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Coupled chemo-mechanical processes in shale caprock Alteration of Mancos shale by CO,-brine mixtures

Geochemical response triggered by the injection of CO, Aqueous chemistry observations (low pCO,): pH is buffered by the dissolution of CO, into brine, and dissolution of carbonates (calcite and
e 000 At geologic storage PT: CO, is supercritical (scCO,). dolomite). Positive Na-K correlation indicates no cation exchange (consistent with the absence of swelling clay minerals). Ca and Sr are
more soluble in pCO, vs. control reactors. Fe solubility is low, slightly more soluble in high-pCO,-pressurized reactor. Al is below the
detection limit.

* scCO, stimulates geochemical responses: acidification of parent brine, and
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Mineralogy: Dedolomitization — dolomite is replaced by calcite over the 2-month alteration reaction. Geochemical modeling also predicts
s * EXperimental and field studies: geochemical reactions differ significantly for different alteration of muscovite to gibbsite.
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y experiments: alteration of shale samples at conditions typical of GCS to understand time-dependent geochemical reactions. CaMg(COs),+ 4H* > Ca # + mfl\gp + 2H,CO,
Aqueous sample analysis: ion chromatography (IC), and inductively coupled plasma mass spectrometry (ICP-MS). dotomite |
Solid sample analysis: X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray computed tomography (CT) Scratch testing > Mg +H,CO;3 > 'X‘gﬁ%ﬂtﬁb* 2H’
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Alteration of Woodford shale by CO,-brine mixtures

Agueous chemistry observations (high pcoglz Li, Mg, Ca, and sulfate are released from Woodford shale. Mg, Ca and Li are more soluble in
high pCO, vs. control reactors.
Mineralogy: trace amount of calcite and silicate cement dissolution.

pCO, = 2500 psi (high pCO,),
and 100 psi (low pCO,)
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* Developed based on the dataset from “Natural Contamination from the Mancos Shale” Report, US DOE, ESL-RPT-2011-01. 1007 Clay (| C02 0O Control
* *Developed based on U.S. Geological Survey National Produced Waters Geochemical Database v2.1, Woodford shale Mineralogical classification of mudstones 1718
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