertainty Quantification

In order to estimate reservoir properties (both flow and geomechanical) and to assess the uncertainty
associated with the estimation of these properties using sparse measurements, it is necessary to develop
not just a single model, but a suite of equiprobable models. Thus it is useful to develop a stochastic

approach that can provide suitable candidates for the reservoir at low computational costs.

Development of a multiple-realization optimizer coupled with IPARS

This work developed an assisted history matching tool, namely UT-OPT, in order to realize and run
IPARS simulations to be in good agreements between observed and simulated pressure anomalies
obtained from pulse testing experiments. Figure 5.1 shows a framework of UT-OPT. UT-OPT consists of
three modules: input builder, linker to reservoir simulators, and optimizer. The builder is used to generate
ASCII input data files that are imported to one of the optimization algorithms to be executed. The input
files are categorized as algorithm parameters (e.g., generation number, population size, and simulator
type); uncertain parameters (e.g., permeability); response parameters that are targeted for quality check of
reservoir models (e.g., amplitude, frequency, and phase); and watch parameters that are untargeted for
quality check (e.g., production rate). In addition to IPARS, commercial simulators are externally linked to
UT-OPT. The optimizer contains genetic algorithm (GA) (Goldberg 1989) as a global-objective optimizer
and non-dominated sorting genetic algorithm-II (NSGA-II) (Deb et al. 2002) as a multi-objective
optimizer. Dynamic goal programming and successive linear-objective-reduction modules are advanced
options that can be coupled with NSGA-II to improve the rate of convergence with a small loss in
diversity-preservation for solving a many-objective problem in case M > 4 (Min et al. 2014, 2015). For
reducing the computational cost associated with the generational algorithms, UT-OPT has the capability
to run multiple simulations concurrently. Also, each simulation can be executed in high-performance
parallel computing environments. This general-purpose tool can be used to perform sensitivity analysis,
history matching, production forecasts, economic analysis, and uncertainty analysis. UT-OPT was written

in C++ programming language.
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Figure 5.1. The framework of an assisted history matching tool, namely UT-OPT.

Table 5.1 describes a flow chart of the evolutionary process adopted in GA and NSGA-II. This
iterative process performs different genetic operations on a pool of solutions. Let P and Q be the parent
population and the offspring population, respectively: p € P and q € Q. The initial parent population Py
consists of N,,, solutions that are generated by random or based on prior knowledge. Here, N,,, is the
population size (i.e., ensemble size) per generation. At each generation, Q is created by recombining the
qualified members in the mating pool R = P U Q using two genetic operators: crossover (Table 5.2) and
mutation (Table 5.3). Let P,, P., and P, be the random probability at each genetic operation, the
probability of crossover, and the probability of mutation, respectively. The evolutionary process activates
crossover if P, < P, and then does mutation if P, < P,,. Both P. and P, are specified a priori, in general.
Because most solutions are created by crossover in genetic algorithm, typical values of P, and P, are

employed through the paper: P, is 0.9 and P, is 0.1. Here, r, €[1, N] is the crossover point that switches
all genes after that point. » [, N] is the mutation point at which the random variable is altered in the

range of its lower and upper limits. Note that both . and r, are picked by random at each genetic
operation. More details on crossover and mutation can be found in Goldberg (1989). The termination
condition of the evolutionary process is the achievement of a pre-specified tolerance level or the
maximum number of generations (i.e., iterations). Let the maximum number of generations be Ng.,, then

the maximum number of evaluations Neyus = NgenXNpop.

Evolutionary process

1 : INITIALIZE the parent population P
with N,,, solutions generated based on
prior knowledge or
by random. The initial offspring population

Q-0=9

2 : EVALUATE each parent solution in P,

3 :  while termination condition is not achieved
do
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4 t=t+1.

5 ¢ SELECT N,,, superior solutions from
the mating
pool R, =P, UQ,.;.
6 UPDATE the parent population P, with
the selected
solutions.
7 CROSSOVER pairs of the parent

solutions for
creating N,,,-sized Q..

8 MUTATE the resulting offspring
population Q,.

9 EVALUATE each offspring solution in
Q.

10 : end

Table 5.1—Pseudo code of the evolutionary process used in genetic algorithm (GA) and non-
dominated sorting genetic algorithm-I1 (NSGA-II).

