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Sandra Carrillo and Rodŕıgo López for their support and understanding the effort it takes

to get a PhD. Finally, I would also like to dedicate this thesis to my dearest friends: Carlos

and Catherine Infante, Natalia Acevedo, Leoncio Rodŕıguez, Juan David and Felipe Cortés,
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ABSTRACT

Transport and reaction in zeolites and other porous materials, such as mesoporous silica

particles, has been a focus of interest in recent years. This is in part due to the possibility

of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield

in catalytic processes. Computational simulations are often used to study these complex non-

equilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are

prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte

Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both

time and resource wise. These coarse-grained systems can be exactly described by a set of cou-

pled stochastic master equations, that describe the reaction-diffusion kinetics of the system.

The equations can be written exactly, however, coupling between the equations and terms

within the equations make it impossible to solve them exactly; approximations must be made.

One of the most common methods to obtain approximate solutions is to use Mean Field (MF)

theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h

of the particles, but fail completely at low k/h due to the over-estimation of fluxes of particles

within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple

one- dimensional reaction-diffusion models at high and low k/h, where the pores are coupled

to an equilibrated three-dimensional fluid. We thus successfully describe analytically these

simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior

with long range steric interactions and wider pores require determination of multiple boundary

conditions. We give a prescription to estimate the required parameters for these simulations.

For one dimensional systems, if single-file diffusion is relaxed, additional parameters to de-

scribe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD)

simulations to assess these parameters.
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CHAPTER 1. INTRODUCTION

An excerpt from the paper published in Chemical Reviews: Kinetic Monte Carlo Simulation

of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic

Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems.

Da-Jiang Liu1, Andrés Garćıa1,2, Jing Wang1,3, David Ackerman1, Chi-Jen Wang1,3*,

and James W. Evans1,2,3

1Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA

2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

3Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA

(Received 22 August 2014; published 24 April 2015)

Traditionally mean-field rate equations of chemical kinetics for spatially uniform systems [1–3]

and the corresponding reaction-diffusion equations describing spatial heterogeneity [4–6] have

proved immensely useful in elucidating catalytic processes. However, it is well-recognized that

standard mean-field rate expressions neglect spatial correlations in the reactant and/or product

distribution. It is less well appreciated that the standard treatment of diffusion is generally ap-

plicable only at low concentrations and in unrestricted environments [7]. Generically, there are

two sources of spatial correlations associated with either: (i) thermodynamics, where the reac-

tant and product distribution is in some sense locally equilibrated and the distribution reflects

interactions between molecules, (ii) kinetics for unequilibrated distributions, where correlations

are induced by adsorption-desorption- reaction kinetics. For higher reactant concentrations,

correlations of thermodynamic origin should be enhanced due to stronger interactions, and

those of kinetic origin might also be amplified due to inhibited mobility.

*Current address: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
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For catalysis in 1D nanoporous systems, such as zeolites [8–10] and functionalized meso-

porous silica [11,12], severe transport limitations [13,14] (in the extreme case leading to single-

file diffusion [15]) induce strong correlations of kinetic origin that invalidate standard mean-field

treatments [16–19].

Spatial correlations of thermodynamic origin have been extensively characterized. Exact

Ursell-Mayer cluster expansions, Kirkwood and quasimechanical approximations, and concepts

such as Markovian spatial fields (which are often formulated in terms of conditional proba-

bilities) can be utilized [20–22]. Kinetically induced correlations are less well characterized.

Reactive non-equilibrium steady states (NESS) in open systems (reactants in, products out)

are a natural analogue of equilibrium Gibbs states [23, 24]. One can make some general ob-

servations about their behavior. Clearly, a bimolecular reaction will deplete the population of

associated nearby reactant pairs relative to a corresponding equilibrium state.

To effectively analyze these non-equilibrium processes, a molecular-level modeling strategy

is required which can track evolution of system configurations on the appropriate time and

length scales appropriately accounting for spatial correlations. To this end, one can imple-

ment spatially discrete stochastic (Markovian) reaction-diffusion models. For reactions in 1D

nanoporous systems, one can divide the pore into cells comparable to reactant size and treat

continuous diffusion by hopping and exchange between adjacent cells [16–19, 25–27]. The be-

havior of these models is in principle described exactly by master equations [23, 28]. However,

given the difficulty of reliable analysis of the master equations, model behavior is usually in-

stead determined precisely by Kinetic Monte Carlo (KMC) simulation [29–31], as described in

recent reviews [7, 32,33].

In these reaction-diffusion systems, nontrivial spatiotemporal behavior generally arises from

the interplay between the typically nonlinear reaction kinetics and diffusive transport. In the

1D nanoporous catalytic systems, especially with inhibited transport within pores, net re-

activity is often localized near pore openings either for catalytic conversion [25–27] or poly-

merization [34, 35] reactions. This feature induces strong concentration variations within the

nanopores typically on a length scale of tens of nanometers.
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For both more efficient modeling and a deeper understanding to spatiotemporal behavior

in these systems, it is natural to coarse-grain the spatially discrete molecular-level models to

obtain a spatially continuous reaction- diffusion equation (RDE) formulation. Typically, this

type of analysis is generally associated with the deterministic “hydrodynamic regime” for large

mobility and low concentration gradients, and the associated continuum RDE is often referred

to as the hydrodynamic RDE [36, 37]. For these 1D nanoporous catalytic systems, there are

particular challenges. Since the concentration gradients are large, significant net reactivity is

restricted to near the pore openings, and it can be argued that the behavior is controlled by

fluctuations in adsorption-desorption processes at the pore openings. This prompts considera-

tion of a “generalized hydrodynamic” approach [38], and recently, such an approach has been

successfully implemented for a simple conversion reaction [19].

For accurate description of basic behavior in 1D nanoporous system, an appropriate descrip-

tion of chemical diffusion in mixed multi-component system is key. This should be based on

an appropriate Onsager formulation of transport theory that recognizes the coupling between

concentration gradients and diffusion fluxes of different species and thus involves a diffusion

tensor [37, 39]. Apart from fundamental statistical mechanical studies of diffusion in multi-

component lattice-gas models [37, 40–42], there is a general appreciation of the complexity

of diffusion for 1D nanoporous systems where additional anomalies appear in the single-file

diffusion (SFD) regime [14,43–45].

1.1 Thesis organization

This dissertation is based on three published papers, an excerpt of a published review and

two additional parts.

Chapter 2 uses a modified excerpt from the published review “Kinetic Monte Carlo Simula-

tion of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic

Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems” whose authors are

Da-Jiang Liu, Andres Garcia, Jing Wang, David M. Ackerman, Chi-Jen Wang, and James

W. Evans in the Chemical Reviews journal (Chem. Rev. 2015, 115, 5979-6050). In this ar-

ticle, I performed the simulations and numerical analysis for the presented information. The
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chapter describes the basic model, and defines the basic conventions and notation to be used

throughout the document.

Chapter 3 is paper published in Physical Review E, in which I am the main author. A sta-

tistical mechanical model is presented for a coarse-grained lattice-gas reaction-diffusion system,

where an isomeric stereoselective reaction is analyzed. The analysis is performed using KMC

simulations and an analytic method is developed to treat correlations in the reaction terms.

Chapter 4 is a paper published in Journal of Chemical Physics, in which I am the main

author. A statistical mechanical model is presented for a coarse-grained lattice-gas reaction-

diffusion system, where a fluid-pore system in which there is nearest-neighbor exclusion is

analyzed. The system is analyzed in two levels of coarse-graining, and an analytical theory is

developed.

Chapter 5 is a paper published in Journal of Physical Chemistry C, in which I am the main

author. The methodology to determine the KMC simulation parameters for a general family of

coarse grained reaction-diffusion system is given, with a few applications. An analytic theory

is developed for some of these models and are compared with the KMC simulation results.

Chapter 6 is a chapter that has not been published yet, in which I am the main author. In

the chapter, a 3D reaction-diffusion process for molecules that are made out of spheres, and are

confined to move in an infinitely long cylindrical channel of cross-section Dp, is mapped onto

a 2D model, where molecules are made of circles and move in an infinitely long rectangular

channel of width W . Using a Langevin MD approach, the results for the passing propensity of

monomer-oligomer systems, where the oligomers are linear, are compared with the results ob-

tained using the corresponding Fokker-Planck equation. The scaling exponent for the behavior

of the passing propensity in small gaps is obtained for most of the systems. The motivation

behind the study is that of polymerization reactions in narrow pores.

Chapter 7 is a chapter that has not been published yet, in which I am the main author.

A real reaction-diffusion process using a coarse-grained model is analyzed. The reactant and

product molecules are modeled using spheres as the building blocks. A Langevin MD technique

is used to assess the diffusion of the molecules within a restricted cylinder. In particular, we

assess the passing propensity of the molecules and map the results and parameters to a KMC
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model, where the results are compared to experimental results of the system under considera-

tion.

