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The Aeras Project .
AERAS A ™

= Sandia LDRD project, 2014-16

= “A Next Generation Global Atmosphere Model”

= Use Albany to develop a global atmosphere model suitable
for a climate model such as ACME

= All of the standard advantages of using Albany, focusing on:

= Suite of models:

= 2D Shallow water equations

= X-Z hydrostatic equations
= 3D hydrostatic equations




The Aeras Project .
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Aeras Suite of Models =
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= Shallow Water Equations Shallow water assumptions:
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= X-Z Hydrostatic
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Aeras Suite of Models .

= 3D Hydrostatic
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Proven Numerical Methods

=  Derivatives in horizontal coordinates:

= Spectral element method (matrix entries
approximated with Gauss-Lobatto quadrature
leads to diagonal mass matrix)

= Derivatives in hybrid vertical coordinate:

n levels and interfaces

= Finite difference method
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Additions to Albany ) s,

= Shell elements (Andy Salinger)

= Topologically 2D elements on a 3D manifold

= Spectral elements (Bill Spotz)

= |nput STK mesh of quadrilaterals enriched with Gauss-
Lobatto points (parallel algorithm with no

communication) BN ‘
= Utilize Intrepid support for arbitrary-order elements
= Each spectral element interpreted as a patch of bilinear R ’ 777777 "
elements for output e ey

= (3D enrichment algorithm designed but not yet
implemented)

= Explicit time-stepping (Irina Tezaur)
= |Improved efficiency (diagonal mass matrix)
= Additional Runge-Kutta methods



Additions to Albany ) s,

= Concurrent samples (Jeff Fike, Andy, Eric Phipps)

= Run multiple samples of an ensemble for UQ
concurrently to improve efficiency

= Scalar template: double - array of double
= QOperators and model evaluator overloading

= Embedded UQ for transient problems (Andy)
= QOriginally, only steady-state problems supported
= Spherical coordinate transformations (Steve Bova,
James Overfelt)

= May seem to be specific to atmosphere, but ice sheet
model has expressed interest

= Atmospheric column data structures (Tom Smith,
Pete Bosler)

= Actually is specific to atmosphere...




Concurrent Samples =
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Speedeup using a Default Workset Size, Optimized EpetraExt Implementati Sg)eedup using a Single Workset, Optimized EpetraExt Implementation
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Speedup Over Traditional Sequential Sampling
Speedup Over Traditional Sequential Sampling
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=  QObserved speedups for original = QObserved speedups for optimized
EpetraExt concurrent sample EpetraExt concurrent sample
implementation when using a implementation when using a
single workset single workset

9



Performance Portability =,

= Strong scalability for Aeras
Shallow Water TC5 on Shannon,
0.5° mesh:

a) Total time as a function of the
number of elements per
workset

b) Time without gather/scatter as
a function of the number of
elements per workset
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(b)
e Serial - 1 MPI thread per node
=m=CpenMP - 16 OpenMP threads per node
==CUDA - 1 NVIDIA K80 GPU per node
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Performance Portability .
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Aeras Weak Scalability Results on Titan
(uniform_60, uniform_120, uniform_180 mesh resolutions)
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= Weak scalability for Aeras Shallow Water TC5 on
Titan (about 5600 elements per node):
= Left: total time
= Right: compute time (right)
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Performance Portability .
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=  Wall-clock time as a function of = OpenMP and Nvidia K80 GPU
the number of elements per speedup over MPI as a function
workset for Aeras 3D Hydrostatic of the number of elements per
baroclinic instability on Shannon workset for Aeras 3D Hydrostatic
for the 1.0° mesh baroclinic instability on Shannon

for the 0.5° mesh
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Performance Portability
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Weak Scalability on Titan
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Weak scalability results for the
Aeras 3D Hydrostatic baroclinic
instability test case on Titan
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OpenMP and Nvidia K20X GPU
speedup over MPI for the Aeras
3D Hydrostatic baroclinic
instability test case on Titan
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The Follow-On to Aeras )=

= Albany was never a perfect fit for an atmosphere model
focused on performance issues

= Communication assumes first- or second-order operators ...
hyperviscosity violates this

= We apply Laplacian twice, which is inefficient
= |n CAM-SE, hyperviscosity is not applied at every stage of the
Runge-Kutta proceedure

= To Albany, this appears to be solving different governing equations at
different time step stages ... would require refactor

= We were never able to get rid of a “fundamental” factor of 2
slowdown

= Not obvious whether follow-on to Aeras should focus on
Aeras or on CAM-SE
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Aeras or CAM-SE? )

Aeras CAM-SE
= C++ = Fortran
= Kokkos already implemented = Kernels must be converted to
= Albany inefficiencies C++ to use Kokkos
= Implicit time-stepping = QOver a decade of optimizations
= Top-level design = Broad set of verification and
timing tests

= “Fundamental” 2x slowdown
= Allows for methodical, step-

by-step refactor

=  Small set of verification and

timing tests
= Qverall simpler integration path

for ACME

= Need to add new tests

= More complex integration path
for ACME

Conclusion: CMDV Software proposal would (successfully) propose

upgrading CAM-SE rather than porting Aeras to ACME
15




Aeras/Albany Debrief .
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Advantages to using Albany Disadvantages to using Albany

= All the built-in capabilities of = Had to wait for Tpetra refactor
Albany at our fingertips: = Had to wait for upgrade from
= Analysis tools, linear algebra, STK-Classic to new STK meshes
multiphysics, meshing tools, ]
discretizations, derivatives, element " Had to wait for Kokkos refactor
fill, postprocessing and other utilities = Had to add certain capabilities:
= Could focus on development of shell elements, spectral
evaluators elements, transient UQ
= Could leverage work of Albany = Had to work around
and Trilinos developers inefficiencies:

= Implicit time-stepping
= Top-level design

My Conclusion: We made much more progress on the Aeras
project using Albany than if we had started from scratch, and could

demonstrate next-gen capabilities that helped secure funding y