Crossover

1 i=1
2 : whilei <N,,, do
GENERATE the random probability P,

< [0, 1]

4 SELECT two parent members p; and
Pi+1

5 if P. < P.then

6 GENERATE the crossover point 7,
< [1, N]

7 q; =AD" Dis s Piviysts s Diniw

8 Qs = {Picis> > Pisi s Pits s Dind

9 else

10 q =p

11 Qs =P

12 end

13 i=i+2

14 : end

Table 5.2—Pseudo code of crossover used for creating new solutions in the evolutionary process.

Mutation

1 i=1

2 : whilei <N,, do

3 GENERATE the random proabability
Pr = [O’ 1]

4 if P.<P,, then

5 GENERATE the mutation point r,,
< [1, N]

6 GENERATE the random variable

g, €[q™,q™]at the mutation point 7,
7 @ =G> Gir, 15Gis, Doy 10 > Gin s
8 end
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9 i=it+1
10 : end

Table 5.3—Pseudo code of mutation used for creating new solutions in the evolutionary process.

The selection process is the main difference between GA and NSGA-II. GA is a point search tool that
explores the single global-optimum having the smallest objective-sum. Conventionally, N,,, solutions are
selected from the mating pool R in the ascending order of their objective-sum values. On the other hand,
NSGA-II is designed to provide trade-off solutions that are not only converged on the POF but also
uniformly distributed along the POF. The trade-off relationship is achieved by non-dominated sorting
(Table 5.4) and crowding-distance sorting (Table 5.5). In NSGA-II, any solution x in the mating pool R
has two attributes: non-domination rank (X,k) and crowding distance (Xgisunce). Deb et al. (2002) denote

the crowded-comparison operator (<,) that guides the multi-dimensional selection process of NSGA-II

toward a uniformly spread-out POF as:
1 2.0l 2 o_ 2 1 2
X < XTI {X rank < X rank} O {(X rank = X rank) and (X distance > X distance) }» (1)

where x' € R and x> € R. That is, NSGA-II primarily prefers solutions with lower (superior) non-

domination ranks. If solutions have the same rank, solutions in a lesser crowded region are preferred.

Let F; be the ith non-dominated front composed of solutions having X'rank. In NSGA-II, selecting N,
qualified solutions from the mating pool R requires finding F, where the cumulative number of solutions

from F, to F, exceeds N,,,. F, is the only front in which crowding-distance sorting is activated to select

N, : out of |F,| solutions by pruning solutions located in a denser crowded region of that front as:

n—1

N;,,:Npop_Z|Fi|' (2)
i=1

In Table 5.5, F,[i],, refers to the mth objective function value of the ith solution in the front F,. fmmi“ and
fu™ are the minimum and maximum values of the mth objective function in the same front. More details
on NSGA-II can be found in Deb et al. (2002).

Non-dominated sorting

1 for eacha € R

2 S.=0

3 n,=0

4 for eachb € R

5 if (a <b) then

6 S,=S.U {b}

7 else if (b < a) then
8 n,=n,t1
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9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

end

end

if n, = 0 then
arank:1
Fl = Fl U {a}

end
i=1
while F; # O do

B=0
for eacha € F;
for eachb € S,
ny=np—1
if n, = 0 then
brank:i+1
B=BU {b}
end
end
end
i=it+l1
Fi:B

end

Table 5.4—Pseudo code of non-dominated sorting in NSGA-II.

Crowding-distance sorting

O 00 1N D K Wi —

—_
o

11
12
13

= |Fn|
while i </ do
set F,[i]distance = 0

while m <M do
F, = sort(F,, m)
Fn[l]distancc = Fn[l]distancc =
i=2
whilei</-1do

Fn[i]distancc = Fn[i]distancc
+ (Fn[l + 1]m - Fn[l -

l]m)/(fmmax _fmmin)

i=i+1

end

Table 5.5—Pseudo code of crowding-distance sorting in NSGA-II.

solutions exist in the same non-dominated front. The multi-dimensional search toward the POF requires
greater time overhead than the point search due to the number of objectives. Nonetheless, the larger
complexity would be affordable where most of the execution time in solving real-world problems is taken
in the fitness evaluation of the evolutionary process (Davis 1991). Note that the efficacy of POF search
also depends on the number of objectives. Solving a high-dimensional objective problem needs to couple

preference-ordering or objective-reduction schemes with the evolutionary process (Saxena et al. 2013;

Table 5.6 compares computational complexity of sorting algorithms in GA and NSGA-II in case all
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Min et al. 2014, 2015; Deb and Jain 2015; Jain and Deb 2015), but it is out of scope for this work. We

clarify that the number of objectives in this study is restricted to two.

