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DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States Government. 

Neither the United States Government nor any agency thereof, nor any of their employees, makes any 

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference herein to any specific commercial 

product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, or favoring by the United States Government or 

any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 

those of the United States Government or any agency thereof. 
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ABSTRACT 

CO2 injection in the subsurface introduces additional complexity in terms of interactions of the reservoir 
host pore fluid with natural heterogeneity of hydro-mechanical properties of the rock. Natural 
heterogeneity of the reservoir rock and caprock formations includes spatial variation of hydro-mechanical 
properties as well as the presence of natural fractures. We developed a coupled mathematical modeling 
and experimental framework that takes into account the effect of rock heterogeneity on effective 
mechanical properties of the rock in contact with CO2. We performed accurate laboratory experimetns to 
determine the changes in rock mechanical properties due to mineral dissolution in the presence of 
carbonic acid generated by CO2 injection. A two-scale adaptive homogenization framework was then 
developed to consistently upscale petrophysical and geomechanical properties to the field scale. Further, 
we also developed high-fidelity, numerical solution schemes, non-linear and linear solvers and 
preconditioners to solve the coupled flow, reactive transport and geomechanical system. The numerical 
model was then used to study field scale CO2 sequestration problems for the two selected field sites: (1) 
Frio formation and (2) Cranfield site. We also developed robust schemes for field data assimilation, 
model calibration such that the residual uncertainty at the end of the data assimilation procedures can be 
faithfully represented while taking into account the coupled geochemical and geomechanical processes. 
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EXECUTIVE SUMMARY 

In-depth understanding of the long-term fate of CO2 in the subsurface requires study and analysis of the 

reservoir formation, the overlaying caprock formation, and adjacent faults. Caprock flaws, such as pre-

existent and induced fractures constitute the most likely paths for CO2 leakage. Natural fractures can be 

re-activated (shear fractures) or re-opened (open-mode fractures) by increases in pore pressure during 

injection. Increases in pore pressure of a few MPa are non-negligible and can constitute a serious threat to 

safe CO2 storage. The proposal is to study these issues using a combination of carefully conceived 

laboratory experiments, upscaling schemes for bridging between the experimental and field scales, 

accurate numerical models to model couple chemo-thermo-mechanical processes associated with long 

term storage of CO2 in the subsurface and finally implementing robust validation schemes using field data 

from the Frio and Cranfield sites. The specific key project objectives are to (1) measure petrophysical and 

hydro-mechanical properties of rocks in the presence of CO2 in the laboratory, (2) develop upscaling 

methods for rock petrophysical and hydro-mechanical properties considering natural heterogeneity and 

pre-existing fractures, (3) develop advanced and cost-effective coupled solvers for CO2 injection flow 

simulation and geomechanics, (4) simulate numerically and perform history matching using CO2 injection 

at Frio and Cranfield sites, (5) implement schemes for quantifying the residual uncertainty after model 

calibration and data assimilation, (6) develop guidelines and workflow to mitigate the geomechanical 

risks of CO2 injection in the subsurface. 

 

The research team has developed a framework for risk assessment and performance evaluation of 

different CO2 sequestration scenarios. This framework includes combined laboratory experiments, 

numerical modeling of the coupled processes, and uncertainty and parameter estimation for selected field 

sites as listed below: 

• Measurement of petrophysical properties of Cranfield rocks from field cores and well logs. 

Laboratory testing of Cranfield rocks for changes in mechanical properties with CO2 specific 

loading. 

• Mathematical and numerical modeling of coupled multiphase flow, transport, and geomechanical 

processes. A hysteretic relative permeability and capillary pressure model was developed and 

implemented in IPARS that accurately describes a dominant mechanism of CO2 trapping in 

subsurface aquifers. 

• A general upscaling framework using adaptive numerical homogenization for non-linear, 

multiphase flow and transport. This technique was verified using a standalone implementation 

and benchmarked for computational efficiency and solution accuracy. 
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• Development of a multiple-realization optimizer coupled with IPARS, parameter estimation using 

ensemble filtering approach, and uncertainty quantification using an adaptive response surface-

based technique. 

A detailed description of all the tasks/activities performed as stipulated in the project milestones 

can be found in the corresponding quarterly report. This final report summarizes the major tasks and 

accomplishments performed under this award. 
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Task 2.0 – Laboratory Experiments for Petrophysical and Hydro-mechanical Rock Properties 

Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in 
fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most 
simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do 
not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study 
presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the 
Frio CO2 injection site in the coast of the Gulf of Mexico as a case study.  

The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. 
We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS 
(Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure 
transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the 
effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our 
simulation results –including CO2 dissolution– exhibited 33% lower pressure build-up relative to the 
simulation excluding dissolution.  

Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation 
expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule 
adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage 
complex. Fault reactivation requires injection volumes of at least ~ sixty times the actual injected volume 
at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used 
in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, 
we do not expect an increase of fault permeability in the Frio sand even in the presence of fault 
reactivation. 

The purpose of this study is to investigate pore pressure build-up induced by CO2 injection in 
heterogeneous and compartmentalized poorly consolidated sands. We utilize the Frio CO2 project as a 
case study. The paper starts with a description of the reservoir model, petrophysical and geomechanical 
properties (based on laboratory experiments and well-logging analyses), and the compositional phase 
behavior model. Then, we show the results of history matching for the actual injection schedule and 
extend conclusions for larger injection volumes and rates. We conclude with an evaluation of expected 
geomechanical perturbations and limits for injection volumes and rates based on the current in-situ state 
of stress and compartmentalization assumption. 

Reservoir Geometry, Boundary Conditions and Simulation Grid 

The detailed area of study (DAS) is a subdomain of interest in the larger Frio reservoir which includes 
injection and observation wells. The DAS boundaries are determined by faults and a salt dome North-
West of the reservoir (Figure 2.1-a). The reservoir dips 16° towards the South-East. We adopted no-flow 
boundary conditions for all four boundaries. The lower end of the reservoir is an idealized as an elongated 
section up to 12 km long (Figure 2.1-b). Fault 2 and 3 are represented by low permeability planes 
embedded in the middle of the DAS area. All four faults are normal faults having same strike about 
N45°W but with different dip angles as interpreted from seismic images and earlier developed models 
(Hovorka et al., 2006) (Table 2.1). 

The total thickness of the model is 30 m (100 ft) evenly divided into 50 grid blocks of 0.6 m (2 ft) 
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perpendicular to bedding in the x-direction. Parallel to the bedding pane, the model is divided into 78 grid 
blocks in the y-direction (853 m) and 71 grid blocks in the z-direction (12192 m). The injection zone 
(approximately 49 m by 61 m (160 ft by 200 ft)) is refined parallel to the bedding (y and z-directions) 
with 1.5 m (5 ft) grid blocks, and the surrounding area is spaced with gradually larger sizes of the blocks 
from 3 m (10 ft) to 305 m (1,000 ft). The full DAS model has 276,900 degrees of freedom. The well 
injection schedules replicated the field injection/shut-in schedule. Further the initial reservoir pressure 
was populated using full observation of base pressure at the injection and observation wells. 

Frio C sand is composed of subarkosic fine-grained, moderately sorted quartz and feldspar sand grains; 
with minor amounts of illite, smectite, and calcite (Kharaka et al. 2006). These minor amounts of clay and 
calcite are located at grain contacts and may affect dynamic elastic properties (Al Hosni et al., 2016). We 
obtained petrophysical properties from laboratory tests courtesy of GCCC (Gulf Coast Carbon Center, UT 
Austin) and petrophysical and geomechanical properties  from experiments performed in our laboratory. 
Table 2.2 summarizes specimen depths and experiments performed. 

Porosity and Permeability 

Experimental measurements as well as well-logging analysis (data courtesy of the GCCC) provided 
petrophysical properties and geomechanical properties for populating the reservoir model. The well-
logging analysis is used to calculate porosity and permeability, respectively from data spaced every 0.15 
m (0.5 ft). We corrected measured neutron porosity 𝜙" and density porosity 𝜙# for the presence of clays 
according to Equations (1-2) (Torres-Verdin, 2016). 

𝜙$	& = ()*+,-(),,-		
/*+,-

         (1) 

𝜙0	& = (1*+,-(1,,-		
/*+,-

        (2) 

where 𝜙$	&  and 𝜙0	&  are shale-corrected density porosity and neutron porosity, 𝐶34  is volumetric 
concentration of shale, and 𝜙#,34 and 𝜙",34		are apparent density porosity and neutron porosity of pure 
shale. The selected depths for the shale correction are 1516 m (4972.5 ft) for the clay-rich layer (local 
maximum GR) and 1544 m (5065.5 ft) for the water saturated clay-poor layer (local minimum GR). Table 
2.3 shows the well log GR readings at the two depths. The corrected porosity 𝜙5	&  is 

𝜙5	& =
()
6 7

8 (1
6 7

9
        (3) 

We calculated permeability along the entire injection zone using an empirical correlation between 
laboratory measured porosity 𝜙 and permeability 𝑘	(Figure 2.2). Figure 2.3 shows the resulting corrected 
porosity and permeability including layers above and below the injection zone. Reservoir properties were 
averaged from the calculated data; namely, the grid block spatial scale of 0.6 m (2 ft) see Figures 2.3-a 
and b for interpolated values of porosity and permeability. We adjusted the ratio between vertical and 
horizontal permeabilities to 1/3 in order to achieve history matching in the pressure response. 

Capillary Pressure and Relative Permeability 

Capillary pressure measurements suggest that the layered formation can be categorized into different 
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groups of rock depending on the values of the J-function: 

𝐽 𝑆= = >6(@A)
C&D3E

F
(

         (4)  

where Sw is saturation of water, Pc is capillary pressure, 𝛾 is interfacial tension, and 𝜃 is contact angle 
(Peters, 2012). We used the J-functions to classify the full reservoir model into four different rock types 
to build an accurate reservoir model (Table 2.4). Figure 2.4-b shows the capillary pressure, and a mapping 
using converted J-functions from an air-mercury system with interfacial tension at 485 mN/m and contact 
angle 140° to CO2-brine system with interfacial tension 30 mN/m and contact angle 40° (Espinoza and 
Santamarina, 2010). We employed a Brooks-Corey drainage model to calculate the relative permeability 
curves from capillary pressure data (Figure 2.4-b and -c). 