Chapter 8 gives a brief summary of the thesis, along with the general conclusions.

Bibliography

[1] R. van Santen. Chemical kinetics and catalysis. Plenum, New York, 1995.

[2] P. Gray and S. K. Scott. Chemical oscillations and instabilities: Non-linear kinetics.

Claredon, Oxford, UK, 1994.

[3] R. Imbihl. Oscillatory reactions on single crystal surfaces. Prog. Surf. Sci., 44:pp. 185–343,

1993.

[4] G. Ertl. Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem.

Int. Ed., 47:pp. 3524–3535, 2008.

[5] R. Kapral and K. Showalter. Chemical waves and patterns. Kluwer, Dordrecht, 1995.

[6] R. Imbihl and G. Ertl. Oscillatory kinetics in heterogenous catalysis. Chem. Rev., 95:pp.

697–773, 1995.

[7] D-J. Liu and J. W. Evans. Realistic multisite lattice-gas modeling and KMC simulation

of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation

on metal (100) surfaces. Prog. Surf. Sci., 83:pp. 393–521, 2013.

[8] J. Kärger. Handbook on heterogenous catalysis, page p. 1714. Wiley-VCH, 2008.

[9] N. Y. Chen, J. T. F Degnan, and C. M. Smith. Molecular transport and reaction in zeolites.

VCH, New York, 1994.

[10] G. Olhmann, H. P. Pfeifer, and G. Fricke, editors. Catalysis and adsorption in zeolites.

Elsevier, Amsterdam, 1991.

[11] K. Tajima and T. Aida. Nanostructured catalysis. Plenum, New York, 2003.



6

[12] J. S. Beck, J. C. Vartulli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt,

C. T. W. Chu, D.H. Olson, and E. W. Sheppard. A new family of mesoporous molecular

sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 114:pp. 10834–10843,

1992.

[13] K. Malek, T. H. J. Vlugt, and B. Smit. Catalysis and materials science, chapter 14.

Wiley-VCG, Weinheim, Germany, 2009.

[14] D. S. Sholl. Understanding macroscopic diffusion of adsorbed molecules in crystalline

nanoporous materials via atomistic simulations. Acc. Chem. Res., 39:pp. 403–411, 2006.

[15] K. Hahn, J. Kärger, and V. Kulka. Single-file diffusion observation. Phys. Rev. Lett.,

76:pp. 2762–2765, 1996.
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CHAPTER 2. THE BASIC MODEL: CONVENTIONS AND NOTATION

An excerpt from the paper published in Chemical Reviews: Kinetic Monte Carlo Simulation

of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic

Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems.

Da-Jiang Liu1, Andrés Garćıa1,2, Jing Wang1,3, David Ackerman1, Chi-Jen Wang1,3*,

and James W. Evans1,2,3
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3Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA

(Received 22 August 2014; published 24 April 2015)

First-order conversion reactions in catalytically functionalized nanoporous materials incorpo-

rating arrays of linear nanopores with diameters of a few nanometers have been widely studied

and modeled [1–4]. The basic ingredients are as follows. Reactant molecules from the medium

surrounding the catalytic particles adsorb at the pore openings and diffuse into the pores. Upon

reaching catalytic sites, they are converted to product that then diffuse out of the pores, pos-

sibly subject to significant interference from the reactant, which also shares the confined space

within the pores. Catalytic reactions using zeolite materials are often performed using gas-

phase flow reactors but where the reactants are with a carrier gas, which will also populate the

pores within the zeolite. Catalysis using functionalized mesoporous silica nanoparticles (MSN)

is usually performed in solution-phase batch reactors, so in this case often solvent molecules

coexist with reactant and product species inside the pores. Thus, in either case, one might

anticipate a stochastic description of reactant and product species dynamics within the pore

*Current address: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
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implicitly accounting for the interaction with the carrier gas or solvent. For this reason, the

discussion in Section 2.1 will start with the use of Langevin dynamics to describe reactant and

product motion but then immediately transition to spatially discrete coarse-grained modeling,

which allows more efficient simulation of the entire reaction-diffusion process.

We have already mentioned that typical catalytic nanoporous materials include zeolites and

MSN, which can both consist of arrays parallel pores containing catalytic sites (although more

complex pore morphologies are also possible). The reader is referred to extensive reviews of ze-

olite materials and their applications to catalysis [5–7]. Here, we just note that pore diameters

(dp) are typically in the range dp = 0.5−2 nm. In contrast, for mesoporous silicas in the form of

mesoporous silica nanoparticles (MSN), such as MCM-41 [8,9], and SBA-15 [10], nominal pore

diameters are typically in the range dp = 2 − 10 nm. However, it should be emphasized that

effective pore diameters can be reduced below 2 nm by functionalization and also attachment of

reactant species at the pore walls [11]. While mesoporous materials offer the advantage of large

surface areas, restricted transport within the pores is potentially both a disadvantage (reducing

reactivity or turnover frequencies), and an additional advantage (product selectivity) [12].

Given the importance of transport in these materials for application to catalysis, separa-

tions, and sequestration, there is naturally extensive experimental and theoretical literature on

this topic. We refer reader to reviews [5,6,13,14] and selected recent papers [15,16]. There are

extensive studies for species like CH4, CF4, and CCl4, with diameters of ∼ 0.4 nm and above

which are often described by a spherical united atom model [17]. Species such as ethane are

described by the union of two spherical united atoms [18]. It is clear that these species should

undergo SFD for narrower zeolite pores. Here, however, we emphasize that a relatively poor

characterized aspect of transport is inhibited, passing of reactant and product molecules. This

naturally has a strong impact on reactivity, as it limits extrusion of the product. Some MD stud-

ies have tagged molecules, from which changes in order (or otherwise) can be tracked [17, 19].

One particularly instructive study focused on an effective two-molecule passing problem in an

effort to more efficiently characterize passing propensity in narrow pores [18]. The strategy was

to assess the free energy profile as a function of center-of-mass separation in the pore direction

and to utilize a transition state theory (TST) formulation to assess passing. Most recently,
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the passing propensity in an effective two-particle problem with strongly damped Langevin

dynamics was assessed, revealing deviations from TST predictions for this type of dissipative

dynamics [20]. We discuss this analysis further in Chapter 6.

Our focus is not just on transport, but rather on diffusion-mediated catalytic conversion

reactions in 1D nanoporous materials with strongly inhibited passing of reactant and product

species within the pores. It is thus instructive to provide specific examples. The first example

motivating earlier modeling studies [21] is the conversion of neopentane to isobutane catalyzed

by Pd in L zeolites according to the mechanism [22]

(CH3)3 − C− CH3 (neopentane) + H+ − Pd → CH4 (methane) + CH3 − C+ − Pd

and

CH4 + CH3 − C+ − Pd + H2 → CH3 − CH (isobutane) + H+ − Pd.

The diameter of neopentane is about 0.62 nm and that of isobutane is similar (vs methane at

∼ 0.4 nm). All these species might be effectively described by spherical united atom models.

Experimental studies of reaction kinetics indicate SFD in zeolite L, a feature which should be

expected since this material is composed of linear nanopores with small diameter dp ≈ 0.73 nm

and no cross-connections [21,22] (see Figure 2.1). In contrast, reactivity is significantly higher in

zeolite Y , which also has disconnected linear pores with similar narrow diameter, dp ≈ 0.74 nm.

However, this difference in reactivity is explained by the feature that the zeolite Y pores include

near-spherical supercages, which can act as mixing chambers. In contrast, the pores in zeolite

L only have dislike bulges, which apparently cannot facilitate passing of reactant and product

species [22].

The second example involves aldol condensation in MSN. Specifically, this reaction involves

the conversion of p−nitrobenzaldehyde (PNB) to an aldol product by reaction with acetone in

amine-functionalized MSN [11] (see Figure 2.2 and [23, 24] for related studies). Significantly,

a range of pore-expanded, functionalized MSN were prepared to by including a pore-expander

agent during synthesis [25], and reactivity was determined from a range of pore diameters. This

potentially allows assessment of the transition to the SFD regime. To provide a more detailed

description of this system, pore diameters after aminopropyl or methyl(aminopropyl) function-
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Figure 2.1: Neopentane (A) conversion to isobutane (B) in zeolite-supported Pd catal-

ysis. (a) Image of zeolite structure adapted from http://www.personal.utulsa.edu/

~geoffrey-price/zeolite/ (Beta-A Jpeg Image). (b) Schematic of reactant and product

species. (c) Schematic of expected concentration profiles along the pore from the work of

Rödenbeck et al. [21]

alization ranged from dp = 2.6 nm to 3.6 nm. (Nominal diameters before functionalization,

dp(pre), were larger as the amine groups with linear size ∼ 0.5 nm attached to the pore walls

reduce the effective diameter by ∼ 1 nm.) Reactivity measured from reaction yield was high for

the largest pore diameters, but dropped dramatically for smaller diameters of dp = 2.6−2.8 nm.