Sorting Algorithm Complexity
Descending fitness values o)
(Goldberg 1989) e
Non-dominated sorting (Deb et al. OMN®. )
2002) o
Crowding-distance sorting (Deb et

OMN ,, logN
al. 2002) (MNoep 108N )

Table 5.6—Computational complexity of sorting algorithms in one generation of the evolutionary
process. The total complexity is the computational complexity multiplied by the number of
generations.

Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled
with genetic algorithm

We present a framework for the coupling of fluid-filled fracture propagation and a genetic inverse
algorithm for optimizing hydraulic fracturing scenarios in porous media. Fracture propagations are
described by employing a phase field approach, which treats fracture surfaces as diffusive zones rather
than of interfaces. For detailed explanations in phase field, please refer to Lee et al. (2016). Performance
of the coupled approach is provided with applications to numerical experiments related to maximizing
production or reservoir history matching for emphasizing the capability of the framework. In this section,
we demonstrate the minimization problem, which was history matching of fractured volume. We clarify
that the domain size of the example herein is designed as lab-scale for saving computational costs
accompanied with multiple phase field runs during optimization. The example runs 20 experiments
concurrently in each generation, and every phase field fracture simulation is executed with 4 parallel

Pprocessors.

This example solves a minimization problem to explore the global minimum having the smallest
discrepancy between actual (reference) and simulated area of fractures. The actual areas of fractures were
computed using the simulation results of the reference field model shown in Figure 5.2. Three parallel

fractures are positioned in the computational domain Q = (0 m; 4 m)’.

The critical energy release rate is chosen as G, = 1 Nm™, Young’s modulus is E =10® Pa, and Poisson
ratio is set to v = 0.2. The relationship to the Lame coefficients p and A is given by:

E vE

=20+ ’1:(1+v}(1—2v}' G)

For the fluid parameters, Biot’s coefficient is set as =1, M = 10® Pa, MR =M = 10° Ns/m?, the reservoir

permeability is Kg = 1D, qr = 60, ¢ = 10.;, Pa™', and the density p = 1,000 kg/m’.
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Figure 5.2. Propagated fractures at time step n = 250 with heterogeneous E values of the reference

model.

The variable vector x of this minimization problem in Equation (31) is set as:

% = {X1 byX2,5;Y1,5,¥2,bs Einy Eou } » @
where X, is Xx-coordinate of the bottom-left corner of the bar, x,, is x-coordinate of the upper-right corner
of the bar, y,, is y-coordinate of the bottom-left corner of the bar, y,;is y-coordinate of the upper-right
corner of the bar, E;, is Young’s modulus of inside the bar, and E, is Young’s modulus of outside the bar.
The bottom-left corner of the domain is taken to be the origin of the domain. The range of each variable is
as follows: X, x2,b € [0 m; 4 m]; yip, Y2 € [0 m; 4 m]; Eiy € [106 Pa, 10" Pa]; and Eyy € [107 Pa, 10°
Pa]. We intentionally made genetic algorithm more difficult to converge by giving a wide range for

Young’s modulus.

The objective function for this example is the absolute average percent error derived as:

Nobs V f
arg min = arg min x 100(% 5
®ERN f( ) Z(E[Ré Nobs ,Zl’| ref | ( C) ©)

where mef is the fracture area of the reference solution and N, is the number of observations. In this
example, Nops = 1 as mef measured at the last time step is the only observation data used to calculate the

objective function.

