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ABSTRACT: 
The Center for Momentum Transport and Flow Organization (CMTFO) was 
established in 2009 as a multi-institutional U.S. DOE Plasma Science Center, 
with a focus on the fundamental physics mechanisms that lead to the transport of 
momentum within fusion and astrophysical plasma systems, and the subsequent 
formation of ordered behavior in such systems.  It was funded in two tranches; 
this report covers the activities supported by the second period of funding which 
ran from May 2012 through May 2016. 
 
Project Summary: 
 
The Center has focused effort on basic laboratory measurements of collisional 
viscosity in plasmas, nonlinear MHD simulations of the solar tachocline region, 
experimental studies of momentum transport in accretion disk-like hydrodynamic 
flows, and the theory and experimental studies of spontaneous toroidal and 
poloidal flow formation in magnetic fusion devices.  Collaborating groups are 
located at UC San Diego, UC Santa Cruz, PPPL, UW-Madison, and CU-Boulder.   
 
Work at UC San Diego focused on studies of the formation of ordered zonal 
flows out of randomized turbulent fluctuations driven by the plasma pressure 
gradient.  These studies were both theoretical and experimental in nature, with 
experiments occurring on a small scale laboratory plasma device (the CSDX 
device) at UC San Diego.  This group also used the techniques and physics 
insights developed from this work to study the physics origin of the low-
confinement mode (L-mode) to high confinement mode (H-mode) regime in 
tokamak devices.  These experiments were carried out on the HL2A and EAST 
tokamaks located in China, along with the ALCATOR C-Mod and DIII-D 
tokamaks located in the USA.  The results showed that the L-H transition is 
triggered by the turbulent Reynolds stress, which acts to concentrate turbulent 
flow into a narrow sheared jet at the boundary of the plasma.  This coherent flow 
is powered by a nonlinear transfer of kinetic energy from the small-scaled 



randomized turbulence found at the boundary.  This transfer process has to 
conserve total energy and momentum, and thus as the jet amplitude grows the 
turbulent amplitude must die away.  As a result, the turbulent transport of 
particles and heat is largely eliminated in a thin layer at the plasma boundary.  
This then allows a strong ion pressure gradient to develop at the boundary; this 
gradient then “locks in” the strong sheared flow, resulting in a new stationary high 
confinement regime.  These results helped explain at 30+ year old mystery in 
fusion research.  References [1-17] below provide the key papers that document 
this work on a number of tokamak devices, together with related theory and 
modeling papers. 
 
 
Work at UC Santa Cruz focused on using 3D nonlinear MHD simulations to study 
the formation of ordered sheared zonal flows within the solar tachocline, which is 
a thin zone lying between the solar radiative zone located deep within the sun, 
and the convective zone, which lies in the outer region of the sun.  This zone is 
thought to play a key role in generating strong upwelling of stellar material and 
magnetic fields which erupt at the sun’s surface, and forming coronal mass 
ejections and prominences at the surface, which the basis for space weather that 
effects the Earth.  The work also showed the important of conducting boundary 
conditions on the self-generation of a magnetic field from a turbulent flow ( the 
so-called turbulent dynamo) in recently published experiment.  These results are 
documents in references [18-20]. 
 
Work at UW-Madison was focused on the first experimental measurement of 
classical collisional viscosity in a plasma.  This work used a novel plasma-based 
Couette flow device to apply rotation to the outer layers of an unmagnetized 
cylindrical plasma.  The gradual inward propagation of this flow layer then 
permitted the viscosity to be determined. The results showed that collisional 
theory is in fact correct, and that the observed collisional viscosity is consistent 
with theory.  This work is documented in references [21, 22]. 
 
Work at CU-Boulder was focused on the use of optical diagnostics to 
characterize the development of drift waves and drift turbulence in a magnetized 
plasma, and to compare these results against probe-based measurements.  In 
addition, CU-Boulder researchers also developed optical-flow velocimetry as a 
technique to infer turbulent flow fields in magnetized fusion plasmas.  The results 
provided confirmation of the formation of coherent drift wave instabilities at 
conditions near the theoretical threshold for instability, and provided new 
techniques to infer turbulent flows at the boundary layer region of tokamak 
devices.   This work also was used to study the development of turbulence in a 
linear plasma device driven by multiple free energy sources (i.e. electron and ion 
pressure gradients), and to show that this turbulence could be modeled as a 
series on interacting monopole vortices.  These results can be found in 
references [23-26]. 
 



Work at PPPL focused on experimental studies of hydrodynamic stability of non-
Keplerian sheared flows.  In particular, these workers carried out an experiment 
to see if such flows become unstable when a large amplitude velocity 
perturbation is applied to them.  This search for a so-called sub-critical instability 
showed that, in fact, no such instability occurs up to very high Reynolds 
numbers.  The results imply that the rapid accretion found to occur in the 
accretion disks found around newly formed stars and compact objects cannot be 
explained by purely hydrodynamic processes and that, in fact, other physics 
associated with ionized gases must therefore be at work.  This work is 
documented in references [27-30]. 
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