However, the longest dimensions of the reactant and product species are 0.65 nm for PNB and

1.0 nm for the aldol product (and 0.4 nm for acetone). Thus, might one anticipate that, even

in the narrowest pores, there is plenty of room for passing?

Figure 2.2: (a) Schematic of the conversion of PNB (A) to an aldol compound (B) by reaction

with acetone in amine functionalized MSN. The attachment of PNB to the amine group to

form a Schiff base, reducing the effective pore diameter. (b) Pore cross-sectional schematic. (c)

TEM image of mesoporous silica nanoparticle (MSN) with visible pores oriented from left to

right.

However, experimental analysis indicates that the diameter of the pore is significantly fur-

ther reduced as a result of reaction. It was proposed, and confirmed by NMR studies, that

http://www.personal.utulsa.edu/~geoffrey-price/zeolite/
http://www.personal.utulsa.edu/~geoffrey-price/zeolite/
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the reactant PNB attaches to the functionalized pore walls in the sense that a Schiff base is

formed between PNB and the aminopropyl group at the walls [11] (see Figure 2.2). One might

anticipate that this would further reduce the pore diameter by twice the PNB size to a smaller

effective value, dp(eff). However, the size of the Schiff base of dsch ≈ 1 nm is somewhat smaller

than the sum of the above listed PNB and amine dimensions. Thus, for dp(pre) ≈ 3.8 nm

one estimates that dp(eff)≈ dp(pre)−2dsch ≈ 1.8 nm. With this reduced effective diameter, it

is reasonable to expect that effects of inhibited passing of reactant and product species could

significantly reduce reactivity. One caution is that formation of the Schiff base also inhibits

access of PNB to amine catalytic sites, so this effect can also reduce reactivity.

In other type of reactions, such as bimolecular esterification (acid + alcohol ↔ ester + wa-

ter), there has been considerable interest in exploiting multifunctionalization of MSN to tune

“reaction product-pore interior interactions” to enhance yield [26–28]. Specifically, multifunc-

tionalizing the pore interior with hydrophobic groups can minimize interaction of the product

water with the intrinsically hydrophilic MSN surface groups. potentially shifting the reac-

tion equilibrium toward complete conversion. Multifunctionalization can also impact transport

within the pores [29] (see Chapters 3 - 5). Finally, polymerization reactions in nanoporous

materials will also naturally be impacted by the ability of monomers to pass oligomers that

form in catalytically functionalized pores. One example is the oxidatively catalyzed formation

of poly(phenylene butadinylene) polymer (PPB) in a Cu2+-functionalized MCM-41 silica [30].

Modeling reveals unusual spatial kinetic features of polymerization in 1D nanoporous materials

subject to SFD [31,32].

2.1 From Spatially Continuous to Discrete Stochastic Models for

Reactions in 1D Nanoporous Materials

Here, the focus will be on the case of catalytic conversion reactions for solution-phase

batch reactors where the catalytic nano-particles are immersed in a well-stirred fluid initially

containing the reactant species. As previously indicated, a comprehensive modeling description

of these many-particle reaction-diffusion processes must include diffusion of reactant species
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into the nanopores from surrounding well-stirred fluid, reaction in the vicinity of catalytic sites

on the interior pore surface, diffusion of both reactant and product species out of the pore,

and product reentry when a significant fraction (F ) of reactant is converted to product in

the surrounding fluid. One might naturally start by considering comprehensive continuous-

space description where the motion of reactant, product, and solvent molecules is described

by classical molecular dynamics (MD) simulations [17, 18]. Alternatively and more efficiently,

just the motion of reactants and products might be described by Langevin dynamics, implicitly

accounting for the solvent [20] (see Figure 2.3). However, even the latter treatment is not

computationally viable to describe either the entire reaction or even the attainment of a reactive

quasi-steady state for a specific F .

As alluded to by the above reference to quasi-steady-state behavior, one significant aspect

of these batch reactor processes is a time scale separation. The overall conversion of reactant

to product occurs on the time scale of hours. Initially, there is typically only reactant in the

surrounding fluid (F = 0), and one anticipates that, on the time scale of a few minutes, quasi-

steady-state concentration profiles are established in the pore reflecting this F = 0 state of

the fluid. As the reaction proceeds, an increasing fraction, F , of reactant outside the pores is

converted to product. For each new F , quasi-steady-state concentration profiles are quickly re-

stablished. Thus, by separately analyzing these quasi-steady states for a sequence of increasing

F values, one can piece together the kinetics of the overall conversion reaction [29].

Since many-particle MD or Langevin simulations are prohibitive or impossible on the re-

quired time and length scales, there is motivation to apply “local coarse-graining” to map the

above continuous-space picture onto a spatially discrete stochastic model. In the simplest sce-

nario, one thus divides the linear pores into cells whose width, a, matches the typical reactant

or product size of a ∼ 1 nm [1–4, 33, 34]. Sometimes, it is also convenient to extend this 1D

array of cells to a 3D array outside the pores in the surrounding fluid [4] (see Figure 2.3). Thus,

each cell can contain at most one reactant or product molecule. Diffusion within the pores is

now described by hopping to adjacent empty cells and also by exchange of (distinct) species

between adjacent cells. Adsorption-desorption processes at the pore openings correspond to

hopping (or exchange) between the end cell of the linear array within the pore and the adjacent
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Figure 2.3: (a) Continuous-space Langevin representation of the many-particle reactant and

product diffusive transport processes in a 1D linear nanopore. (b) Corresponding spatially

discrete model formulation. (c) Treatment of unimolecular and bimolecular conversion reaction

processes for the spatially discrete model.

cell in the surrounding fluid. Unimolecular reactions occur at cells within the pore designated

as catalytic (c) and convert a reactant species to the appropriate product species within that

cell. Bimolecular reactions might involve, for example, distinct reactant species in adjacent

cells (see Figure 2.3). These stochastic models are described exactly by hierarchical master

equations (see Section 2.2), although for precise analysis of behavior, it is typically most conve-

nient to employ KMC simulations. Here, various processes are implemented stochastically with

probabilities proportional to the physical rates. However, a non-trivial challenge is to obtain

the basic rate parameters for this locally coarse-grained model that are consistent with the full

continuous dynamics.

A few relevant observations on connecting spatially continuous to discrete descriptions of

the reaction-diffusion process are as follows: (i) The rate, h, for hopping to adjacent cells would

be chosen to match the prescribed continuous diffusion coefficient, D0, in the regime of low

reactant and product concentrations, so that D0 = a2h [35]. (ii) Clearly, exchange is absent for

SFD. However, in general, it is not trivial to appropriately map the extent of inhibited passing,

as assessed by MD or Langevin simulations in a narrow pore, onto a numerical value of the

exchange probability (pex) in the spatially discrete model [20] (see Figure 2.3). Despite its
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significance in controlling reactivity, targeted quantitative analyses of the passing propensity

of reactant and product species are rare [18,20]. Even here, many-particle MD or Langevin dy-

namics is not efficient, so an effective two-particle analysis is preferred [18,20] (see Chapter 3).

(iii) Adsorption-desorption rates, and specifically their ratio, should reflect the possible differ-

ent chemical potentials for various species in the surrounding fluid versus within the pore. This

issue is particularly relevant in discussion of multifunctionalization to tune the pore interior to

enhance reactivity (see Chapters 3 - 5). (iv) With regard to interactions between reactant and

product species themselves and with the pore walls, the simplest treatment considers just steric

(or geometric non-overlap) constraints. These constraints are incorporated into the feature that

a cell can only be occupied by a single species. In the case of longer range interactions [36], the

additional requirement that the neighboring cells to a non-empty cell, within the interaction

range, are empty. However, a more sophisticated treatment would account for solvent-mediated

interactions between reactants, products, and the pore walls [1,2,33], where these interactions

would be suitably coarse- grained to fit our spatially discrete model. While significant recent

developments exist in related coarse-graining approaches [37], these have not yet been applied

to systems of interest here. (v) The microscopic reaction rate in the coarse-grained model

would reflect not just the activation barrier but also local entropic factors and diffusion pro-

cesses within the cell (or within adjacent cells for bimolecular reactions) related to achieving

the necessary reaction configuration.

The above level coarse-grained modeling with one reactant or product species per cell has

the simplifying feature that chemical diffusion in a system involving a single species is in-

dependent of concentration in the absence of interactions beyond steric blocking [38]. This

feature, and its extension to multi-species models where distinct species have the same mo-

bilities, is particularly useful in analysis of the more complex reaction-diffusion process [1–4].