Operating parameters of hydraulic fracturing are fixed in all phase-field runs: the number of fractures
is three, injection rate is constant at each fracture interval, and fracture spacing between the inner fracture

and each outer fracture is constant 1 m. At the last time step n = 250, the reference model yields the total
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area of fractures Vfref = 0.00974681m2, which results from x;, = 0.5 m, x5, = 2.0 m, y;, = 2.5 m, y, =

3.0 m, E;, = 10'° Pa, and Eyy = 10° Pa.

Figure 5.3 illustrates the numerical results for selected generations and experiments. Each generation
had 20 experiments and 10 generations were tested. Since no conditions between E;, and E,, were
provided, we observed some cases with E;, < Eyy that yielded unfavorable simulation results during

earlier generations. After the fourth generation, it seems that most experiments get closer to the reference
solution in terms of the position of the bar.

Gen 01 Exp 02 Gen 01 Exp 03 Gen 01 Exp 04
IR - - R

(a) Gen. 1 Exp. 02 (b) Gen. 1 Exp. 02 (c) Gen. 1 Exp. 04

Gen 02 Exp 06 Gen 02Exp 14 Gen 02 Exp 20
RN - RN AN

(d) Gen. 2 Exp. 06 (e) Gen. 2 Exp. 14 (f) Gen. 2 Exp. 20

Gen 04 Exp 04 Gen 04 Exp 07 Gen 04 Exp 14
RN IR RN

(g) Gen. 4 Exp. 04 (h) Gen. 4 Exp. 07 (i) Gen. 4 Exp. 14

Gen 07 Exp 03 Gen 07 Exp 06 Gen 07 Exp 19
o i L

(j) Gen. 7 Exp. 03 (k) Gen. 7 Exp. 06 (1) Gen. 7 Exp. 19
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Figure 5.3. Illustrates the numerical results for selected generations (Gen =1, 2, 4, and 7) and
experiments (Exp.). Each row indicates different generations. We observe a convergence of the

solution to the reference model.

Consequently, Figure 5.4(a) provides the optimized solution similar to the reference solution shown in
Figure 5.2. Interestingly, the thickness of the block was a less crucial factor to the performance of genetic
algorithm because the phase field model did not allow fractures to penetrate the bar. Figure 5.4(b) shows
the stable decrease in the objective function values from the first to the seventh generations. As most
experiments were assimilated in the seventh generation, the results from the eighth to the tenth
generations are omitted in this figure. Notwithstanding the small positive absolute average percent error,
it seems that all solutions arrive near the global minimum (i.e., reference model) in the seventh generation.
Employing faster inverse algorithms [8] or coupling a surrogate model with the forward model [50]
would contribute to saving computational costs for solving more high-dimensional complex problems. It
is also anticipated that reflecting reservoir uncertainty on the parameters adjusted in these examples

would deliver more realistic outcomes in future works.

100

Gen 07 Exp 19

80+

60+

Absolute Average Error (%)

40+ |
207 i l_l
= = R —— P
1 2 3 4 5 6 7
Generation number
(a) (b)

Figure 5.4. Evolution of objective function values for the history matching problem: (a) the optimal

solution and (b) convergence of objective function values.
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Status of Project Schedule and Major Goals /Milestones of Project

The project schedule/timeline is shown in the following.

ask Name Assigned

Resource BPT BP2 BP3

<

Q2737 Q4 JOr Q27103 TQ4 JOTTQ2T Q3 104

Task 1.0 - Project lanning & reporting Wheeler

Milestone A: Update Project Management (10/30/2014)
Milestone B: Kick off meeting (11/30/2014)

®( >0

Task 2.0 -Conduct Laboratory Experiments for Petrophysical and Hydro-mechanical Rock
Properties Espinoza le) [e)

Subtask 2.T:Develop Plan for Design of Experimental Apparatus and Rock Property Testing

Milestone C. Plan for the design of the experimental equipment and the tests to be completed C

Subtask 2.2: Experimental Apparatus Fabrication, Setup and Calibration and Sample Acquisition

Milestone D. List of representative rock samples acquired for testing completed. D *

Milestone E. Complete triaxial cell setup and initiate testing. E

Subtask 2.3: Measurement of basic mechanical properties

[Milcstone F. Interim report of measurement of basic rock propertics F

Subtask 2.4 TM of Ad d Mech T Properties with CO2-Specific Loadings

Milestone G. Complete report that summarizes the activities, rock testing, and results in Task 2.0. G