𝑃& = 𝑃J 𝑆=∗
*LM         (5) 

𝑆=∗ =
@A*@ANOO
/*@ANOO

         (6) 

where Pe is the capillary entry pressure, 𝑆=∗  is the reduced wetting phase saturation, 𝜆 is the pore size 
distribution index, and Swirr is irreducible water saturation. The corresponding relative permeabilities are 

𝑘Q= 𝑆= = 𝑆=∗
7RSM
M         (7) 

𝑘QT= 𝑆= = 𝑘T=Q 1 − @A*@ANOO
@W*@ANOO

9
1 − 𝑆=∗

7RM
M     (8) 

where krw is the relative permeability of wetting phase (brine), krnw is the relative permeability of non-
wetting phase (CO2), Sm (= 1 for drainage) is the wetting phase saturation corresponding to the critical 
non-wetting phase saturation, and knwr is the non-wetting phase relative permeability at the irreducible 
wetting phase saturation. Table 2.4 lists the modelling parameters used to calculate the relative 
permeability curves (Figure 2.4-c). The reservoir model assimilates heterogeneity of capillary pressure 
and relative permeability as shown in Figure 2.4-c.   

Geomechanical Properties 

We quantified Frio sand rock compressibility using step loading of pore pressure and confining stress 
(Bouteca et al., 1999) (Figure 2.5-a). We saturated sample V1 with synthetic 93,000 ppm salinity NaCl 
solution as pore fluid and measured volumetric as a function of effective mean stress (Figure 2.5-b)	. The 
corresponding bulk rock compressibility is 4.6 	· 10-8 MPa-1 (6.3 	· 10-6 psi-1) evaluated using the 
following equations assuming negligible mineral compressibility 

𝐶Y =
/
Z[

\Z[
\>[

= \]^_`
\>[

        (9) 

Calculated rock compressibility was taken to be constant throughout the reservoir. 

We also conducted a multistage deviatoric loading test to evaluate strength and post-peak failure behavior 
of the Frio C sand. The multistage loading consisted of increasing deviatoric stress at three different 
constant confining stresses: 3.4 MPa (500 psi), 6.9 MPa (1,000 psi), and 10.3 MPa (1,500 psi) (Figure 
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2.6-a). During the first two loading stages, the sample exhibited dilative behavior by increasing deviatoric 
stress. Finally, shear yield was allowed at the last loading stage. The sand resulting friction 

 angle is about 38º, and the cohesive strength is zero (Figure 2.6-b). The sand undergoes ductile 
deformation at peak stress.  

In-situ Stresses 

We estimated the magnitude and direction of principal stresses using an overburden (total vertical stress) 
gradient of 20.5 MPa/km (0.907 psi/ft) (Hovorka et al., 2003) that includes the effect of the rising salt 
dome on “dome hoop stresses” (minimum principal stress oriented in circumferential direction - 
Nikolinakou et al., 2014). We assumed a limit frictional equilibrium of the sand unit (Zoback, 2007) 
(friction angle from Section 2.2) and a normal faulting regime from the seismic interpretation of strikes 
and dips of the respective faults (Figure 2.1). The vertical-to-horizontal stress anisotropy is 

aL
aS
= @^*>[

@-WNb*>[
≤ /83dT	(e)

/*3dT	(e)
       (10) 

where σ1 and σ3 are maximum and minimum principal effective stress  𝜑 is the friction angle, Sv is the 
total vertical stress, Shmin is the minimum total horizontal stress, and Pp is the pore pressure. At the 
perforation depth of the injection well, measured bottomhole pressure Pp was 14.8 MPa (2153  psi), and 
calculated Sv was 31.6 MPa (4580.4 psi). Using 𝜑  = 38° (Figure 2.6), limit frictional equilibrium 
provides an estimate of the lower bound of minimum principal stress (horizontal) around the injection 
zone. This value was estimated to be 18.8 MPa (2,734 psi).  

Stress anisotropy may decrease with time due to creep. Hovorka et al. (2003) calculated formation 
fracture pressure equal to 26.6 MPa (3,851 psi) at a depth of 1,667 m (5,000 ft) based on Eaton’s equation 
using Poisson’s ratio ν = 0.416, overburden gradient 0.907 psi/ft, and reservoir pressure gradient 0.432 
psi/ft. 

𝑆4gdT =
h

/*h
(𝑆i − 𝑃Y) + 𝑃Y      (11). 

History Match  

Figure 2.7 shows history-matching of pressure responses for four injection cycles in the base case, 
including injection and shut-in periods for both the injection and observation wells. The pressure response 
in the first injection cycle does not coincide with simulation results. This peak might have occurred due to 
effects of formation damage or near-wellbore perforation complexity. However, the CO2 breakthrough 
time was predicted by numerical simulation to the 2.3 days as compared to 2.1 days observed in field. 

Figure 2.8 shows snapshots of the CO2 plume migration up to 60 days after injection. The CO2 plume 
moves toward the observation well due to buoyancy but does not move above the few permeability 
caprock. Figure 2.8-a shows the total CO2 concentration (CO2 [lb-mole]/pore volume [ft3]) in both gas 
phase and dissolved phase while Figure 2.8-b shows CO2 saturation of the gas phase only (bulk 
supercritical CO2). Initially, the two figures show similar CO2 saturation distribution since the CO2 has 
not dissolved extensively into brine yet. After 30 days of the injection, the difference between Figures 
2.8-a and -b demonstrates a considerable amount of dissolved CO2 around injection zone (approximately 
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30%).  

Rock compressibility Cp is one of the key mechanical properties determining pore pressure buil-up. Rock 
compressibility lowers the pore pressure buildup at the injection well by increasing available pore volume. 
Zero rock compressibility results in a steady increase of wellbore pressure for rate specified injection well. 
In fact the pressure buildup is twice for zero rock compressibility compared to the field observations at 
both injection and observation wells. We therefore assume a non-zero rock compressibility estimated 
from the laboratory experiment in our numerical simulation model; as described before. The simulation 
results show flattening pressure transient curve during constant injection rate. 

Injection Rate to Induce Fault Activation 

This section applied results of reservoir simulation to determine critical pore pressures and injection rates 
for fault reactivation. Normal and shear stresses are calculated at four faults from the estimated principal 
stresses in Section 2.2.4. The stress tensor in geographical coordinates is obtained by applying a 
transformation matrix R1 to the principal stress tensor as shown below: 

𝑆k = 𝑅/m𝑆𝑅/=𝑅/m
𝑆/ 0 0
0 𝑆9 0
0 0 𝑆o

𝑅/      (15), 

where 

𝑅/ =
𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑏 𝑠𝑖𝑛 𝑎 𝑐𝑜𝑠 𝑏 − 𝑠𝑖𝑛 𝑏

𝑐𝑜𝑠 𝑎 𝑠𝑖𝑛 𝑏 𝑠𝑖𝑛 𝑐 − 𝑠𝑖𝑛 𝑎 𝑐𝑜𝑠 𝑐 𝑠𝑖𝑛 𝑎 𝑠𝑖𝑛 𝑏 𝑠𝑖𝑛 𝑐 + 𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑐 𝑐𝑜𝑠 𝑏 𝑠𝑖𝑛 𝑐
𝑐𝑜𝑠 𝑎 𝑠𝑖𝑛 𝑏 𝑐𝑜𝑠 𝑐 + 𝑠𝑖𝑛 𝑎 𝑠𝑖𝑛 𝑐 𝑠𝑖𝑛 𝑎 𝑠𝑖𝑛 𝑏 𝑐𝑜𝑠 𝑐 − 𝑐𝑜𝑠 𝑎 𝑠𝑖𝑛 𝑐 𝑐𝑜𝑠 𝑏 𝑐𝑜𝑠 𝑐

  

                                                                 (16), 

and Euler rotation angles a = 44.85°, b 90°, and c = 0° for the location shown in Figure 2.1 (Zoback, 
2007). 

For stress analysis, the stress tensor in the geographical coordinate system Sg is projected onto the fault 
plane coordinate system using observed fault strikes and dip angles (Table 2.1). Transformation vectors nn 
and nd, (function of fault strike str and dip dip) permit calculating the magnitudes of shear stress 𝜏 and 
normal stress Sn on the fault plane from the stress tensor in geographical coordinate system Sg. 

 𝜏 = 𝑆k[𝑛T]
m
𝑛z = 𝑆k

− sin 𝑠𝑡𝑟 sin 𝑑𝑖𝑝
cos 𝑠𝑡𝑟 sin 𝑑𝑖𝑝

− cos 𝑑𝑖𝑝

m − sin 𝑠𝑡𝑟 cos 𝑑𝑖𝑝
cos 𝑠𝑡𝑟 cos(𝑑𝑖𝑝)

𝑠𝑖𝑛(𝑑𝑖𝑝)
 (17), 

𝑆T = 𝑆k[𝑛T]
m
𝑛T = 𝑆k

− sin 𝑠𝑡𝑟 sin 𝑑𝑖𝑝
cos 𝑠𝑡𝑟 sin 𝑑𝑖𝑝

− cos 𝑑𝑖𝑝

m − sin 𝑠𝑡𝑟 sin 𝑑𝑖𝑝
cos 𝑠𝑡𝑟 sin	(𝑑𝑖𝑝)

−cos	(𝑑𝑖𝑝)
 (18), 

Figure 2.9 shows the stress conditions at each fault at initial pore pressure condition before the injection 
assuming a non-zero cohesive strength in the rock matrix. The values of principal stresses change 
depending on the depth. The value of principal stresses at the injection well is specified in Section 2.2.4. 
As pore pressure increases, the effective normal stress on the fault plane decreases and the Mohr circle 
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moves towards the yield line increasing the possibility of the shear yield at the fault plane.  

Figure 2.10 shows the maximum amount of CO2 injection without causing fault reactivation as a function 
of injection rate. The maximum cumulative amount of CO2 injection is about 130,000 tons, and it is 
relatively dependent of injection rates. The first location of fault reactivation (Fault 2) is observed for all 
injection rate cases (Table 2.7). Extremely high injection rates over 10,000 tons/day may fracture the well 
before causing fault reactivation.  

Overall, the results indicate that the first Frio pilot test injected less than 1.6% of the minimum possible 
amount of CO2 storage without perturbing faults (Figure 2.10). Assumption of negligible rock 
compressibility results a reduction of  storage capacity by a factor of ten. These values are provided as an 
illustrative comparison for compartmentalized reservoirs in formations near the limit of stress equilibrium. 
Actual predictions need to measure in-situ stress magnitude and orientation and should account for flow 
boundary conditions that may allow for leaks at faults. 

Tertiary unconsolidated sands and mudrocks at Frio do not exhibit brittle deformation during shearing. 
Figure 2.6-a shows slight strain hardening behavior of Frio sand at in-situ effective stresses. Large 
induced seismicity events and failure localization (and local increases in permeability) are less likely to 
occur in geological formations that sustain large plastic strains at yield.  