However, a more realistic treatment bringing the above “very coarse” spatially discrete model

and continuous-space Langevin descriptions would be to choose a finer discrete spatial grid

within (and outside) the pores. Now particle centers reside at grid points, but the grid spac-

ing is finer than the particle linear dimensions, so particles can only approach within a finite

threshold distance (of multiple grid spacings) to avoid overlap (see Figure 2.4). In this case, the
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description of chemical diffusion is non-trivial even for a single-species problem (see Chapters

3 - 5).

Figure 2.4: Finer-scale spatially discrete model that coarse-grains the continuous-space

Langevin model for transport and reaction in a narrow nanopore.

2.2 Discrete Hierarchical Reaction-Diffusion Equations

For the above discrete reaction-diffusion models, the labeling of discrete cells or sites which

form periodic arrays will be labeled by n, and the concentrations at those sites for species A, B,

. . . by 〈An〉, 〈Bn〉, . . . . Again, at most one species can occupy a site or cell. Correspondingly,

these concentrations are normalized so that their maximum value is unity, and they correspond

to probabilities that a site is occupied by A, etc. Here, we leave implicit dependence on time (t),

but explicitly account for possible spatial heterogeneity by allowing concentrations to depend

on n (see Figure 2.5). In the following sections, it will be primarily described the case of

systems with a single site type for each species. However, much of the formalism applies to

the situation where there are distinct site types for each within the unit cell of the periodic

system species, and brief comments are made in the text on this more general case. The site

concentrations satisfy evolution equations of the form [39–45]

d 〈An〉
dt

= RA (n)−∇ · JA (n) ,
d 〈Bn〉

dt
= RB (n)−∇ · JB (n) , . . . (2.1)

where the rate terms Rc (n) include gain and loss terms for species C associated with reaction,

and also with adsorption and desorption if operative. Also ∇ · JC (n) is a suggestive nota-

tion representing discrete analogue of the divergence of the C diffusion flux. Specifically, if
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JC (n→ n + d) denotes the net diffusive flux of C from n to n + d, then

∇ · JC (n) =
∑
d∈Ω

[JC (n→ n + d)− JC (n− d→ n)] , (2.2)

where Ω denotes a half-space of d values [39]. For 1D systems and hopping between nearest

neighbor sites (NN), n → n, ∇ · JC (n) → ∇ · JC (n), where JC (n) = JC (n→ n+ 1) and

∇Kn = Kn −Kn−1 is the discrete gradient or divergence.

Figure 2.5: Schematic of concentration profile in a discrete reaction-diffusion A→ B system in

a 1D linear nanopore where 〈An〉 decreases and 〈Bn〉 increases into the pore.

For spatially uniform states with a single site type, 〈An〉 = 〈A〉 , etc., are independent

of n and the diffusion terms vanish in equation (2.1) for these single site concentrations. For

multiple site types, diffusive hopping flux terms remain as these describe mass transfer between

sites of different types. If this mass transfer is rapid, then one expects local equilibration of

concentrations for distinct sites.

The above apparently simple form of the discrete reaction-diffusion equations (RDE) hides

much complexity, even for the spatially uniform case. Typically, neither the rate terms nor the

diffusion terms are determined solely by single-site concentrations. Rather, they are generally

dependent on the probabilities of multisite configurations, which cannot be simply expressed in

terms of site concentrations due to the presence of spatial correlations. Thus, the above discrete

RDE might be regarded as the lowest-order equations in an infinite coupled hierarchy [39,46–48].

Higher order equations describe the evolution of probabilities or correlations associated with

configurations involving multiple sites. While diffusion terms are absent in the lowest-order

equations for spatially uniform states in the case of a single site type, they persist in equations
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for probabilities of multisite configurations, thereby impacting the extent and nature of spatial

correlations.

To illustrate the appearance of multisite probabilities, in the discrete RDE, consider a

bimolecular reaction of A on site n with species B on a nearby site m. In the simplest case

of an environment-dependent reaction rate k, the associated contribution to the reactive loss

term in Krxn
A (n) has the form

Krxn
A (n|m) = k 〈AnBm〉 , 〈AnBm〉 ≡ probability of AnBm pairs. (2.3)

This pair correlation can only be replaced by the product of site concentrations, 〈An〉 〈Bm〉,

in the complete absence of correlations. In the simplest low-concentration quasi-equilibrated

regime, one can write

〈AnBm〉 ≈ 〈An〉 〈Bm〉 exp (−βφnm) (2.4)

for inverse temperature β = 1/ (kBT ) with interaction φnm between A and B, i.e., the first

term in an Ursell-Mayer cluster expansion [49,50]. This expression immediately show that the

effective barrier for reaction will be impacted by φnm. However, this is a crude approximation

for higher concentrations or strong ordering, and a Kirkwood or quasi-chemical approximation

might provide a more accurate expression [49,50]. There is no analogous simple formulation to

account for correlations of kinetic origin.

In contrast to the above example with a single rate k, in general, rates and associated

barriers are impacted by the local environment. The exact expression for the reactive loss

contribution Krxn
A (n|m) to RA (n) generally involves a sum over various possible influencing

environments of the reacting pair times the appropriate rates (as well as a sum over m).

Similar complications arise in treating the net diffusive flux, JA (n→ n + d), of A, say,

from n to d. For diffusive hopping, one requires site n to be populated by A and site n + d to

be empty (E). In addition, the hop rate generally depends on the local environment of this pair

of sites, with JA involving a sum over associated configurations times the corresponding rates.

It is instructive to consider the simplest case with an environment-independent hop rate, h, in

both directions between pairs of sites where [39,51–53]

JA (n→ n + d) = h [〈AnEn+d〉 − 〈EnAn+d〉] . (2.5)
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Here 〈AnEn+d〉 is the probability that n is occupied by A and n + d is empty, etc. Neglecting

spatial correlations and factorizing these pair probabilities, one obtains

JA (n→ n + d) = −h (1− 〈Bn〉 − 〈Cn〉 − . . .) (〈An+d〉 − 〈An〉)−

h 〈An〉 [(〈Bn+d〉 − 〈Bn〉) + 〈Cn+d〉 − 〈Cn〉+ . . .] . (2.6)

For 1D systems and hopping between NN sites, this reduces to [51–53]

JA (n→ n+ 1) = −DAA∇〈An+1〉 −DAB∇〈Bn+1〉 −DAC∇〈Cn+1〉 − . . . ; (2.7)

where DAA = h (1− 〈Bn〉 − 〈Cn〉 − . . .) and DAB = DAC = . . . = h 〈An〉, and again ∇Kn =

Kn −Kn−1. Coarse-graining to continuum formulation adds an extra factor of a2 in these D′s

(see Chapter 6 and Chapter 7). The form of equation (2.7) is qualitatively correct, i.e., consis-

tent with Onsager transport theory. However, it does not provide the basis for a quantitative

description of transport even for simple models without interactions [39]. This type of analysis

can be extended to the case of multiple site types for each species, as indicated above, but the

analysis of the diffusion coefficients is more complex.

2.2.1 Hierarchical truncation at the mean-field level

A fundamental observation from equation (2.1), or the simplified form for spatially uniform

systems, do not constitute a closed set of equations in the presence of correlations but rather are

just the lowest-order equations in an infinite coupled hierarchy. Higher-order equations in the

hierarchy describe the evolution of various two-site, three-site, etc. configuration probabilities

or correlations. Truncation of this hierarchy to obtain closed equations for a finite set of one-site,

two-site, etc. probabilities generally implements a factorization approximation. The simplest

mean-field (MF) site approximation neglects all spatial correlations [49, 50]. Extending this

approach to a spatially heterogeneous state, one factorizes multisite probabilities as [39]

〈AnBm〉 ≈ 〈An〉 〈Bm〉 , 〈AnEn+d〉 ≈ 〈An〉 〈En+d〉 , (2.8)

and similarly for probabilities of configurations for larger number of sites. For homogeneous

states, this yields the traditional mean-field rate equations of chemical kinetics.
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For spatially heterogeneous states, this factorization yields a closed set of discrete RDE’s for

site concentrations. Spatial coupling in these d〈Cn〉
dt equations comes not just from the diffusion

terms, since adsorption, and reaction rates, equations (2.6) and (2.7), but also from the rate

terms, since adsorption, desorption, and reaction rates generally depend on concentrations at

sites nearby n. This contrasts the simpler coupling in the most commonly analyzed traditional

discrete Nagumo-type RDE’s [54,55], which comes only through the diffusion terms, i.e.,

d 〈An〉
dt

= RA (〈An〉 , 〈Bn〉 , . . .) +DA∆ 〈An〉 , (2.9a)

d 〈Bn〉
dt

= RB (〈An〉 , 〈Bn〉 , . . .) +DB∆ 〈An〉 , . . . (2.9b)

where ∆ denotes a discrete Laplacian and DA, DB, etc. are constants. Indeed, even from the

simple mean-field analysis of diffusion fluxes in multicomponent systems, it is clear that the

diffusion flux of any species is more complicated than in the above Nagumo equations, as there

is coupling to concentration gradients of other species, and also diffusion coefficients depend

on concentrations. This complexity is consistent with Onsager's general theory of transport, a

feature typically neglected in modeling.