Task 3.0 -Upscale by Completing Bridge from Laboratory to Field Scales Wheeler [¢) O
Subtask 3.T: Computation of effective parameters for flow and mechanics

H. Document b ization and mortar method for flow and mechanics equations for sub-inch and
larger scales respectively. H

Subtask 3.2: Computation of effective parameters for coupled thermal-geomechanical processes for
CO2 Specific Loadings

Milestone I. Complete report that summarizes the activities and results in Task 3.0 conducted for upscaling lab
including a description of the devel of b ization schemes for naturally fractured
and heterogeneous rocks. I

Task 4.0 - Simulator Development and Modeling CO2 Storage Field Scale Studies Delshad [©) ¢}

Subtask 4.1:Simulator Development with Numerical Schemes for Couples Processes

Milestone J. Initiate Si Devel with N I Schemes for Coupled Processes J

Milestone K. Complete report that describes the enk 1 IPARS simul; developed in Subtask 4.1, and
include the IPARS module for geomechanics. K

Subtask 4.2: Model CO2 Storage Field Sites and Perform Simulations

Milestone L. Complete reports containing a description of the first selected field site (Site one), the model(s)
developed, and the results of the simulations and history matching performed in Subtask 4.2. L

Milestone M. Complete report containing a description for the second selected field site (Site two), the model(s)
developed, and the results of the simulations and history matching performed in Subtask 4.2. M

Task 5.0 -Parameter Est and Uncertainty Quantification Srinivasan [e) o)

Subtask 5.1: Ensemble Filtering approach for multi-parameter estimation

Milestone N. Initiate parameter estimation and uncertainty quantification N

Subtask 5.2 : Uncertainty Qualification

Milestone O. Report containing a description of the Task 5.0 computational studies and analyses completed for
(1) using the ble filtering app h for multi-p imation; and (2) uncertainty quantification
conducted with the adaptive response surface-based methodology. (]

[Task 6.0 - Integrated Results to Generate Geomchanical Screening Tool/Workflow Wheeler [9) O

Milestone P. Report that includes the geomechanical workflow, provides the accompanying
documentation/user’s guide, and summarizes the activities and results performed in Task 6.0 for the workflow
generation. R
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Major goals/milestones

The following table lists status of the project milestones. All planned milestones have been met.

Project Milestones

Budget | Task/ Milestone ID/Description Planned Verification Method*
Period | Subtask Completion
1 1.0 A. Updated Project Management Plan | 10/30/2014 Project Management Plan
file
1 1.0 B. Kickoff Meeting 11/30/2014 Presentation file
1 2.0/2.1 C. Plan for the design of the 3/30/2015 Completed
experimental equipment and the
tests to be completed.
1 2.0/2.2 | D. List of representative rock 6/30/2015 List
samples acquired for testing
(06/30/2015)
completed.
2 2.0/2.2 E. Complete triaxial cell setup and 12/31/2015 Email to Federal Project
initiate testing. Manager (FPM)
describing
(01/21/2016)
2 2.0/2/3 F. Interim report of measurement of | 6/30/2016 Interim report to FPM
basic rock properties
(06/07/2016)
3 2.0 G. Complete report that summarizes 9/1/2016 Quick-look report
the activities, rock testing, and results
(09/15/2016)
in Task 2.0.
2 3.0 H. Document homogenization and 8/30/2016 Interim report to FPM

multiscale mortar methods

investigated in study.

documenting use of

methods

51




3.0

I. Complete report that summarizes the
activities and results in Task 3.0
conducted for upscaling lab
measurements including a description
of the development of homogenization
schemes for naturally fractured and

heterogeneous rocks.

12/31/2016

Quick-look Report

(01/13/2017)

4.0/4.1

J. Initiate Simulator Development
with Numerical Schemes for

Coupled Processes

8/30/2015

Email to FPM

describing initiation

(08/30/2015)

4.0/4.1

K. Complete report that describes the
enhanced IPARS simulator developed
in Subtask 4.1, and include the IPARS

module for geomechanics.