Injection Rate to Induce Open-Mode Fractures 

Figure 2.10 summarizes simulation results showing the maximum amounts of CO2 injection needed to 
fracture the injection well (assuming that bottom hole pressure reaches the minimum principal stress) and 
zero fault leakage upon reactivation.  If faults are leaky, then an open-mode fracture may not develop due 
to the pore pressure control at faults. Fault reactivation predates hydraulic fracturing for typical injection 
rates < 10,000 ton per day. Injection rates above 10,000 tons per day can cause hydraulic fracturing 
before fault reactivation and are not affected by domain size because of the sharp pressure gradient 
developed around the injection wellbore (Table 2.7). Hovorka et al. (2003) suggested a maximum 
injection rate of 250 tons per day. Injection pressure and rate used at the first Frio pilot test seems to be 
significantly below thresholds for developing open-mode fractures. 

Pore Pressure Reduction Due to CO2 Dissolution into Brine 

Immiscible two-phase fluid flow simulation (Simulation IM) shows 75.9 kPa (11 psi) higher pressure 
response compared to compositional Simulation BC due to no dissolution of CO2 into the brine (Figure 
2.7). The amount of dissolved CO2 in Simulation BC increases with time as the plume spreads in the 
brine-saturated reservoir. The binary interaction coefficient, one of the key parameters of CO2 solubility 
in brine, has large effects on the pore pressure for a given injection scenario. At the end of injection, 
approximately 20% of the CO2 was dissloved in the brine. After 20 days of the end of injection, 44% of 
the injected CO2 was dissolved into the brine, and eventually, 91% of the CO2 was dissolved after 95 days 
(Figure 2.8). The CO2 plume in immiscible simulation (IM) is thinner and moves faster than that in 
simulation using BC. Results indicate that CO2 dissolution contributes a fair proportion to trapping for 
small CO2 injection volumes. CO2 dissolution in the brine phase alleviates pore pressure buildup and 
extends injection times without effecting mechanical stability compared to the immiscible case. We 
predict that injection can be carried out for an additional two days at 200 tons per day. The effect of 
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dissolution on pore pressure buildup is stronger in rocks with low pore compressibility. 

Figures 

 

 Figure 2.1. (a) Schematic diagram of Frio structure (Top view). The dashed red box is the selected region 
for building a DAS reservoir. (b) Detailed area of study reservoir model geometry and zoom-in into the 
grid refinement around the injection zone. Double-yellow lines show the faults locations analyzed in this 
study. 

 

Figure 2.2. Porosity and permeability empirical relationship from core measurements. 
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 Figure 2.3. (a) Porosity, (b) permeability, and (c) ratio 𝑘 𝜙  around the injection well as a function of 
measured depth: calculated from well-logs (blue line), adopted in model (red line).  

 

 

 

Figure 2.4. (a) J-function, (b) capillary pressure, and (c) relative permeability of four rock types 
assimilated into the reservoir model. 
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 Figure 2.5. Results of pore pressure and confining stress loading and unloading on Frio sand: (a) loading 
paths of pore pressure Pp and confining stress Pc (b) volumetric stress change as a function of effective 
mean stress. The resulting Biot coefficient is 0.96. 

Figure 2.6. Results of multistage triaxial loading on Frio sand at confining stress 3.4 MPa, 6.9 MPa and 
10.3 MPa: (a) deviatoric stress as a function of axial and radial strains and (b) Mohr-Coulomb shear yield 
line. 
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Figure 2.7. Injection rate and the bottom-hole pressure response at the injection well of Frio field and 
history matched simulation results. 

 

 

   

Figure 2.8. History-matched simulation: (a) CO2 concentration in both gas phase and dissolved phase and 
(b) CO2 concentration in gas phase along a cross section passing by the injection and observation wells (1 
lb-mole/ft3 = 16.0 mole/L).  
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Figure 2.9. Effective stress Mohr circles at initial pore pressure (blue) and critical pore pressure (red). Red 
star shows the state of stress at Fault 1 (a), Fault 2 (b), and Fault 3 (c). In-situ stresses are assumed based 
on stress limit equilibrium. Results illustrate the effect of pore pressure increase at faults.  

 

  
Figure 2.10. The cumulative amount of CO2 injection without causing fault reactivation (solid blue line) 
or hydraulic fracture at the injector (solid red line) as a function of injection rate assuming closed 
reservoir compartments. Green triangles show actual cumulative CO2 injection volume and injection rates 
attained in the field during the first Frio pilot test.  
 
Table 2.1. Information about faults in DAS 

  Depth (closest to injection well) Strike Dip 

Fault 1 1,566 m (5,139 ft) N45°W 87°NE 

Fault 2 1,542 m (5,060 ft) N45°W 77°NE 

Fault 3 1,458 m (4,873 ft) N45°W 77°NE 

Fault 4 1,408 m (4,621 ft) N45°W 78°NE 

 

Elapsed time until 
geomechanical failure 
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 Table 2.2. Information of samples from laboratory experiments 

Depth 
[ft] 

Depth 
[m] 

Plug 
direction 

Type of experiments 
Porosity 

[-] 
Permeability 

[mD] 

5051.8 1539.8 Horizontal Gas permeability, MICP (GCCC) 0.308 837 

5050.4 1539.3 Horizontal Gas permeability, MICP (GCCC) 0.277 25 

5051.2 1539.6 Horizontal Gas permeability, MICP (GCCC) 0.244 45 

5053.4 1540.3 Horizontal Gas permeability, MICP (GCCC) 0.326 2930 

5055.1 1540.8 
Vertical 

(V1) 

Multistage triaxial loading, N2-brine 
injection at in-situ stress condition 

(Biot coefficient and compressibility), 
MICP (Our laboratory) 

0.376 263 

5055.8 1541.0 
Horizontal 

(H1) 

Porous plate capillary pressure 
measurement 

 (Our laboratory) 

0.377 - 

5055.9 1541.0 
Vertical 

(V2) 

Porous plate capillary pressure 
measurement 

 (Our laboratory) 

0.355 - 

5061.4 1542.7 Horizontal Gas permeability, MICP (GCCC) 0.331 1150 

5065.6 1544.0 Horizontal Gas permeability, MICP (GCCC) 0.327 1830 

5070.5 1545.5 Horizontal Gas permeability, MICP (GCCC) 0.280 212 

5071.5 1545.8 Horizontal Gas permeability, MICP (GCCC) 0.353 2650 

5075.4 1547.0 Horizontal Gas permeability, MICP (GCCC) 0.326 1080 

5076.3 1547.3 Horizontal Gas permeability, MICP (GCCC) 0.340 2330 

 

 Table 2.3. Measured well log values at depths for shale correction 

Property Water saturated sands Clay-rich sands 

Depth [m] 1,544 m (5065.5 ft) 4,972.5 
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Gamma ray [GAPI] 45.5 148.9 

Density porosity 𝜙#,34 [-] 0.354 0.260 

Neutron porosity 𝜙",34 [-] 0.348 0.501 

 

 Table 2.4. Rock types applied to Frio reservoir modeling for capillary pressure and relative permeability. 
(Assumed parameters include krnw = 0.82 and Sm = 1) 

Property Tight Medium Coarse 1 Coarse 2 

Permeability [mD] 0.3 618 1026 2107 

Porosity [-] 0.1 0.24 0.29 0.36 

J-function 1 2 3 3 

l   0.29 1.1 2 1.9 

Pc[MPa]  0.0055 0.0021 0.0028 0.0016 

Swirr 0.5 0.279 0.263 0.263 
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Task 3.0 Upscale by Completing Bridge from Laboratory to Field Scales 

We developed an adaptive homogenization approach upscaling non-linear multiphase flow and transport. 

A two-phase oil-water problem is considered here that has been extended to handle two-phase air-water 

type system required for CO2 sequestration in subsurface aquifers. The workflow of our adaptive 

homogenization framework has three key steps: 

1. Local numerical homogenization to obtain permeability values at the coarse scale by solving local 
unit-cell problems assuming single phase incompressible flow with periodic boundary conditions.  

2. Evaluate an adaptivity criteria for identifying the location of the front and mark transient and non-
transient regions.   

3. Once the property data (permeability, porosity, etc.) is available at the coarse scale, an AMR 
scheme is used to solve the coupled transient (fine scale) and non-transient (coarse scale) flow 
and transport problems.   

Local Numerical Homogenization 

The local numerical homogenization step involves solving auxiliary problems over a subdomain Ωi at a 
given fine scale to obtain an effective value of permeability, porosity or dispersion at a chosen coarse 
scale. Here, local is used to refer to the subdomains over which the auxiliary problems are solved using 
periodic boundary conditions for each subdomain. Figure 3.1 shows a schematic of the local numerical 
homogenization with the fine scale auxiliary problem (dotted red, left) to obtain coarse scale effective 
values (dotted red, right).  

 

Figure 3.1 Schematic of local numerical homogenization to obtain coarse scale (right) prarameters 

from fine scale (left) 

Oversampling 

Although the local numerical homogenization with non-overlapping subdomains provides good estimates 
for effective properties at the coarse scale, for some channelized cases this might result in loss of channel 
connectivity. This issue has been identified by several others; (Efendiev and Hou, 2009; Chung et al., 
2016) to cite a few, and has been addressed by using overlapping subdomains during the evaluation of 
multiscale basis. In this work, we use the same approach wherein subdomains are allowed to overlap over 
a predefined (or user specified) region. Figure 3.2 shows a schematic of oversampling for local numerical 
homogenization with overlapping subdomains. The effective properties are then evaluated by solving a 
local numerical homogenization over these extended subdomains.  
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Figure 3.2: Oversampling for local numerical homogenization 

We observe improvements in numerical solution accuracy of our adaptive approach; compared to the fine 
scale solution, for channelized permeability distributions with fine (or thin) high permeability streaks. 
This oversampling approach does not affect our overall computational efficiency since local numerical 
homogenization is performed only once prior to a numerical simulation for a given set of reservoir 
property distribution.  

Adaptivity Criterion 

We now require an indicator function to track the location of the saturation front in order to later perform 
a domain decomposition into transient and non-transient regions. An ad hoc criterion for identifying the 
location of the saturation front can be easily defined using a gradient in saturation between saturation at a 
given point in space and its nearest neighbor. One such criterion is using a maximum of absolute of 
difference between a saturation S at an element and its adjacent elements at the previous time step n. We 
define the neighboring elements collectively as, Ωneighbor(x)={y:y∈Ej,|∂Ei∩∂Ej|= ̸ ∅,ifx∈Ei}.Then the 
adaptivity criteria can be written as,  

Ωf = {x : max|cn(x) − cn(y)| > εadap ∀y ∈ Ωneighbor(x)} 

Here, Ei and Ej represent an element and its neighbors with εadap as the threshold value above which a 
domain is marked as a transient region. Please note that this type of adaptivity criterion has been used by 
others (Aarnes and Efendiev, 2006) to reduce computational costs in a similar sense. However, the 
computational speedup obtained in the former is not clear. Such criteria have been used in the past for 
different problems as well. For example, in compositional flow modeling (Singh and Wheeler, 2016), the 
local equilibrium computations (flash calculations) are performed based upon the identification of a 
spatial transient region where a given fluid composition was unstable at a previous timestep.  