2.2.2 Higher-order hierarchical truncation and conditional probabilities

Higher-order truncation approximations to the discrete hierarchical RDEs that retain some

information on spatial correlations are generally needed to more accurately capture model

behavior. However, the accuracy of these approaches is not guaranteed, even in simple reaction

models, and they may be difficult to implement for complex realistic models. Examples of

higher-order factorization schemes for 1D systems are

〈AnBn+1Cn+2〉 ≈
〈AnBn+1〉 〈Bn+1Cn+2〉

〈Bn+1〉
, (2.10)

(pair approximation)

〈AnBn+1Cn+2Dn+3〉 ≈
〈AnBn+1Cn+2〉 〈Bn+1Cn+2Dn+3〉

〈Bn+1Cn+2〉
. (2.11)

(triplet approximation)
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Implementing the pair approximation, one factorizes the rate terms and diffusion terms in

equation (2.1) in terms of single site and pair quantities. To obtain a closed set of equations,

one must also add evolution equations for these pair quantities and suitably factorize the rate

and diffusion terms. Similarly, implementing the triplet approximation, one must add evolution

equations for both pair and triplet quantities. There are several examples where such higher-

order truncation approximations have been implemented for simple spatially inhomogeneous

models of reactions in 1D nanoporous systems [2–4,33].

A useful observation is that another systematic way to formulate higher-order factoriza-

tions, and also a valuable tool to understand and quantify spatial correlations, is to introduce

conditional probabilities [56, 57]. Recall the generic notation for the conditional probability of

X given Y is P (X|Y ) = P (X ∪ Y ) /P (Y ). Similarly, here we let the probability of A on site

n given B on site m as 〈An|Bm〉 = 〈AnBm〉 / 〈Bm〉, or given B on site m and given C on

site k as 〈An|BmCk〉 = 〈AnBmCk〉 / 〈BmCk〉, etc. Then, the above examples of higher-order

factorization in 1D systems can be concisely recast as

〈An|Bn+1Cn+2〉 = 〈An|Bn+1〉 (pair); (2.12a)

〈An|Bn+1Cn+2Dn+3〉 = 〈An|Bn+1Cn+2〉 (triplet), etc. (2.12b)

Pair or higher-order truncation can sometimes significantly improve accuracy over mean-field

treatment of reaction kinetics, at least for simpler models [43–45]. However, in general these

types of approximations fundamentally fail to describe diffusion fluxes. This is naturally a

greater challenge since one must capture the small difference between similar quantities.
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Abstract

Statistical mechanical modeling is developed to describe a catalytic conversion reaction

A → Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where

reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated

restricted diffusive transport, which in the extreme case is described by single-file diffusion,

naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte

Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong

spatial correlations induced by restricted diffusivity in the presence of reaction and also by a

subtle clustering of reactants, A. DOI: 10.1103/PhysRevE.93.052137
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3.1 Introduction

Molecular-level non-equilibrium statistical mechanical modeling has the potential to provide

a reliable description of cooperative catalytic reaction-diffusion phenomena where traditional

mean-field (MF) treatments of chemical kinetics are inadequate [1, 2]. The focus of this paper

is on providing such a treatment of catalytic systems with two distinctive features. The first

involves solution-phase first-order A→ B conversion reactions occurring in catalytically func-

tionalized particles traversed by narrow linear nanopores which result in restricted diffusive

transport [3–11]. The extreme case of restricted transport, on which we place some emphasis

here, is single-file diffusion (SFD) [12–14] wherein reactant and product species cannot pass

each other within the linear nanopores. Then the interplay between reaction and SFD produces

rapidly varying concentration profiles near the pore openings (where the reactant is supplied

from the surrounding fluid), and strong spatial correlations in reactant locations. The latter are

neglected in MF treatments. The second phenomenon involves reactions with concentration-

dependent selectivity, and specifically stereoselectivity where the product B can have distinct

cis (Bc) and trans (Bt) forms [15]. Here, the selection of the Bc or Bt product is controlled

by the concentration of the reactant, A. More precisely, in a molecular-level picture, the rate

for conversion of A to Bc or Bt depends on the number and local arrangement of other nearby

A species. This, in turn, means that the selectivity, i.e., the relative yield of each of these

products, depends on spatial correlations in the reactant distribution.

Characteristic indicators of SFD in catalytic mesoporous systems were observed long ago

for certain classes of zeolites with uncoupled narrow linear pores [16, 17]. It should, however,

also be noted that in samples with linear dimensions of tens of microns, these uncoupled pores

may not traverse the entire sample [18]. A primary motivation for our study is a catalytic

processes in functionalized mesoporous silica nanoparticles (MSNs) with diameters of around

100 − 200 nm where hexagonal arrays of parallel uncoupled linear nanopores do traverse the

entire nanoparticle [19]. While synthesis with a range of pore diameters is possible, the broad-

est of which certainly allows uninhibited transport, recent studies for narrow pores did reveal

behavior indicative of SFD [2,20].
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There has been extensive characterization of spatial correlations of thermodynamic origin

associated with intermolecular interactions in equilibrium systems. However, understanding of

spatial correlations of kinetic origin in the non-equilibrium steady states of reaction-diffusion

systems is limited [1,2]. Nonetheless, it is precisely the characterization of such non-equilibrium

correlations which is required for reliable prediction of selectivity and other features of con-

centration dependent stereoselective reactions in nanoporous systems. Given the fundamental

nature of this challenge, it is addressed here with somewhat simplified statistical mechanical

models, as described in detail below. We note that over the last two decades a substan-

tial body of analysis based on such models has been performed for conversion reactions in

nanoporous systems (usually zeolites) with simple concentration-independent first-order kinet-

ics [3–11]. One can straightforwardly extend this type of modeling to incorporate cooperative

concentration-dependent kinetics, but it will prove a significant challenge to provide a reliable

analytic treatment.

Our focus is on such simplified and generic modeling. However, here we first provide some

brief comments for broader background and motivation regarding the type of systems falling

into the above class and also on theoretical methodologies with the potential to provide a first

principles characterization of reaction kinetics. With regard to concentration-dependent selec-

tivity, homogeneous catalytic desymmetrization of diallylamines to give diastereomers (using

a Zr-centered catalyst) exhibits a quite strong variation with reactant concentration of cis to

trans selectivity [15]. Specifically, the yield of trans relative to cis product increases with re-

actant concentration. These studies are part of a broader analysis of stereoselectivity in Zr

catalyzed reactions [15, 21]. To develop a heterogeneous version of this process, one might

anticipate functionalizing the interior pore surfaces of MSN with an appropriate Zr-centered

catalytic group. The effective diameter of the pores after functionalization can be reduced to

the range of d ∼ 1 − 2 nm where passing of molecular species within the pore can be strongly

inhibited. While such functionalization remains a significant challenge, substantial progress

has been made recently [22].

Next, we remark that electronic structure analysis could provide a detailed theoretical as-

sessment of the origin and nature of concentration-dependent selectivity. More specifically, such
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analysis should ideally elucidate variations in reaction barriers and possibly also pathways with

the local environment of the reacting “substrate” molecule A. This is a significant challenge

even for homogeneous catalytic systems, but one might anticipate that the basic features are

preserved for heterogeneous catalytic analogues. Given the typical complexity and size of the

catalytic group, and the requirement to incorporate multiple reactant molecules, it is natural

to utilize computationally less expensive density functional theory (DFT) to facilitate such an

analysis rather than higher-level quantum chemistry approaches. Indeed, this type of analysis

has been performed for systems similar to that described above and has demonstrated that

certain barriers can indeed be lowered by increasing the number of reactant molecules [23].

Current analysis has not included solvent effects, but this could be done explicitly or using im-

plicit solvent approaches such as COSMO [24] or PCM [25]. It is also appropriate to note that

once geometries along the reaction path have been determined by DFT, higher-level analyses

such as MP2 and CCSD can be implemented utilizing those geometries to assess corrections

to the energetics. In one case, the MP2 calculations yielded similar energetics to the DFT

analysis [23].