6/30/2016

Quick-look Report

(06/06/2016)

4.0/4.2

L. Complete reports containing a
description of the first selected field
site (Site one), the model(s) developed,
and the results of the simulations and
history matching performed in Subtask

4.2.

9/1/2016

Quick-look Report

(09/15/2016)

4.0/4.2

M. Complete report containing a
description for the second selected
field site (Site two), the model(s)
developed, and the results of the
simulations and history matching

performed in Subtask 4.2.

3/30/2017

Quick-look Report

(03/29/2017)

5.0

N. Initiate parameter estimation and

uncertainty quantification

6/30/2016

Email to FPM

describing initiation

(06/07/2016)
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5.0

O. Report containing a description of
the Task 5.0 computational studies and
analyses completed for (1) using the
ensemble filtering approach for multi-
parameter estimation; and (2)
uncertainty quantification conducted
with the adaptive response surface-

based methodology.

6/30/2017

Quick-look Report

(06/30/2017)

6.0

P. Report that includes the
geomechanical workflow, provides the
accompanying documentation/user’s
guide, and summarizes the activities
and results performed in Task 6.0 for

the workflow generation.

8/31/2017

Quick-look Report
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PRODUCTS

Journal publications

e Jung, H., Singh, G., Espinoza D.N. and Wheeler, M.F. Quantification of a maximum injection
volume of CO2 without geomechanical perturbations using a compositional fluid flow reservoir
simulator. ICES Report 17-15, June 2017, The University of Texas at Austin. (accepted for
publication in Advances in Water Resources)

e Singh, G., Amanbek, Y. and Wheeler, M.F. Adaptive numerical homogenization for non-linear
multiphase flow and transport. ICES Report 17-13, June 2017, The University of Texas at Austin.

e Amanbek, Y., Singh, G., Wheeler, M.F. and vanDuijn, H. Adaptive numerical homogenization
for upscaling single phase flow and transport. ICES Report 17-12, June 2017, The University of
Texas at Austin.

e Girault, V., Wheeler, Mary F., Kumar, K. and Singh, G. Mixed formulation of a linearized
lubrication fracture model in a poro-elastic medium. Mathematical Models and Methods in
Applied Sciences, July 2016.

e Girault, V., Kumar, K. and Wheeler, Mary. F. Convergence of iterative coupling of geomechanics
with flow in a fractured poroelastic medium, July 2016, Computational Geosciences.

e Wick, T., Singh, G., Wheeler, M.F. Fluid-Filled Fracture Propagation using a Phase-Field
Approach and Coupling to a Reservoir Simulator. SPE Journal, SPE-168597, October 2015.

e De Basabe, J.; Sen, M. and Wheeler, M.F. Elastic Wave Propagation in Fractured Media using
the Discontinuous Galerkin Method. (Accepted in Geophysics Journal)

e Nwachukwu, A., Min, B., and Srinivasan. S. 2016. Model Selection for CO2 Sequestration using
Surface Deformation and Injection Data (under review).

e Min, B., Nwachukwu, A., Srinivasan, S., Wheeler, M.F. 2016b. Selection of Geologic Models
Based on Pareto-Optimality Using Surface Deformation and CO2 Injection Data for the In Salah

Gas Sequestration Project (submitted)

Books or other non-periodicals: None

Other publications, conference papers, and presentations

¢ G. Singh, Y. Amanbek, and M. F. Wheeler, Adaptive Homogenization for Upscaling
Heterogeneous Porous Medium, SPE Annual Technical Conference, San Antonio, Texas, October

9-11, 2017.
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Y. Amanbek, G. Singh, and M. F. Wheeler, Modeling ow and transport using Enhanced Velocity
Mixed Finite Element Method and Numerical Homogenization, Finite Element Rodeo, University
of Houston, Houston, Texas, March 3-4,2017.

Y. Amanbek, G. Singh, and M. F. Wheeler, Multiscale Mehods for Flow and Transport in Porous
Media, SIAM Conference on Computational Science and Engineering (CSE17), Atlanta, Georgia,
Feb 26 - Mar 3, 2017.