Adaptive Mesh Refinement 

Based upon the above criteria we divide the domain (Ω) into non-overlapping, transient (Ωf) and non-
transient (Ωc) subdomains to solve flow and transport problems at the fine and coarse scales, respectively. 
Figure 3.3 shows a schematic of the domain decomposition approach used here. In what follows, coarse 
and non-transient, and fine and transient can be used interchangeably to refer to a subdomain. The coarse 
and fine subdomain problems are then coupled at the interface using the EVMFEM spatial discretization 
described in Wheeler et al. (2002). The EV MFE method is known to be strongly mass conservative at the 
interface between fine and coarse domains. Further, this scheme has been used previously; as a 
multiblock domain decomposition approach, for a number of fluid flow and transport problems (Thomas 
and Wheeler, 2011) including EOS compositional flow. This adaptive homogenization approach has also 
been used for upscaling single phase, slightly compressible flow, and tracer transport in Amanbek et al. 
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(2017). Here, the EV MFE was used as the multiblock, domain decomposition approach similar to its 
usage in this work.  

 

Figure 3.3: Schematic of adaptive mesh refinement with coarse (Ωc) and fine (Ωf) domains. 

Solution Algorithm 

In this section, we discuss the numerical solution algorithm with a brief description of spatial and 
temporal discretizations employed. We assume that the oil phase pressure po and saturation So are the 
primary unknowns to form the non-linear system of algebraic equations representing the weak form of the 
two-phase flow model formulation. The lowest order (RT0) mixed finite element method (Arbogast et al., 
1997) ; equivalent to the finite difference scheme, is used for spatial discretization with a backward Euler 
scheme for temporal discretization. A Newton linearization is then performed to obtain a linear system of 
algebraic equations hence resulting in a fully implicit solution scheme.  
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Algorithm 1 presents the solution algorithm for the adaptive homogenization approach. Here, n and k are 
the time and non-linear iteration counter, tn and tn+1 are the current and next time, ∆t current time-step 

size, T the final time, max(R⃗nl) the max norm of the non-linear residual vector, and εnl the non-linear 
tolerance. The adaptivity criteria (10) is evaluated at the coarse scale; for each time step, to identify the 
transient region for the next time step. Once identified the reservoir domain is divided into fine (Ωf ) and 
coarse Ωc subdomains. A fully coupled, monolithic construction of the multiblock domain decomposition 
approach EV MFEM is then used for coupling non-matching coarse and fine subdomains. The coupled 
monolithic construction is an improvement over the previous implementations of the EV MFEM 
(Wheeler et al., 2002; Thomas and Wheeler, 2011) approach where the interface contributions are 
neglected. This approach was also used for upscaling single-phase flow and tracer transport earlier by 
(Amanbek et al., 2017). The non-linear iterations are performed until the max norm (max(R⃗nl)) satisfies 
a desired tolerance (εnl) corresponding to the error in phase mass conservation equations.  

Numerical Results 

In this section, we present numerical experiments beginning with verification cases for numerical 
homogenization and AMR using periodic and homogeneous reservoir properties, respectively for the two 
cases. Next we demonstrate the capability of our adaptive homogenization approach using reservoir 
property description from different horizontal layers of the 10th SPE comparative project for upscaling 
approaches (Christie and Blunt, 2001). We specifically rely upon two layers of the SPE10 project: (1) 
layer 20 with a near Gaussian distribution of permeability, and (2) layer 38 with layered or highly 
channelized permeability distribution. These contrasting cases are aimed to test the solution accuracy and 
computational efficiency of our adaptive homogenization approach compared to a fine scale solve over 
the entire reservoir domain. The reservoir domain is 220ft×60ft with coarse and fine scale grid 
discretizations of 22×6 and 220×60, respectively. The coarse and fine grid elements are consequently 
10ft×10ft and 1ft×1ft. The fluid and reservoir properties are mostly taken from the SPE10 dataset with 
minor modifications to oil phase compressibility to fit the two-phase flow model formulation. The oil and 

water phase compressibility is taken to be 1×10−4 and 3×10−6 psi−1 , respectively. Further the fluid 
viscosities is assumed to be 3 and 1 cP for the oil and water phases, respectively. Additionally, a Brook’s 
Corey model, is considered for the two-phase relative permeabilities with endpoints Sor = Swirr = 0.2 and 

kr
0

o = kr
0

w = 1.0, and model exponents no = nw = 2, as suggested in the SPE10 dataset.  

In all of the following numerical cases, the initial reservoir pressure and saturation are taken to be 1000 
psi and 0.2, respectively. Further, the injection well is water-rate specified at 2 STB/day whereas the 
production well is pressure specified at 1000 psi. All numerical simulations are carried out for a total of 
200 days with continuous water injection. Please note that although a homogeneous dataset is provided in 
SPE10 data for relative permeability and capillary pressure, our upscaling approach is not restrictive in 
this sense. In fact, for such heterogeneities an average relative permeability and capillary pressure can be 
obtained at the coarse scale; following the two-scale homogenization work of Bourgeat et al. (2003). 
However, we do not need to evaluate these effective functions at the coarse scale since we are resolving 
fine scale features at the front using AMR.  

Verification: Homogeneous Case 

We verify the adaptivity criteria and AMR using a homogeneous permeability of dis- tribution of 50mD. 
Figure 3.4 shows the saturation profile after hundred days of continuous water injection. As can be easily 
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seen from these figures the saturation profiles for the fine and adaptive approaches are in excellent 
agreement.  

 

Figure 3.4: Saturation profiles after 100 days for coarse (top), fine (middle), and adaptive (bottom) 
approaches. 

Figures 3.5 and 3.6 further show the oil rate and cumulative oil at the production well, respectively. These 
results further bolster the fact that the AMR with the proposed adaptivity criteria provides an accurate 
solution when compared against the fine scale solution. The coarse scale solution deviates mildly from the 
other two set of results due to numerical diffusion introduced by the upwinding scheme and coarse grid 
discretization. The AMR is able to curtail the numerical diffusion introduced by upwinding at the 
saturation front by using a dynamic fine grid around the saturation front.  
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Figure 3.5: Oil rate at production wells (STB/day) 

 

Figure 3.6: Cumulative oil production (STB) 

Gaussian Permeability Distribution 

For this numerical test, we use layer 20 of the SPE10 dataset that has a relatively Gaussian distribution of 
permeability. Figure 3.7 shows fine scale permeability distribution; extracted from the dataset, and coarse 
scale distribution obtained after numerical homogenization. As discussed earlier, this numerical 
homogenization step to obtain effective properties at the coarse scale is only performed once and does 
effect the overall computational efficiency.  

 

Figure 3.7: Fine and coarse scale permeability distributions for SPE10 layer 20 

Figure 3.8 shows the saturation profile after 50 days for the coarse, fine, and adaptive approaches. It is 
clear from these figures that saturation fronts are captured almost as accurately as the fine scale solution 
at substantially less computational cost. This is achieved by solving the fine scale problem only in 
reservoir subdomains where changes in saturation are large; as identified by our adaptivity criteria.  
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Figure 3.8: Saturation profiles after 50 days for coarse (top), fine (middle), and adaptive (bottom) 
approaches. 

Figures 3.9 and 3.10 show the oil rate and cumulative oil at the production well. These figures clearly 
show that the adaptive approach is again in excellent agreement with the fine scale solution for the 
Gaussian permeability distribution under consideration. Again, this is more or less expected since the 
permeability distribution is Gaussian in nature and therefore has some ergodicity; or periodic properties in 
a statistical paradigm. Therefore the basic assumptions of two-scale homogenization theory and 
consequently local numerical homogenization are inherently valid.  

 

Figure 3.9: Oil rate at production well (STB/day) for layer 20 of SPE10. 
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Figure 3.10: Cumulative oil production (STB) for layer 20 of SPE10. 

 

Channelized Permeability Distribution 

Next, we consider layer 38 of the SPE10 dataset that has a channelized or layered permeability 
distribution with stark contrast in permeability values. Figure 3.11 shows fine scale permeability 
distribution and coarse scale distribution obtained after numerical homogenization; similar to the previous 
numerical test case. This figure clearly shows that channels connectivity is lost in the coarse scale 
permeability distribution obtained from local numerical homogenization.  

 

Figure 3.11: Permeability distribution at fine (top) and coarse (bottom) scale from SPE 10 layer 38. 

We are able to recover connectivity using oversampling to some extent however, we still observe a 
substantial deviation in solution accuracy for the coarse scale. However, our adaptive homogenization 
approach is still able to recover fine scale features as can be seen from the saturation profile in Figure 
3.12.  
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Figure 3.12: Saturation profiles after 50 days for coarse (top), fine (middle), and adaptive (bottom) 
approaches. 

Figures 3.13 and 3.14 show the oil rate and cumulative oil at the production well. The deviation of the oil 
rate for the adaptive case (spikes) can be improved by tightening the adaptive criteria, however this 
results in additional computational overheads. Since the cumulative oil production is already a good 
match we did not consider this aforementioned approach to resolve the oil-rates better.  

 

Figure 3.13: Oil rate at production well (STB/day) for layer 38 of SPE10. 
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Figure 3.14: Cumulative oil production well (STB) for layer 38 of SPE10. 