Returning to statistical mechanical modeling, we briefly review an effective strategy uti-

lized in previous studies to describe solution-phase catalytic conversion reactions with restricted

transport within catalytically functionalized linear nanopores. Direct molecular or Langevin

dynamics simulation [26–28] is not viable to describe the overall reaction-diffusion process on

the appropriate time scale (i.e., reactants entering, diffusing within, reacting, and products

diffusing within and being extruded from the pore, with dynamics generally mediated by the

presence of a solvent). Thus, instead spatially discrete coarse-grained stochastic modeling is

typically implemented [3–11]. In this approach, each pore is divided into a linear array of

cells each with width a ∼ 1 nm comparable to that of the reactant and product species. Then

solvent-mediated diffusion is described by hopping to adjacent empty cells. Refinements can

be made to relax the SFD constraint. Adsorption and desorption from the pore are reflected in

appropriate boundary conditions at the pore openings. A conversion reaction will be analyzed

here with rates which reflect the local environment of the cell where reaction is occurring. The

behavior of the stochastic one-dimensional lattice-gas model is precisely assessed by kinetic
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Monte Carlo (KMC) simulation [2]. However, for a deeper understanding, one can develop

exact master equations for the model. Although these cannot be solved exactly, and standard

mean- field type treatments are inadequate, effective analytic treatments such as a generalized

hydrodynamic (GH) approximation [10] might be developed to elucidate behavior.

In Section 3.2 we develop a spatially discrete stochastic model for catalytic conversion

A → Bc or Bt in nanopores with restricted transport, present the exact evolution equations,

and comment on an effective analytic treatment of diffusion. Section 3.3 provides a characteri-

zation of the key spatial correlations in the steady state of the non-equilibrium reaction-diffusion

system, focusing on the reactant distribution and elucidating the strong correlations which im-

pact the diffusion fluxes. In Section 3.4, we present an analysis of model behavior, specifically

describing nontrivial concentration profiles in the steady state and elucidating the key features

impacting the selectivity. Conclusions are provided in Section 3.5.

3.2 Model Specification and Evolution Equations

3.2.1 Specification of the spatially discrete stochastic model

Spatially discrete modeling describes catalytically functionalized nanoporous particles, such

as MSN, by an ensemble of linear pores each consisting of a 1D array of L cells, labeled n = 1−L,

each of width a ∼ 1 nm [3–11]. In our treatment, all cells are regarded as catalytically active.

It is convenient to consider these 1D arrays as being extended to a 3D array of cells in the

exterior fluid surrounding the catalytic particles as this facilitates specification of adsorption

and desorption processes at the pore ends. The exterior fluid supplies reactant, A, to the

pores, and we consider here only the initial stage of the reaction where a negligible fraction of

the reactant in the external fluid has been converted to product. We consider the conversion

reaction A → Bc or Bt occurring exclusively inside the pores, as indicated above, and let E

denote empty cells. It will also be useful to let B = Bc +Bt denote either product, X = A+B

denote any type of species, and Z = B + E denote cells not populated by A. Also if C = A,

Bc, or Bt , then we will let C ′ denote other molecular species, e.g., if C = A then C ′ = B.
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Figure 3.1: Schematic of spatially discrete stochastic reaction model for concentration-dependent conversion

reaction A→ Bc or Bt in catalytically functionalized linear nanopores described by a 1D array of cells.

The probability that site n is occupied by some species C, corresponding to a concentration

at site n, is denoted by 〈Cn〉, where 0 ≤ 〈Cn〉 ≤ 1. Similarly, the pair probability that site

n is occupied by C and n + 1 by D is denoted by 〈CnDn+1〉, etc. The “well-stirred” exterior

fluid has a large volume compared to the intrapore region. For the initial stages of the reaction

under consideration, we specify that a fixed fraction, 〈A0〉 = 〈X0〉 of cells in the exterior fluid

are randomly populated by reactant A. Thus, the fraction of exterior empty cells is given

by 〈E0〉 = 1 − 〈X0〉. As an aside, one can regard efficient stirring of the exterior fluid as

corresponding to very rapid hopping of A between adjacent exterior cells.

The key ingredients of our stochastic model for the catalytic reaction-diffusion process,

shown schematically in Figure 3.1, are as follows:

(i) Reactants A “adsorb” at rate h from the fluid cell just outside the pore to empty end

cells n = 1 and n = L. Thus, the overall rate to adsorb, e.g., at the left end of the pore

is h 〈A0〉 〈E1〉 accounting for the feature there is no correlation between the occupancy of

the exterior and interior cells.

(ii) Reactants A hop at rate h to nearest-neighbor (NN) empty cells within the pore.

(iii) Reactants A convert to products Bc or Bt with rates depending on the local environment,

specifically the state of the neighboring cells, as prescribed below.
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(iv) Both types of product also hop at rate h to NN empty sites within the pore.

(v) Reactants and products “desorb” by hopping from end cells at rate h to NN empty cells

in the surrounding fluid. Thus, e.g., the overall rate for A to desorb from the left end of

the pore is h 〈A1〉 〈E0〉.

(vi) One can relax the SFD constraint implicit in the above prescription of hopping by simply

allowing exchange of adjacent (NN) species within the pore with rate Pexh. Of key impact

is exchange of reactants and products. Selecting Pex = 0 recovers SFD (for narrow pores),

and setting Pex = 1 corresponds to uninhibited passing (for wide pores).

It is appropriate to note that since we focus on the initial stage of the reaction, the extruded

product is extremely diluted in the well-stirred fluid and does not readsorb. Also, we remark

that the assignment of equal hop rates is natural for cis and trans products, and this is also

reasonable for reactants for the type of reaction mentioned in Section 3.1 which motivates this

study.

Our primary aim of incorporating concentration-dependent selectivity, or more precisely

environment-dependent selectivity, is achieved by specifying that the rate for conversion of A

at cell n depends on the state of neighboring cells as follows:

An−1AnAn+1 → An−1B
t
nAn+1 at rate k, (3.1a)

An−1AnZn+1 → An−1B
c
nZn+1 or An−1B

t
nZn+1 each at rate k/2, (3.1b)

Zn−1AnAn+1 → Zn−1B
c
nAn+1 or Zn−1B

t
nAn+1 each at rate k/2, (3.1c)

and Zn−1AnZn+1 → Zn−1B
c
nZn+1 at rate k, (3.1d)

where again Z means not A. Using exact “conservation of probability” relations, the above

prescription implies that the rate of loss by reaction of A at site n equals Rn (A) = −k 〈An〉.

Likewise, the rates of gain by reaction of specific products at site n are given by:

Rn
(
Bt
)

=
1

2
k (〈AnAn+1〉+ 〈An−1An〉) and Rn (Bc) =

1

2
k (〈AnZn+1〉+ 〈Zn−1An〉) , (3.2)

where Rn (Bc) can be rewritten using 〈AnZn+1〉 = 〈An〉 − 〈AnAn+1〉, etc. Clearly, the overall

gain products satisfies Rn (B) = Rn (Bc) +Rn
(
Bt
)

= −Rn (A).
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This model has the following special features. Ignoring the distinction between Bc and Bt,

the model reduces exactly to a simple concentration-independent conversion model A→ B with

rate k for all cells. Thus, the concentration profile for A (which decays quickly into the pore),

and all spatial correlations in the location of A species in the full A → Bc or Bt model, are

determined by this simpler A→ B model. If one does not distinguish A and B, then the model

reduces to a simple nonreactive diffusion model for a single species X. Thus, the steady state

corresponds to a random distribution of X in cells within the pore with uniform concentration,

〈Xn〉 = 〈X0〉. A corollary of this observation is that empty cells are also distributed randomly

in the steady state with uniform concentration 〈En〉 = 1− 〈X0〉 = 〈E0〉.

Finally, we note that the above modeling can be refined or extended in various ways.

For example, the SFD constraint could instead be relaxed by modeling pores as consisting of

multiple parallel rows of cells [2] (rather than by including place exchange for pores with a

single row of cells). Also, rather than just considering the initial stages of reaction where a

negligible fraction of reactant in the fluid is converted to product, one can also assess reactivity

for various degrees, f , of conversion of reactant to products. Here one exploits an assumed

separation-of-time-scales feature that a quasi-steady state within pores will be quickly achieved

for each f relative to the time scale for conversion of most reactant to product in the fluid.

Thus, from an analysis of reactivity for a series of f values, one can piece together overall

reaction kinetics [11].