Presentation, Solvers for Conservative Flow and Transport Algorithms in Porous Media,
International Multi-grid Conference, December 5-9, 2016, Bruchal, Germany

Presentation, New approach for fracture propagation in porous medium, invited colloquium in the
Department of Mathematics at Paris VI, December 12, 2016

Presentation, Methodologies and robust algorithms for subsurface simulators, invited lecture at
the Institute of French Petroleum, December 12, 2016.Min, B., Nwachukwu, A., Srinivasan, S.,
Wheeler, M.F. 2016b. Selection of Geologic Models Based on Pareto-Optimality Using Surface
Deformation and CO2 Injection Data for the In Salah Gas Sequestration Project. Presented at the
SPE Annual Technical Conference and Exhibition, Dubai, Arab Emirates, 2628 September.
SPE-181569-MS.

White, D., Ganis, B., Liu, R., and Wheeler, M.F. A near-wellbore study with a Drucker-Prager
plasticity model coupled with a parallel compositional reservoir simulator, SPE Reservoir
Simulation Conference, 2017.

Jung, H., Singh, G., Espinoza D.N., Wheeler, M. An integrated case study of the Frio CO2
sequestration pilot test for safe and effective carbon storage including compositional flow and
geomechanics. SPE-182710-MS. SPE Reservoir Simulation Conference, Montgomery, TX, 2017.
Singh, Gurpreet, Venkataraman, Ashwin, Pencheva, Gergina and, Wheeler, Mary F., “A Fully
Implicit Reactive Flow Formulation for Low Salinity Waterflooding Process”, 15th European
Conference on the Mathematics of Oil Recovery, 29 August - 1 September 2016, Amsterdam,
Netherlands

Venkataraman, Ashwin, Singh, Gurpreet, and Wheeler, Mary F., “Tangent Plane Criteria for
Phase Stability Computation for System with Hydrocarbon and Aqueous Phase Components”,
15th European Conference on the Mathematics of Oil Recovery, 29 August - 1 September 2016,
Amsterdam, Netherlands

Wheeler, Mary F., Singh, Gurpreet and, Amanbek, Yerlan, "Upscaling Reservoir Properties
Using Single Well Tracer Tests”, Computational Methods in Water Resources, University of
Toronto, Canada, June 21-24, 2016.

Singh, Gurpreet, Ganis, Benjamin and Wheeler, Mary F., “A Parallel Framework for a Multipoint
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Flux Mixed Finite Element Equation of State Compositional Flow Simulator”, 15th European
Conference on the Mathematics of Oil Recovery, 29 August - 1 September 2016, Amsterdam,
Netherlands

Presentation, Development of Geomechanical Screening Tools to Identify Risk: An Experimental
and Modeling Approach for Secure CO, Storage. Annual Carbon Storage R&D Review, 18
August 2015.

Presentation, Methodologies and Robust Algorithms for Subsurface Simulators. IOR Norway,
April 26, 2016, Norway.

Presentation, Methodologies and Robust Algorithms for Subsurface Simulators, Energy Institute
Workshop, May 4, 2016 (collaborative project between ExxonMobil and The University of Texas
at Austin).

Plenary Session, Phase-Field Modeling of Proppant Filled Fractures in a Poroelastic Medium,
Canadian Applied and Industrial Mathematics Society, June 29, 2016 Annual Meeting, Edmonton,
Canada.

Keynote Presentation, Phase-Field Modeling of Proppant Filled Fractures in a Poroelastic
Medium, The 11™ AIMS Conference on Dynamical Systems Differential Equations and
Application, July 4, 2016.

Keynote Presentation, Computational Screening Tools for Modeling Energy Problems in Porous
Media, ECOMAS Congress, June 2016, Greece.

Keynote Presentation, Computational Screening Tools for Modeling Energy Problems in Porous
Media, Energy Day, The University of Texas at Austin, February, 2016.

Presentation, A Locally Conservative Enriched Galerkin Approximation and an Efficient Solver
for Elliptic and Parabolic Problems, MAFELAP, June 2016, UK.

Presentation, Implementing Multipoint Flux Mixed Finite Elements on Non-Matching
Hexahedral Grids Using the Local Flux Method. InterPore, Cincinnati, 9-12 May 2016.
Presentation, Diffusive Zone Fracture Modeling For Porous Media Applications, SIAM
Conference on Mathematical and Computational Issues in Geosciences. Stanford University,
California, July 2015.