An adaptive numerical homogenization approach is reported that relies upon identifying characteristic 
flow features; such as the saturation front, and resolving them at the fine scale for accuracy. The 
computational efficiency is achieved by solving a coarse scale problem away from the saturation front 
with effective coefficients; obtained from one time local numerical homogenization for a given reservoir 
property distribution, at the coarse scale. An oversampling technique for the local numerical 
homogenization step preserves connectivity of channels; across coarse subdomains, in a layered 
permeability medium. Further, a non-linear preconditioning approach was developed to reduce the 
number of non-linear iterations improving the computational efficiency of the overall approach for a 
multiphase flow system. The numerical results indicate that the solutions obtained using our adaptive 
homogenization approach are in good agreement with the fine scale solutions. The breakthrough times 
and production histories are predicted more accurately compared to a purely coarse scale; using local 
numerical homogenization without AMR, solve. We obtain a speedup of approximately 4 times for all our 
numerical test cases since the saturation front; where a fine scale solution is required, occupies only a 
small subdomain of the entire reservoir. Further speedups can be obtained by using a loose adaptivity 
criteria at the cost of solution accuracy. This approach can be easily extended to black-oil, compositional 
(gas and chemical flooding), and reactive flow type systems with a some modifications in local numerical 
homogenization and non-linear preconditioning steps. As mentioned previously, the effective equations; 
using two-scale homogenization, for different flow models share common workflow elements that do not 
change with the flow model under consideration. Thus adaptive homogenization is a general upscaling 
framework with a certain degree of process independence.  
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Task 4 - Simulator Development and Modeling CO2 Storage Field Scale Studies 

Coupled Compostional Flow and Elastoplasticity Model 

An extensive amount of work has been done previously (Delshad et al, 2013) on modeling and numerical 

simulation of CO2 sequestration for Cranfield, using an EOS compositional flow model in the house 

reservoir simulator IPARS, by one of the co-PIs. However, most of these prior studies did not include the 

effect of reservoir geomechanics on the field integrity and storage capacity. The modeling work presented 

in this report accounts for the elastoplastic nature of the reservoir rock by considering a Drucker-Prager 

plasticity model. An independent experimental study was conducted by one of the co-PIs (in the 

Laboratory Experiments section below) to determine rock properties, from Cranfield cores, for both flow 

and geomechanics. The main objective of this combined experimental and numerical study is to quantify 

the impact of mechanical deformation, either elastic or plastic, on reservoir integrity, to identify and 

optimize operational choices for any long-term CO2 sequestration field project.  

As a part of the modeling and simulation task, we integrated an implementation of the Drucker-Prager 

plasticity model into the parallel compositional reservoir simulator, IPARS (Integrated Parallel Accurate 

Reservoir Simulator).  Fluid flow is formulated on general distorted hexahedral grids using the multipoint 

flux mixed finite element method. The mechanics and flow systems are solved separately and coupled 

using a fixed-stress iterative coupling algorithm.  This allows multiple flow models to be used with 

nonlinear mechanics without modification, and allows each type of physics to use appropriate 

preconditioners for its linear systems.  The fixed-stress iteration converges to the fully coupled solution 

on each time step. With these components in place, we conduct a study on wellbore stability using 

different flow and geomaterial models. Our simulations run efficiently in parallel using MPI on high 

performance computing platforms up to hundreds or thousands of processors.   

The coupled poro-elasto-plasticity system consists of a Drucker-Prager elasto-plasticity model coupled 

with a number of different fluid flow model options, including an Equation of State Compositional Flow 

model. The mechanics model is discretized using a Continuous Galerkin (CG) finite element method, and 

the flow models are discretized using a multipoint flux mixed finite element (MFMFE) method (Singh et 

al, 2016). Both types of physics are resolved on the same distorted hexahedral grid. Our models were 

implemented in the IPARS (Integrated Parallel Accurate Reservoir Simulator) code, developed at the 

Center for Subsurface Modeling at UT Austin. The reader is referred to (White el al, 2017), one of our 

recent publication, for more details regarding model formulation and the solution algorithm for the non-

linear plasticity solution algorithm. The numerical simulations for the coupled compositional flow and 

geomechanics indicate substantial differences in CO2 plume migration and near wellbore deformations 

between elastic and plastic models.  
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In this example, real data is used from the CO2 sequestration demonstration project at the Cranfield 

reservoir in Mississippi to demonstrate our poro-elasto-plastic model implementation on a large-scale 

case in parallel on a high-performance computing platform.  The domain size is [ft3] 

at a depth of 9901 [ft] discretized into a hexahedral grid of  elements.  The reservoir 

formation is 80 [ft] thick and slopes downward at an angle between 1 and 3 degrees.  We used the 

reservoir depth information to generate the hexahedral grid padded with 3 layers of overburden and 3 

layers of underburden, so that all faces of the domain become flat and are more amenable to the 

application of boundary conditions on the geomechanical system.  In Figure 15 we show plots of the 

history-matched heterogeneous porosity and permeability fields (x-component shown), as well as a close-

up of the hexahedral mesh. In the overburden and underburden layers, the porosity is φ = 0.05  and the 

permeability is K = 0 [md]. 

 

Porosity 

 

X-Permeability 

 
Close-up of Hexahedral Grid 

 

Well Locations 

 
Figure 15. Schematic of numerical reservoir model for Cranfield 

The compositional model parameters are calibrated for Nc = 2  components, namely “CO2” and “brine”. 

Compositional parameters for the two components include: critical temperatures {547.56, 1120.23}, 

critical pressures {1070.3785, 3540.8836}, critical volumes {0.30234, 0.22983}, acentric factors {0.2240, 

0.2440}, molecular weights {44.01, 18.0125}, parachor {49.0, 52.0}, volumetric shift {-0.19, 0.065}, and 

binary interaction coefficients -0.009 between each component.  Water properties are viscosity µw = 0.7
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[cp], compressibility cw = 3.3E-6 [1/psi], and standard density ρw,std = 62.4 [lb/ft3].  In Table 2, relative 

permeability and capillary pressure are given as piecewise linear functions. The initial hydrostatic 

reservoir pressure is p = 4650 [psi] with 100% brine composition at a temperature of 125°C, and no-flow 

boundary conditions are used. This reservoir model has 33 vertical wells which are completed in the 

reservoir formation:  7 mass rate specified gas injection wells, 8 total reservoir volume rate specified 

production wells, 2 observation wells, and 18 pressure specified pseudo-wells to simulate boundary 

conditions.   Well rates are used from field data.  Our simulation is isothermal, with dispersion turned off, 

and gravitational force turned on. Rock density is 2.65 [gm/cm3]. The end simulation time is T=595 [day], 

and adaptive time steps are used such that Δt ∈ (0.001,1.0)  [day]. 

Table 2.  From left to right: oil relative permeability versus water saturation, water relative permeability 
versus water saturation, oil relative permeability versus gas saturation, gas relative permeability versus 

gas saturation, gas-oil capillary pressure versus gas saturation, oil-water permeability versus water 
saturation 

Sw       Kro Sw     Krw Sg      Kro Sg      Krg Sg      Pcgo Sw       Pcow 

0.2      1.0 

0.2899   0.6769 

0.3778   0.4153 

0.4667   0.2178 

0.5556   0.0835 

0.6444   0.0123 

0.7000   0.0 

1.0    0.2500 

0.9    0.1640 

0.8    0.1024 

0.7    0.0600 

0.6    0.0324 

0.5    0.0156 

0.4    0.0064 

0.3    0.0020 

0.2    0.0004 

0.1    0.0000 

0       0.65 

0.025   0.65 

0.05    0.65 

0.075   0.5398 

0.1     0.4443 

0.125   0.3621 

0.15    0.2918 

0.175   0.2323 

0.2     0.1824 

0.225   0.1410 

0.25    0.1070 

0.275   0.0796 

0.3     0.0578 

0.325   0.0409 

0.35    0.0279 

0.375   0.0183 

0.4     0.0114 

0.425   0.0067 

0.45    0.0036 

0.475   0.0017 

0.05    0. 

0.075   0.0001 

0.1     0.0011 

0.125   0.0037 

0.15    0.0087 

0.175   0.0165 

0.2     0.0279 

0.225   0.0431 

0.25    0.0627 

0.275   0.0868 

0.3     0.1158 

0.325   0.1496 

0.35    0.1884 

0.375   0.2321 

0.4     0.2806 

0.425   0.3338 

0.45    0.3912 

0.475   0.4526 

0.5     0.5175 

0.525   0.5853 

0.4     100. 

0.425   0.9238 

0.45    0.6554 

0.475   0.5362 

0.5     0.4650 

0.525   0.4164 

0.55    0.3805 

0.575   0.3525 

0.6     0.3300 

0.625   0.3113 

0.65    0.2954 

0.675   0.2818 

0.7     0.2699 

0.725   0.2595 

0.75    0.2501 

0.775   0.2417 

0.8     0.2341 

0.825   0.2272 

0.85    0.2208 

0.875   0.2150 

0.2         45.0 

0.2899   19.03 

0.3778   10.07 

0.4667    4.90 

0.5556    1.80 

0.6444    0.50 

0.7000    0.05 

0.7333    0.01 

0.8222    0.0 
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0.5     0.0007 

0.525   0.0002 

0.55    0.0 

0.55    0.6555 

0.575   0.7273 

0.6     0.8 

0.9     0.2096 

0.925   0.2046 

0.95    0.2 

 

The mechanics boundary conditions are a normal traction of 10054 [psi] on the top face, zero normal 

displacements on the five remaining faces, and zero shear tractions on all six faces.  Material properties 

are divided into 3 facies with values determined by lab experiments, given in Table 3.  Biot’s constants 

are α = 0.9  and 1/M =1.E-6 [1/psi]. Plasticity parameters are yield strength σY =1600 [psi], yield and 

flow function slopes of 0.6, and bilinear hardening slope of 3750 [psi]. 

Table 3. Young’s Modulus and Poisson’s Ratio for the Cranfield example 

Facies Layers E [psi] ν  

Overburden 1–3 2.2E6 0.25 

C 4–6 1.45E6 0.31 

B 7–11 2.68E6 0.26 

A 12–23 1.45E6 0.24 

Underburden 24–26 2.2E6 0.25 

We present simulation results for the Cranfield example in Figure 16.  While contour values are only 

colored in the reservoir layers, note that all simulation values are computed throughout the entire domain.  

We present these results for the plastic model, although both flow and elastic models were also run.  

Pressure values were very similar for elastic and plastic cases, and were higher than the flow only case by 

about 10 [psi].  Displacements were slightly different for elastic and plastic cases, but show the same 

overall contour.  Note the volumetric plastic strain is one order of magnitude smaller than the volumetric 

strain.  These results indicate the model is not extremely sensitive to geomechanical effects with the 

current set of model parameters.  Given the hypothesized geomechanical effects observed in the field 

when CO2 injection rates were doubled, more model calibration might be necessary. 

 

 

 

X-Displacement, t=5 [day] X-Displacement, t=595 [day] Volumetric Strain, t=595 [day] 
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Volumetric Plastic Strain, t=595 
[day] 

 

 

Reference Phase Pressure, t=5 
[day] 

 

Reference Phase Pressure, t=595 
[day] 

 
 

Figure 16. Selected simulation results for Cranfield example with plastic model 

 

Hysteretic Relative Permeability and Capillary Pressure Modeling  

We verified the implemented multiphase relative permeability (UTKR3P) and multiphase hysteresis 

(UTHYST) models into IPARS. The UTKR3P model (Beygi et al., 2014) is general (for two or three 

phases), simple in the sense of practical reservoir simulation, and robust in computational applications. 