3.2.2 KMC simulation and master equation analysis

Precise analysis of model behavior will be achieved by kinetic Monte Carlo (KMC) simula-

tions, some details of which are described in Section 3.7. However, potentially deeper insight

comes from an analytic treatment based on exact evolution equations for the A → Bc or Bt

model, which can be written in compact form:

d/dt 〈Cn〉 = Rn (C)−∇nJC (n > n+ 1) , for 1 < n < L with C = A,Bc, or Bt. (3.3)
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Here∇nKn = Kn−Kn−1 denotes a discrete gradient, and the net diffusion flux, JC (n > n+ 1),

of C from cell n to cell n+ 1 satisfies [10]

JC (n > n+ 1) = h (〈CnEn+1〉 − 〈EnCn+1〉) + Pexh
(〈
CnC

′
n+1

〉
−
〈
C ′nCn+1

〉)
. (3.4)

Separate equations are needed for end cells which reflect the feature that the cell just outside

the pore is randomly populated by A with probability 〈X0〉. Thus, pair probabilities involving

the end cell and the adjacent exterior cell factorize as a product of single-cell probabilities, e.g.,

d/dt 〈A1〉 = R1 (A)− JA (1 > 2) + h (〈A0〉 〈E1〉 − 〈E0〉 〈A1〉).

All these equations couple single-cell probabilities to pair probabilities. One can develop

separate equations for pair probabilities [2], e.g.,

d/dt 〈AnAn+1〉 =− 2k 〈AnAn+1〉 − h (〈AnAn+1En+2〉 − 〈AnEn+1An+2〉)

+ h (〈An−1EnAn+1〉 − 〈En−1AnAn+1〉)

− Pexh
(〈
AnAn+1A

′
n+2

〉
−
〈
AnA

′
n+1An+2

〉)
+ Pexh

(〈
An−1A

′
nAn+1

〉
−
〈
A′n−1AnAn+1

〉)
, (3.5)

for 1 < n < L − 1 which couple to triplet probabilities. Continuing to develop equations for

triplets, etc., generates a hierarchy of evolution equations.

The simplest mean-field (MF) treatment completely neglects spatial correlations by factor-

izing all multicell probabilities as products of single-cell quantities. However, for the A → B

conversion reaction, this MF treatment has been shown to greatly overestimate the magnitude

of the diffusion flux terms, JC (n > n+ 1), for SFD, and thus overestimates reactant pene-

tration into the pore and reactivity in the steady state for k << h [9, 10]. This is perhaps

not surprising as it is well recognized that there are strong back correlations in hop sequences

associated with SFD [14]. Of course, the MF treatment also neglects correlations determining

〈AnAn+1〉 pair probabilities which will be important for accurate description of reaction kinet-

ics. The pair approximation sets 〈CnDn+1Fn+2〉 ≈ 〈CnDn+1〉 〈Dn+1Fn+2〉 / 〈Dn+1〉 attempting

to account for spatial correlations, and requires simultaneous analysis of equations for both

single-cell and pair probabilities. This yields somewhat improved results, but still significantly

overestimates fluxes for k << h, as do higher-order triplet, etc., approximations [10].
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The deficiency of MF-type approximations in describing diffusion fluxes has been remedied

by implementing a generalized hydrodynamic (GH) treatment [10] of diffusion for the relevant

counter-diffusion modes [29] where the total concentration 〈Xn〉 = 〈X0〉 is constant. Here we

start with a hydrodynamic expression for diffusion fluxes JC (n > n+ 1) = −Dtr∇n 〈Cn+1〉

which is applicable for counter diffusion and involves a tracer diffusion coefficient, Dtr [2, 10,

29–31]. Then, we replace the hydrodynamic Dtr, which equals zero for SFD in an infinite pore,

by a GH form Dtr (n, n+ 1) = hFtr (n, n+ 1). This GH form has a finite value O (1/L) in the

pore center and is enhanced near the pore openings [10]. Then the diffusion flux is given in

this GH formulation by

JC (n > n+ 1) ≈ −hFtr (n, n+ 1)∇n 〈Cn+1〉 . (3.6)

As described in detail elsewhere [2, 10, 29], Ftr (n, n+ 1) are determined either from the

form of concentration profiles for a counter-permeation setup, or by suitable analysis of tagged

particle diffusion with various starting locations. Illustrative values for Ftr (n, n+ 1) will be

given below. This analysis produces a diffusion flux which is far smaller in magnitude than

the MF prediction for SFD. Additional perspective on this feature comes from the observation

that the MF value of Ftr is given by

Ftr (MF) = 〈E0〉+ Pex 〈X0〉 . (3.7)

See Section 3.8. For SFD with Pex = 0, we will find that Ftr (n, n+ 1) is well below Ftr (MF) =

〈E0〉. We discuss further the implications of the success of the GH treatment in Section 3.3.

The regime where spatial correlations are strongest and where analytic treatment most

challenging is for Pex = 0 (SFD) with higher values of 〈X0〉 and k << h. Higher 〈X0〉 amplifies

the constraints of SFD, and k << h produces substantial reactant penetration to the pore

so the form of the concentration profile impacted strongly by SFD. Thus, our discussion will

particularly emphasize the case Pex = 0, 〈X0〉 = 0.8, and k/h = 0.001, choosing a pore length

L = 100. Spatial correlations are reduced upon allowing exchange or reducing 〈X0〉, so any

treatment which is effective for Pex = 0 and high 〈X0〉 will be even more accurate for Pex > 0

and lower 〈X0〉. We will also consider behavior for 〈X0〉 = 0.2 and Pex = 0.25 confirming this
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Table 3.1: Ftr (n, n+ 1) versus n near the end of a pore with L = 100 for different values of total concentration

〈X0〉 and for SFD (Pex = 0) as well as with exchange (Pex = 0.25). Decay into the pore (increasing n) is strong

for SFD and weak with exchange. MF values, Ftr (MF) = 1 − (1− Pex) 〈X0〉 are shown in the bottom row.

Ftr (n, n+ 1) is closest to Ftr (MF) for low 〈X0〉 and Pex > 0, and furthest below Ftr (MF) for high 〈X0〉 and

Pex = 0.

Ftr (n, n+ 1) 〈X0〉 = 0.20, Pex = 0.00 〈X0〉 = 0.20, Pex = 0.25 〈X0〉 = 0.80, Pex = 0.00 〈X0〉 = 0.80, Pex = 0.25

n = 1 0.59353 0.76127 0.05463 0.32147

n = 2 0.43812 0.71861 0.02302 0.31004

n = 3 0.35470 0.69915 0.01295 0.30757

n = 4 0.27708 0.68507 0.00865 0.30522

n = 5 0.23021 0.69082 0.00627 0.30112

n = 6 0.19527 0.66456 0.00494 0.30126

n = 7 0.16801 0.66701 0.00411 0.29957

n = 8 0.15003 0.66144 0.00358 0.29984

n = 9 0.13627 0.66434 0.00327 0.29802

n = 10 0.12136 0.65699 0.00304 0.29793

n = 11 0.10895 0.65478 0.00286 0.29734

n = 12 0.09805 0.64189 0.00274 0.29869

n = 13 0.09060 0.64692 0.00265 0.29780

n = 14 0.08285 0.64900 0.00260 0.29823

n = 15 0.07682 0.64390 0.00255 0.29618

Ftr (MF) 0.80 0.85 0.20 0.40

feature. Likewise, for larger k, significant reactant concentration is limited to near pore open-

ings where correlations are weaker, and thus lower-level approximations are more effective [2].

Our most successful analytic treatment, described as an “extended GH” or eGH approach,

will incorporate a GH treatment of diffusion fluxes with a tailored treatment of spatial correla-

tions in the pair quantities 〈AnAn+1〉, which control the reaction kinetics Rn (C). See Section

3.3 for details of the latter.

3.3 Spatial Correlations in the Reactive Steady State

3.3.1 Correlations related to diffusion fluxes

The dramatic failure of the MF treatment of diffusion fluxes for SFD, which is reflected in

the inequality Ftr (n, n+ 1) << Ftr (MF) = 〈E0〉, implies strong spatial correlations between

the location of cells which are empty and those which are populated by reactants, A, within
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Figure 3.2: KMC results for behavior of 〈AnEn+1〉 and 〈EnAn+1〉 (solid curves) relative to their MF approxima-

tions (dashed curves) versus n near the left end of a pore with L = 100, 〈X0〉 = 0.8 (so 〈E0〉 = 0.2), k/h = 0.001,

and Pex = 0 (SFD). Since 〈En〉 = 〈E0〉, both MF approximations are determined solely by the variation of 〈An〉
with n (as reflected in the “staircase” construction connecting dashed curves).

the pore. This behavior is quantified by the GH formulation (3.6) which shows that

〈AnEn+1〉 − 〈EnAn+1〉 ≈ Ftr (n, n+ 1) (〈An〉 − 〈An+1〉) << 〈E0〉 (〈An〉 − 〈An+1〉) , (3.8)

where these quantities are positive near the left end of the pore, and where illustrative val-

ues for Ftr (n, n+ 1) are given in Table 3.1. Thus, as is shown in Figure 3.2 for SFD with