Presentation, Coupled flow and geomechanics for fractured poroelastic reservoirs, SIAM
Conference on Mathematical and Computational Issues in Geosciences. Stanford University,
California, July 2015.

Poster on application of multi-objective optimization using injection rate and surface deflection

data presented at AGU San Francisco, December 2015.

56



e Al-Hinai, O.; Srinivasan, S.; Dong, R. and Wheeler, M.F. A New Equi-dimensional Fracture
Modeling using Polyhedral Cells for Microseismic Data Sets. (Submitted to Journal of Petroleum

Technology)

Websites: None

Inventions, patent applications, and/or licenses: None

Other products

e UTKR3P module for hysteretic relative permeability and capillary pressure and integration with
IPARS for field scale predictions.

e  MFDFrac module for fractured reservoir flow modeling using mimetic finite difference (MFD)
and coupling to EnKf for characterizing fractured reservoir.

e Plasticity module for finite geomechanical deformation integrated in IPARS.

¢ HOMOGEN module two scale homogenization for upscaling flow and transport and integration
with IPARS.

e Adaptive homogenization tool combining two-scale homogenization (HOMOGEN) and EVMFE
(Enhanced Velocity Mixed Finite Element) scheme.

e UT-OPT toolkit for uncertainty quantification, parameter estimation and non-linear optimization.

e A framework for geomechanical risk assessment of CO2 sequestration scenarios integrating UT-
OPT toolkit with IPARS.

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS —
¢ Individuals that have worked on the project: UT research associate, postdoc, graduate students,

and PIs

e Other organizations that have been involved as partners: None

CHANGES/PROBLEMS

e Changes in approach and reasons for change: None
e Actual or anticipated problems or delays and actions or plans to resolve them: None

e Changes that have a significant impact on expenditures: None

e Change of primary performance site location from that originally proposed: None
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BUDGETARY INFORMATION

In the final quarter, the project expenditures are within the planned baseline costs for the quarter. The

updated baseline has been provided by University of Texas Accounting Department.

BASELINE REPORTING
QUARTER

Budget Period 3

Ql

Q2

Q3

Q4

DATE RANGE:10/01/16-12/31/16

DATE RANGE:01/01/17-03/31/17

DATE RANGE:04/01/17-06/30/17

DATE RANGE:07/01/17-09/30/17

Ql Cumulative Total [Q2 Cumulative Total Q3 Cumulative Total _|Q4 Cumulative Total
BASELINE COST PLAN
Federal Share $82,315.83 $788,407.19 $82,315.83 $870,723.02 $82,315.83 $953,038.85 $82,315.83 $1,035,354.68
Non-Federal Share $20,578.48, $197,106.56 $20,578.48, $217,685.04 $20,578.48 $238,263.52 $20,578.48| $258,842.00
TOTAL PLANNED $102,894.31 $985,513.75|  $102,894.31 $1,088,408.06|  $102,894.31 $1,191,302.37]  $102,894.31|  $1,294,196.68
ACTUAL INCURRED COST
Federal Share $69,053.97 $798,855.07 $75,585.73 $874,440.80 $27,934.22 $902,375.02 $132,978.98 $1,035,354.00
Non-Federal Share $0.00 $173,350.61 $0.00 $173,350.61 $64,702.90 $238,053.51 $20,795.49 $258,849.00
TOTAL INCURRED COSTS $69,053.97, $972,205.68 $75,585.73 $1,047,791.41 $92,637.12 $1,140,428.53 $153,774.47 $1,294,203.00)
VARIANCE
Federal Share $363,012.95 $594,021.64 $6,730.10 $600,751.74 $54,381.61 $655,133.35 $709,514.96 $1,364,648.31
Non-Federal Share -$49,857.17 -$83,309.81 $20,578.48 -$62,731.33 -$44,124.42 $210.01 -$43,914.41 -$43,704.40
TOTAL VARIANCE $313,155.78 $510,711.83 $27,308.58 $538,020.41 $10,257.19 $548,277.60 $558,534.79 $1,106,812.39
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