This compositionally-consistent relative permeability model enables to better estimate the fluid mobility 

at low saturation range where common three-phase relative permeability models cannot fully represent 

the fluid flow behavior. In addition, the observed inverse S-shape of non-wetting phase (CO2) at high 

saturation in mixed-wet rocks can be modeled by the UTKR3P model. The parameterized-level model 

incorporates a saturation-averaged interpolation scheme to evaluate relative permeability parameters 

(endpoint and curvatures) based on the reference state (measured) parameters. This methodology allows 

for accurate estimation of relative permeability when saturation history (saturation direction or path) 

varies in multicycle processes. The residual saturation depends on rock wettability and saturation history. 

The UTHYST model (Beygi et al., 2014) enables to capture the trapping behavior of CO2 as a non-

wetting phase during multicycle processes, e.g. huff-n-puff CO2 injection into aquifers, in water-wet, 

mixed-wet-, and oil-wet rocks. The memory-dependent trapping is modeled based on the laboratory and 

field observations. (i) The trapped saturation monotonically increases in the decreasing saturation process 

and is invariable during the increasing saturation process. If compositional effects lead to remobilize part 

of the trapped saturation, the non-monotonic trapping behavior will be captured through the capillary 

desaturation effect. (ii) The Land coefficient by which the initial-trapping behavior is estimated varies 
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dynamically in multicycle processes. (iii) A conjugate phase saturation impacts the level of phase 

trapping. 
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Task 5.0 - Parameter Estimation and Uncertainty Quantification 

In order to estimate reservoir properties (both flow and geomechanical) and to assess the uncertainty 

associated with the estimation of these properties using sparse measurements, it is necessary to develop 

not just a single model, but a suite of equiprobable models. Thus it is useful to develop a stochastic 

approach that can provide suitable candidates for the reservoir at low computational costs.  

Development of a multiple-realization optimizer coupled with IPARS 

This work developed an assisted history matching tool, namely UT-OPT, in order to realize and run 

IPARS simulations to be in good agreements between observed and simulated pressure anomalies 

obtained from pulse testing experiments. Figure 5.1 shows a framework of UT-OPT. UT-OPT consists of 

three modules: input builder, linker to reservoir simulators, and optimizer. The builder is used to generate 

ASCII input data files that are imported to one of the optimization algorithms to be executed. The input 

files are categorized as algorithm parameters (e.g., generation number, population size, and simulator 

type); uncertain parameters (e.g., permeability); response parameters that are targeted for quality check of 

reservoir models (e.g., amplitude, frequency, and phase); and watch parameters that are untargeted for 

quality check (e.g., production rate). In addition to IPARS, commercial simulators are externally linked to 

UT-OPT. The optimizer contains genetic algorithm (GA) (Goldberg 1989) as a global-objective optimizer 

and non-dominated sorting genetic algorithm-II (NSGA-II) (Deb et al. 2002) as a multi-objective 

optimizer. Dynamic goal programming and successive linear-objective-reduction modules are advanced 

options that can be coupled with NSGA-II to improve the rate of convergence with a small loss in 

diversity-preservation for solving a many-objective problem in case M > 4 (Min et al. 2014, 2015). For 

reducing the computational cost associated with the generational algorithms, UT-OPT has the capability 

to run multiple simulations concurrently. Also, each simulation can be executed in high-performance 

parallel computing environments. This general-purpose tool can be used to perform sensitivity analysis, 

history matching, production forecasts, economic analysis, and uncertainty analysis. UT-OPT was written 

in C++ programming language.  
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Figure 5.1. The framework of an assisted history matching tool, namely UT-OPT. 

Table 5.1 describes a flow chart of the evolutionary process adopted in GA and NSGA-II. This 

iterative process performs different genetic operations on a pool of solutions. Let P and Q be the parent 

population and the offspring population, respectively: p ∈ P and q ∈ Q. The initial parent population P0 

consists of Npop solutions that are generated by random or based on prior knowledge. Here, Npop is the 

population size (i.e., ensemble size) per generation. At each generation, Q is created by recombining the 

qualified members in the mating pool R = P∪Q using two genetic operators: crossover (Table 5.2) and 

mutation (Table 5.3). Let Pr, Pc, and Pm be the random probability at each genetic operation, the 

probability of crossover, and the probability of mutation, respectively. The evolutionary process activates 

crossover if Pr < Pc and then does mutation if Pr < Pm. Both Pc and Pm are specified a priori, in general. 

Because most solutions are created by crossover in genetic algorithm, typical values of Pc and Pm are 

employed through the paper: Pc is 0.9 and Pm is 0.1. Here, ],1[ Nrc Î  is the crossover point that switches 

all genes after that point. ],1[ Nrm Î  is the mutation point at which the random variable is altered in the 

range of its lower and upper limits. Note that both rc and rm are picked by random at each genetic 

operation. More details on crossover and mutation can be found in Goldberg (1989). The termination 

condition of the evolutionary process is the achievement of a pre-specified tolerance level or the 

maximum number of generations (i.e., iterations). Let the maximum number of generations be Ngen, then 

the maximum number of evaluations Neval = Ngen×Npop.  

 
Evolutionary process 
1 : INITIALIZE the parent population Pt=0 

with Npop solutions generated based on 
prior knowledge or  
by random. The initial offspring population 
Qt=0 = Ø. 

2 : EVALUATE each parent solution in P0. 
3 : while termination condition is not achieved 

do 
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4 :      t = t + 1. 
5 :      SELECT Npop superior solutions from 

the mating    
     pool Rt = Pt–1 ⋃ Qt–1. 

6 :      UPDATE the parent population Pt with 
the selected  
     solutions. 

7 :      CROSSOVER pairs of the parent 
solutions for   
     creating Npop-sized Qt. 

8 :      MUTATE the resulting offspring 
population Qt. 

9 :      EVALUATE each offspring solution in 
Qt. 

10 : end 
Table 5.1—Pseudo code of the evolutionary process used in genetic algorithm (GA) and non-
dominated sorting genetic algorithm-II (NSGA-II). 
 
 
Crossover 
1 : i = 1 
2 : while i < Npop do 

3 :      GENERATE the random probability Pr 
∈ [0, 1] 

4 :      SELECT two parent members pi and 
pi+1 

5 :      if Pr < Pc then 

6 : 
          GENERATE the crossover point rc 
∈ [1, N] 

7 :           },,,,,{ ,11,1,1,   Niririii pppp
cc +++= !!q  

8 :           },,,,,{ ,1,,11,11 Niririii pppp
cc
!! ++++ =q  

9 :      else 
10 :           

ii pq =   
 

11 :           
11 ++ = ii pq  

12 :      end 
13 :      i = i + 2 
14 : end 
Table 5.2—Pseudo code of crossover used for creating new solutions in the evolutionary process. 
 
 
Mutation 
1 : i = 1 
2 : while i ≤ Npop do 
3 :      GENERATE the random proabability 

Pr ∈ [0, 1] 
4 :      if Pr < Pm then 
5 :           GENERATE the mutation point rm 

∈ [1, N]  
6 :           GENERATE the random variable                       

          
mrrri rqqq

mmm
   point  mutation  the  at ],[ maxmin*

, Î   
7 :           },,,,,,{ ,1,

*
,1,1, Niriririii qqqqq

mmm
!! +-=q  

8 :      end 
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9 :      i = i + 1 
10 : end 
Table 5.3—Pseudo code of mutation used for creating new solutions in the evolutionary process. 
 

The selection process is the main difference between GA and NSGA-II. GA is a point search tool that 

explores the single global-optimum having the smallest objective-sum. Conventionally, Npop solutions are 

selected from the mating pool R in the ascending order of their objective-sum values. On the other hand, 

NSGA-II is designed to provide trade-off solutions that are not only converged on the POF but also 

uniformly distributed along the POF. The trade-off relationship is achieved by non-dominated sorting 

(Table 5.4) and crowding-distance sorting (Table 5.5). In NSGA-II, any solution x in the mating pool R 

has two attributes: non-domination rank (xrank) and crowding distance (xdistance). Deb et al. (2002) denote 

the crowded-comparison operator (≺n) that guides the multi-dimensional selection process of NSGA-II 

toward a uniformly spread-out POF as:  

x1 ≺n x2 if {x1
rank < x2

rank} or {(x1
rank = x2

rank) and (x1
distance > x2

distance)},    (1) 

where x1 ∈ R and x2 ∈ R. That is, NSGA-II primarily prefers solutions with lower (superior) non-

domination ranks. If solutions have the same rank, solutions in a lesser crowded region are preferred.  

Let Fi be the ith non-dominated front composed of solutions having xi
rank. In NSGA-II, selecting Npop 

qualified solutions from the mating pool R requires finding Fn where the cumulative number of solutions 

from F1 to Fn exceeds Npop. Fn is the only front in which crowding-distance sorting is activated to select 
*
Fn
N  out of |Fn| solutions by pruning solutions located in a denser crowded region of that front as: 

 å
-

=

-=
1

1

*
F |F|

n

i
ipopNN

n
.          (2) 

In Table 5.5, Fn[i]m refers to the mth objective function value of the ith solution in the front Fn. fm
min and 

fm
max are the minimum and maximum values of the mth objective function in the same front. More details 

on NSGA-II can be found in Deb et al. (2002).  

Non-dominated sorting 
1 : for each a ∈ R 
2 :      Sa = Ø 
3 :      na = 0 
4 :      for each b ∈ R 
5 :           if (a ≺ b) then 
6 :                Sa = Sa ⋃ {b} 
7 :           else if (b ≺ a) then 
8 :                na = na + 1 
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9 :           end 
10 :      end 
11 :      if na = 0 then 
12 :           arank = 1 
13 :           F1 = F1 ⋃ {a} 
14 :      end 
15 :      i = 1 
16 :      while Fi ≠ Ø do 
17 :           B = Ø 
18 :           for each a ∈ Fi 
19 :                for each b ∈ Sa 
20 :                     nb = nb – 1 
21 :                     if nb = 0 then 
22 :                          brank = i + 1 
23 :                          B = B ⋃ {b} 
24 :                     end 
25 :                end 
26 :           end 
27 :           i = i + 1 
28 :           Fi = B 
29 :      end 
30 : end 
Table 5.4—Pseudo code of non-dominated sorting in NSGA-II. 
 
 
Crowding-distance sorting 
1 : l = |Fn| 
2 : while i ≤ l do 
3 :      set Fn[i]distance = 0  
4 : end 
5 : while m ≤ M do 
6 :      Fn = sort(Fn, m) 
7 :      Fn[1]distance = Fn[l]distance = ∞ 
8 :      i = 2 
9 :      while i ≤ l – 1 do 

10 : 
          Fn[i]distance = Fn[i]distance  
                           + (Fn[i + 1]m – Fn[i – 
1]m)/(fm

max – fm
min) 

11 :           i = i + 1 
12 :      end 
13 : end 
Table 5.5—Pseudo code of crowding-distance sorting in NSGA-II. 

Table 5.6 compares computational complexity of sorting algorithms in GA and NSGA-II in case all 

solutions exist in the same non-dominated front. The multi-dimensional search toward the POF requires 

greater time overhead than the point search due to the number of objectives. Nonetheless, the larger 

complexity would be affordable where most of the execution time in solving real-world problems is taken 

in the fitness evaluation of the evolutionary process (Davis 1991). Note that the efficacy of POF search 

also depends on the number of objectives. Solving a high-dimensional objective problem needs to couple 

preference-ordering or objective-reduction schemes with the evolutionary process (Saxena et al. 2013; 
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Min et al. 2014, 2015; Deb and Jain 2015; Jain and Deb 2015), but it is out of scope for this work. We 

clarify that the number of objectives in this study is restricted to two.  

 
Sorting Algorithm Complexity 

Descending fitness values 
(Goldberg 1989) 

)( 2
popNO  

Non-dominated sorting (Deb et al. 
2002) 

)( 2
popMNO  

Crowding-distance sorting (Deb et 
al. 2002) 

)log( poppop NMNO  

Table 5.6—Computational complexity of sorting algorithms in one generation of the evolutionary 
process. The total complexity is the computational complexity multiplied by the number of 
generations. 
 

Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled 

with genetic algorithm 

We present a framework for the coupling of fluid-filled fracture propagation and a genetic inverse 

algorithm for optimizing hydraulic fracturing scenarios in porous media. Fracture propagations are 

described by employing a phase field approach, which treats fracture surfaces as diffusive zones rather 

than of interfaces. For detailed explanations in phase field, please refer to Lee et al. (2016). Performance 

of the coupled approach is provided with applications to numerical experiments related to maximizing 

production or reservoir history matching for emphasizing the capability of the framework. In this section, 

we demonstrate the minimization problem, which was history matching of fractured volume. We clarify 

that the domain size of the example herein is designed as lab-scale for saving computational costs 

accompanied with multiple phase field runs during optimization. The example runs 20 experiments 

concurrently in each generation, and every phase field fracture simulation is executed with 4 parallel 

processors.  

This example solves a minimization problem to explore the global minimum having the smallest 

discrepancy between actual (reference) and simulated area of fractures. The actual areas of fractures were 

computed using the simulation results of the reference field model shown in Figure 5.2. Three parallel 

fractures are positioned in the computational domain Ω = (0 m; 4 m)2.  

The critical energy release rate is chosen as Gc = 1 Nm-1, Young’s modulus is E =108 Pa, and Poisson 

ratio is set to ν = 0.2. The relationship to the Lame coefficients µ and λ is given by: 

 
(3) 

For the fluid parameters, Biot’s coefficient is set as α = 1, M = 108 Pa, ηR = ηF = 103 Ns/m2, the reservoir 

permeability is KR = 1D, qF = 60, cF = 10-12 Pa-1, and the density ρ = 1,000 kg/m3.  
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Figure 5.2. Propagated fractures at time step n = 250 with heterogeneous E values of the reference 

model. 

The variable vector x of this minimization problem in Equation (31) is set as: 

 
(4) 

where x1,b is x-coordinate of the bottom-left corner of the bar, x2,b is x-coordinate of the upper-right corner 

of the bar, y1,b is y-coordinate of the bottom-left corner of the bar, y2,b is y-coordinate of the upper-right 

corner of the bar, Ein is Young’s modulus of inside the bar, and Eout is Young’s modulus of outside the bar. 

The bottom-left corner of the domain is taken to be the origin of the domain. The range of each variable is 

as follows: x1,b, x2,b ∈ [0 m; 4 m]; y1,b, y2,b ∈ [0 m; 4 m]; Ein ∈ [106 Pa, 1010 Pa]; and Eout ∈ [107 Pa, 109 

Pa]. We intentionally made genetic algorithm more difficult to converge by giving a wide range for 

Young’s modulus. 

The objective function for this example is the absolute average percent error derived as:  

 

(5) 

where Vf
ref is the fracture area of the reference solution and Nobs is the number of observations. In this 

example, Nobs = 1 as Vf
ref measured at the last time step is the only observation data used to calculate the 

objective function. 

Operating parameters of hydraulic fracturing are fixed in all phase-field runs: the number of fractures 

is three, injection rate is constant at each fracture interval, and fracture spacing between the inner fracture 

and each outer fracture is constant 1 m. At the last time step n = 250, the reference model yields the total 
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area of fractures Vf
ref = 0.00974681m2, which results from x1,b = 0.5 m, x2,b = 2.0 m, y1,b = 2.5 m, y2,b = 

3.0 m, Ein = 1010 Pa, and Eout = 108 Pa.  

Figure 5.3 illustrates the numerical results for selected generations and experiments. Each generation 

had 20 experiments and 10 generations were tested. Since no conditions between Ein and Eout were 

provided, we observed some cases with Ein < Eout that yielded unfavorable simulation results during 

earlier generations. After the fourth generation, it seems that most experiments get closer to the reference 

solution in terms of the position of the bar. 
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Figure 5.3. Illustrates the numerical results for selected generations (Gen = 1, 2, 4, and 7) and 

experiments (Exp.). Each row indicates different generations. We observe a convergence of the 

solution to the reference model. 

Consequently, Figure 5.4(a) provides the optimized solution similar to the reference solution shown in 

Figure 5.2. Interestingly, the thickness of the block was a less crucial factor to the performance of genetic 

algorithm because the phase field model did not allow fractures to penetrate the bar. Figure 5.4(b) shows 

the stable decrease in the objective function values from the first to the seventh generations. As most 

experiments were assimilated in the seventh generation, the results from the eighth to the tenth 

generations are omitted in this figure. Notwithstanding the small positive absolute average percent error, 

it seems that all solutions arrive near the global minimum (i.e., reference model) in the seventh generation. 

Employing faster inverse algorithms [8] or coupling a surrogate model with the forward model [50] 

would contribute to saving computational costs for solving more high-dimensional complex problems. It 

is also anticipated that reflecting reservoir uncertainty on the parameters adjusted in these examples 

would deliver more realistic outcomes in future works. 

 

Figure 5.4. Evolution of objective function values for the history matching problem: (a) the optimal 

solution and (b) convergence of objective function values. 
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Status of Project Schedule and Major Goals /Milestones of Project 

The project schedule/timeline is shown in the following.   
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Major goals/milestones 

The following table lists status of the project milestones. All planned milestones have been met. 

Project Milestones 

Budget 

Period 

Task/ 

Subtask 

Milestone ID/Description Planned 

Completion 

Verification Method* 

1 1.0 A. Updated Project Management Plan 10/30/2014 Project Management Plan 

file 

1 1.0 B.  Kickoff Meeting 11/30/2014 Presentation file 

1 2.0/2.1 C.  Plan for the design of the 

experimental equipment and the 

tests to be completed. 

3/30/2015 Completed 

1 2.0/2.2 D. List of representative rock 

samples acquired for testing 

completed. 

6/30/2015 List 

(06/30/2015) 

2 2.0/2.2 E. Complete triaxial cell setup and 

initiate testing. 

12/31/2015 Email to Federal Project 

Manager (FPM) 

describing  

(01/21/2016) 

2 2.0/2/3 F. Interim report of measurement of 

basic rock properties 

6/30/2016 Interim report to FPM 

(06/07/2016)  

3 2.0 G. Complete report that summarizes 

the activities, rock testing, and results 

in Task 2.0.  

9/1/2016 Quick-look report 

(09/15/2016) 

2 3.0 H. Document homogenization and 

multiscale mortar methods 

investigated in study. 

8/30/2016 Interim report to FPM 

documenting use of 

methods 
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3 3.0 I. Complete report that summarizes the 

activities and results in Task 3.0 

conducted for upscaling lab 

measurements including a description 

of the development of homogenization 

schemes for naturally fractured and 

heterogeneous rocks. 

12/31/2016 Quick-look Report 

(01/13/2017) 

1 4.0/4.1 J. Initiate Simulator Development 

with Numerical Schemes for 

Coupled Processes 

8/30/2015 Email to FPM 

describing initiation 

(08/30/2015) 

2 4.0/4.1 K. Complete report that describes the 

enhanced IPARS simulator developed 

in Subtask 4.1, and include the IPARS 

module for geomechanics. 

6/30/2016 Quick-look Report 

(06/06/2016) 

3 4.0/4.2 L. Complete reports containing a 

description of the first selected field 

site (Site one), the model(s) developed, 

and the results of the simulations and 

history matching performed in Subtask 

4.2. 

9/1/2016 Quick-look Report 

(09/15/2016) 

3 4.0/4.2 M. Complete report containing a 

description for the second selected 

field site (Site two), the model(s) 

developed, and the results of the 

simulations and history matching 

performed in Subtask 4.2. 

3/30/2017 Quick-look Report 

(03/29/2017) 

 

2 5.0 N. Initiate parameter estimation and 

uncertainty quantification 

6/30/2016 Email to FPM 

describing initiation 

(06/07/2016) 
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3 5.0 O. Report containing a description of 

the Task 5.0 computational studies and 

analyses completed for (1) using the 

ensemble filtering approach for multi-

parameter estimation; and (2) 

uncertainty quantification conducted 

with the adaptive response surface-

based methodology.    

6/30/2017 Quick-look Report 

(06/30/2017) 

3 6.0 P. Report that includes the 

geomechanical workflow, provides the 

accompanying documentation/user’s 

guide, and summarizes the activities 

and results performed in Task 6.0 for 

the workflow generation. 

8/31/2017 Quick-look Report 
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PRODUCTS 

Journal publications 

• Jung, H., Singh, G., Espinoza D.N. and Wheeler, M.F. Quantification of a maximum injection 

volume of CO2 without geomechanical perturbations using a compositional fluid flow reservoir 

simulator. ICES Report 17-15, June 2017, The University of Texas at Austin. (accepted for 

publication in Advances in Water Resources) 

• Singh, G., Amanbek, Y. and Wheeler, M.F. Adaptive numerical homogenization for non-linear 

multiphase flow and transport. ICES Report 17-13, June 2017, The University of Texas at Austin.  

• Amanbek, Y., Singh, G., Wheeler, M.F. and vanDuijn, H. Adaptive numerical homogenization 

for upscaling single phase flow and transport. ICES Report 17-12, June 2017, The University of 

Texas at Austin. 

• Girault, V., Wheeler, Mary F., Kumar, K. and Singh, G. Mixed formulation of a linearized 

lubrication fracture model in a poro-elastic medium. Mathematical Models and Methods in 

Applied Sciences, July 2016. 

• Girault, V., Kumar, K. and Wheeler, Mary. F. Convergence of iterative coupling of geomechanics 

with flow in a fractured poroelastic medium, July 2016, Computational Geosciences. 

• Wick, T., Singh, G., Wheeler, M.F. Fluid-Filled Fracture Propagation using a Phase-Field 

Approach and Coupling to a Reservoir Simulator. SPE Journal, SPE-168597, October 2015.  

• De Basabe, J.; Sen, M. and Wheeler, M.F. Elastic Wave Propagation in Fractured Media using 

the Discontinuous Galerkin Method. (Accepted in Geophysics Journal) 

• Nwachukwu, A., Min, B., and Srinivasan. S. 2016. Model Selection for CO2 Sequestration using 

Surface Deformation and Injection Data (under review). 

• Min, B., Nwachukwu, A., Srinivasan, S., Wheeler, M.F. 2016b. Selection of Geologic Models 

Based on Pareto-Optimality Using Surface Deformation and CO2 Injection Data for the In Salah 

Gas Sequestration Project (submitted) 

Books or other non-periodicals: None 

Other publications, conference papers, and presentations 

• G. Singh, Y. Amanbek, and M. F. Wheeler, Adaptive Homogenization for Upscaling 

Heterogeneous Porous Medium, SPE Annual Technical Conference, San Antonio, Texas, October 

9-11, 2017. 
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• Y. Amanbek, G. Singh, and M. F. Wheeler, Modeling ow and transport using Enhanced Velocity 

Mixed Finite Element Method and Numerical Homogenization, Finite Element Rodeo, University 

of Houston, Houston, Texas, March 3-4,2017. 

• Y. Amanbek, G. Singh, and M. F. Wheeler, Multiscale Mehods for Flow and Transport in Porous 

Media, SIAM Conference on Computational Science and Engineering (CSE17), Atlanta, Georgia, 

Feb 26 - Mar 3, 2017. 

• Presentation, Solvers for Conservative Flow and Transport Algorithms in Porous Media, 

International Multi-grid Conference, December 5-9, 2016, Bruchal, Germany 

• Presentation, New approach for fracture propagation in porous medium, invited colloquium in the 

Department of Mathematics at Paris VI, December 12, 2016 

• Presentation, Methodologies and robust algorithms for subsurface simulators, invited lecture at 

the Institute of French Petroleum, December 12, 2016.Min, B., Nwachukwu, A., Srinivasan, S., 

Wheeler, M.F. 2016b. Selection of Geologic Models Based on Pareto-Optimality Using Surface 

Deformation and CO2 Injection Data for the In Salah Gas Sequestration Project. Presented at the 

SPE Annual Technical Conference and Exhibition, Dubai, Arab Emirates, 26–28 September. 

SPE-181569-MS.  

• White, D., Ganis, B., Liu, R., and Wheeler, M.F. A near-wellbore study with a Drucker-Prager 

plasticity model coupled with a parallel compositional reservoir simulator, SPE Reservoir 

Simulation Conference, 2017. 

• Jung, H., Singh, G., Espinoza D.N., Wheeler, M. An integrated case study of the Frio CO2 

sequestration pilot test for safe and effective carbon storage including compositional flow and 

geomechanics. SPE-182710-MS. SPE Reservoir Simulation Conference, Montgomery, TX, 2017. 

• Singh, Gurpreet, Venkataraman, Ashwin, Pencheva, Gergina and, Wheeler, Mary F., “A Fully 

Implicit Reactive Flow Formulation for Low Salinity Waterflooding Process”, 15th European 

Conference on the Mathematics of Oil Recovery, 29 August - 1 September 2016, Amsterdam, 

Netherlands 

• Venkataraman, Ashwin, Singh, Gurpreet, and Wheeler, Mary F., “Tangent Plane Criteria for 

Phase Stability Computation for System with Hydrocarbon and Aqueous Phase Components”, 

15th European Conference on the Mathematics of Oil Recovery, 29 August - 1 September 2016, 

Amsterdam, Netherlands 

• Wheeler, Mary F., Singh, Gurpreet and, Amanbek, Yerlan, "Upscaling Reservoir Properties 

Using Single Well Tracer Tests”, Computational Methods in Water Resources, University of 

Toronto, Canada, June 21-24, 2016. 

• Singh, Gurpreet, Ganis, Benjamin and Wheeler, Mary F., “A Parallel Framework for a Multipoint 
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Flux Mixed Finite Element Equation of State Compositional Flow Simulator”, 15th European 

Conference on the Mathematics of Oil Recovery, 29 August - 1 September 2016, Amsterdam, 

Netherlands 

• Presentation, Development of Geomechanical Screening Tools to Identify Risk: An Experimental 

and Modeling Approach for Secure CO2 Storage. Annual Carbon   Storage R&D Review, 18 

August 2015. 

• Presentation, Methodologies and Robust Algorithms for Subsurface Simulators. IOR Norway, 

April 26, 2016, Norway.  

• Presentation, Methodologies and Robust Algorithms for Subsurface Simulators, Energy Institute 

Workshop, May 4, 2016 (collaborative project between ExxonMobil and The University of Texas 

at Austin). 

• Plenary Session, Phase-Field Modeling of Proppant Filled Fractures in a Poroelastic Medium, 

Canadian Applied and Industrial Mathematics Society, June 29, 2016 Annual Meeting, Edmonton, 

Canada. 

• Keynote Presentation, Phase-Field Modeling of Proppant Filled Fractures in a Poroelastic 

Medium, The 11th AIMS Conference on Dynamical Systems Differential Equations and 

Application, July 4, 2016. 

• Keynote Presentation, Computational Screening Tools for Modeling Energy Problems in Porous 

Media, ECOMAS Congress, June 2016, Greece. 

• Keynote Presentation, Computational Screening Tools for Modeling Energy Problems in Porous 

Media, Energy Day, The University of Texas at Austin, February, 2016. 

• Presentation, A Locally Conservative Enriched Galerkin Approximation and an Efficient Solver 

for Elliptic and Parabolic Problems, MAFELAP, June 2016, UK. 

• Presentation, Implementing Multipoint Flux Mixed Finite Elements on Non-Matching 

Hexahedral Grids Using the Local Flux Method. InterPore, Cincinnati, 9-12 May 2016. 

• Presentation, Diffusive Zone Fracture Modeling For Porous Media Applications, SIAM 

Conference on Mathematical and Computational Issues in Geosciences. Stanford University, 

California, July 2015.  

• Presentation, Coupled flow and geomechanics for fractured poroelastic reservoirs, SIAM 

Conference on Mathematical and Computational Issues in Geosciences. Stanford University, 

California, July 2015. 

• Poster on application of multi-objective optimization using injection rate and surface deflection 

data presented at AGU San Francisco, December 2015. 
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• Al-Hinai, O.; Srinivasan, S.; Dong, R. and Wheeler, M.F. A New Equi-dimensional Fracture 

Modeling using Polyhedral Cells for Microseismic Data Sets. (Submitted to Journal of Petroleum 

Technology) 

Websites: None 

Inventions, patent applications, and/or licenses: None 

Other products 

• UTKR3P module for hysteretic relative permeability and capillary pressure and integration with 

IPARS for field scale predictions. 

• MFDFrac module for fractured reservoir flow modeling using mimetic finite difference (MFD) 

and coupling to EnKf for characterizing fractured reservoir.  

• Plasticity module for finite geomechanical deformation integrated in IPARS. 

• HOMOGEN module two scale homogenization for upscaling flow and transport and integration 

with IPARS. 

• Adaptive homogenization tool combining two-scale homogenization (HOMOGEN) and EVMFE 
(Enhanced Velocity Mixed Finite Element) scheme. 

• UT-OPT toolkit for uncertainty quantification, parameter estimation and non-linear optimization. 

• A framework for geomechanical risk assessment of CO2 sequestration scenarios integrating UT-
OPT toolkit with IPARS. 

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS –   

• Individuals that have worked on the project:  UT research associate, postdoc, graduate students, 

and PIs 

• Other organizations that have been involved as partners:  None 

CHANGES/PROBLEMS 

• Changes in approach and reasons for change:  None 

• Actual or anticipated problems or delays and actions or plans to resolve them: None 

• Changes that have a significant impact on expenditures: None 

• Change of primary performance site location from that originally proposed:  None 
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BUDGETARY INFORMATION 

In the final quarter, the project expenditures are within the planned baseline costs for the quarter. The 

updated baseline has been provided by University of Texas Accounting Department. 

 

 

Budget	Period	3

Q1 Q2 Q3 Q4

DATE	RANGE:10/01/16-12/31/16 DATE	RANGE:01/01/17-03/31/17 DATE	RANGE:04/01/17-06/30/17 DATE	RANGE:07/01/17-09/30/17

Q1 Cumulative	Total Q2 Cumulative	Total Q3 Cumulative	Total Q4 Cumulative	Total

BASELINE	COST	PLAN

Federal	Share $82,315.83 $788,407.19 $82,315.83 $870,723.02 $82,315.83 $953,038.85 $82,315.83 $1,035,354.68

Non-Federal	Share $20,578.48 $197,106.56 $20,578.48 $217,685.04 $20,578.48 $238,263.52 $20,578.48 $258,842.00

TOTAL	PLANNED $102,894.31 $985,513.75 $102,894.31 $1,088,408.06 $102,894.31 $1,191,302.37 $102,894.31 $1,294,196.68

ACTUAL	INCURRED	COST

Federal	Share $69,053.97 $798,855.07 $75,585.73 $874,440.80 $27,934.22 $902,375.02 $132,978.98 $1,035,354.00

Non-Federal	Share $0.00 $173,350.61 $0.00 $173,350.61 $64,702.90 $238,053.51 $20,795.49 $258,849.00

TOTAL	INCURRED	COSTS $69,053.97 $972,205.68 $75,585.73 $1,047,791.41 $92,637.12 $1,140,428.53 $153,774.47 $1,294,203.00

VARIANCE

Federal	Share $363,012.95 $594,021.64 $6,730.10 $600,751.74 $54,381.61 $655,133.35 $709,514.96 $1,364,648.31

Non-Federal	Share -$49,857.17 -$83,309.81 $20,578.48 -$62,731.33 -$44,124.42 $210.01 -$43,914.41 -$43,704.40

TOTAL	VARIANCE $313,155.78 $510,711.83 $27,308.58 $538,020.41 $10,257.19 $548,277.60 $558,534.79 $1,106,812.39

BASELINE	REPORTING	
QUARTER