〈X0〉 = 0.8 and k/h = 0.001, 〈AnEn+1〉 and 〈EnAn+1〉 are much closer to each other than the

MF predictions. (The large difference between the MF estimates reflects a strong variation in

〈An〉 near the pore opening, noting that 〈En〉 = E0 is constant.) The similarity of 〈AnEn+1〉

and 〈EnAn+1〉 is readily understood as a consequence of the restricted dynamics associated

with SFD. Consider the pair probability 〈AnEn+1〉. Since cell n + 1 is empty, A on cell n

can readily hop to cell n + 1 and will then quite likely hop back to cell n (which is guaran-

teed to be empty immediately after A hopping). This results in a “near-equalization” of the

probabilities 〈AnEn+1〉 and 〈EnAn+1〉. This idea naturally extends to triplets 〈AnEn+1En+2〉,

〈EnAn+1En+2〉 and 〈EnEn+1An+2〉 which are much closer to each other than the MF values,

and also extends to associated quartets, quintets, etc.
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The GH formulation only quantifies the difference between the pair probabilities as indicated

in (3.8). However, it will be useful to also have reliable estimates of the individual probabilities

〈AnEn+1〉 and 〈EnAn+1〉. To this end, we introduce an extended GH or eGH approximation

as follows. First, we note the anticipated inequality

〈An〉 〈E0〉 = 〈An〉 〈En+1〉 > 〈AnEn+1〉 > 〈EnAn+1〉 > 〈En〉 〈An+1〉 = 〈E0〉 〈An+1〉 , (3.9)

for the left end of the pore (smaller n) which is confirmed by the results in Figure 3.2. One

approach to assess 〈AnEn+1〉 and 〈EnAn+1〉 accounts for a “strong asymmetry” in the behavior

of these quantities relative to MF predictions in that both are much closer to 〈En〉 〈An+1〉 than

to 〈An〉 〈En+1〉 for SFD with high 〈X0〉 (or low 〈E0〉) [32]. In the notation of the inset to

Figure 3.2, this suggests setting ∆n+1 = 0 which immediately yields a fully asymmetric eGH

formulation eGH(f):

〈AnEn+1〉eGH(f) = 〈E0〉 〈An+1〉+ Ftr (n, n+ 1) (〈An〉 − 〈An+1〉) and (3.10a)

〈EnAn+1〉eGH(f) = 〈E0〉 〈An+1〉 (3.10b)

A less extreme but still asymmetric eGH formulation, eGH(a), anticipates weaker asym-

metry upon relaxing the SFD constraint or for lower 〈X0〉. We have confirmed this trend

(not shown). In this case, we assume that deviations of pair probabilities from the MF re-

sults are proportional to the relevant A concentration, i.e., one assumes that ∆n ∝ 〈An〉 and

∆n+1 ∝ 〈An+1〉 Figure 3.2. This formulation yields

〈AnEn+1〉eGH(a) =
2 〈An〉 〈An+1〉 〈E0〉
(〈An〉+ 〈An+1〉)

+
Ftr (n, n+ 1) 〈An〉 (〈An〉 − 〈An+1〉)

(〈An〉+ 〈An+1〉)
and (3.11a)

〈EnAn+1〉eGH(a) =
2 〈An〉 〈An+1〉 〈E0〉
(〈An〉+ 〈An+1〉)

− Ftr (n, n+ 1) 〈An+1〉 (〈An〉 − 〈An+1〉)
(〈An〉+ 〈An+1〉)

(3.11b)

We note that for our application, results using (3.10) or (3.11), or even an alternative

symmetric eGH formulation, eGH(s), where ∆n = ∆n+1 [33], are all much closer to precise

model behavior determined by KMC simulation than the MF approximation.

3.3.2 Correlations impacting reaction kinetics

Next, we discuss analysis of the pair probabilities, 〈AnAn+1〉, which is necessary to describe

the reaction kinetics, Rn (C), in the evolution equations (3.3). The simplest treatment of
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Figure 3.3: KMC results for fn = 〈AnAn+1〉 / (〈An〉 〈An+1〉), gn = 〈AnBn+1〉 / (〈An〉 〈Bn+1〉), versus n near the

left end of a pore with L = 100, 〈X0〉 = 0.8, k/h = 0.001, and Pex = 0 (SFD). Deviations from unity reflect the

strength of the associated NN spatial correlations.

reaction kinetics would simply apply a MF approximation 〈AnAn+1〉 ≈ 〈An〉 〈An+1〉. A simple

hybrid approach might combine this MF treatment of reaction kinetics with a GH treatment

of diffusion fluxes. A more refined approach would involve analysis of the evolution Eqs.

(3.5) for 〈AnAn+1〉. This, in turn, requires analysis of the associated pair diffusion terms

which involve quantities like 〈AnAn+1En+2〉, 〈AnEn+1An+2〉 and 〈EnAn+1An+2〉. The same

argument as used above for pair probabilities and, as quantified in (3.8), suggests that these

quantities will be much closer to each other than their MF estimates. Not only is this correct,

but more sophisticated factorization approximations also fail to capture the key differences in

these quantities. The reason for failure of such higher-order approximations is briefly discussed

in Section 3.9. Another relevant observation is that unlike the conventional diffusion flux

terms appearing in the evolution equation for 〈An〉, one cannot readily adapt a hydrodynamic

transport theory to reliably treat the unconventional pair diffusion flux terms appearing in the

evolution equation for 〈AnAn+1〉. We will find that various treatments of the reaction kinetics

of the above type produce qualitatively reasonable, but not quantitatively predictive results.

Thus, we are motivated find an alternative strategy to assess 〈AnAn+1〉.

In fact, we resort to direct estimation of correlations associated with 〈AnAn+1〉 allowing

treatment of reaction kinetics without analysis of the additional evolution equations for this

quantity. To motivate our treatment, first we show KMC simulation results in Fig 3.3 for SFD
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with L = 100, 〈X0〉 = 0.8 and k/h = 0.001 for fn = 〈AnAn+1〉 / (〈An〉 〈An+1〉), and also for

gn = 〈AnBn+1〉 / (〈An〉 〈Bn+1〉), versus n, where deviations from unity reflect the strength of

the spatial correlations. It is clear that values of fn > 1 reflect clustering of A’s which becomes

particularly strong for increasing n. We emphasize that this clustering feature will significantly

impact selectivity in reaction kinetics. In contrast, gn < 1 values reflect anti-clustering which

is rather weak for intermediate n and becomes negligible for both large and small n [34].

The origin of the strong clustering of the A’s deeper in the pore is somewhat subtle, so

further discussion of this feature is appropriate (as well as of the weaker correlations between

A’s and B’s). The rare event where A penetrates deep into the pore without reaction might

be associated with density fluctuations near the pore openings, lower densities facilitating such

transport. Clearly, if such a fluctuation facilitates transport of one A deep into the pore, it also

facilitates transport of nearby pairs or larger groups of A. This feature explains the observed

clustering of A’s. However, this clustering is even more subtle in the sense the probability for

a site n to be populated by A is enhanced not just by knowledge that site n + 1 is populated

by A (and more so if both n+ 1 and n+ 2 are populated by A), but it is also enhanced if it is

known that site n+2 is populated by A and n+1 by B. For further discussion, see Section 3.9.

With regard to A − B correlations, most A deep in the pore will be isolated from each other

and surrounded by a significant population of B’s. There is no mechanism to induce significant

positional correlations between these A and B species.

The above observations suggest the possibility of estimation of 〈AnAn+1〉 in the left half

of the pore by using the exact relation 〈An〉 = 〈AnAn+1〉 + 〈AnBn+1〉 + 〈AnEn+1〉, and then

neglecting correlations in 〈AnBn+1〉, and also using (3.10a) or (3.11a) or alternatively eGH

expressions for 〈AnEn+1〉. Specifically, we set:

〈AnAn+1〉 ≈ 〈An〉 − 〈An〉 〈Bn+1〉 − 〈AnEn+1〉eGH . (3.12)

Then 〈AnAn+1〉 in the right half of the pore is determined from the above results us-

ing symmetry about the pore center. In Table 3.2, we show corresponding results for fn =

〈AnAn+1〉 / (〈An〉 〈An+1〉) for high concentration 〈X0〉 = 0.8 obtained from various eGH for-

mulations. For SFD (Pex = 0), all eGH formulations capture the strong increase in fn with
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increasing n, as determined precisely from KMC simulation. The fully asymmetric eGH for-

mulation eGH(f), is most successful in capturing behavior up to n = 10. All formulations

eventually increase more quickly than precise behavior, actually with eGH(f) deviating most.

However, we find that it is primarily behavior for n ≤ 10 which controls the reactive steady

state, i.e., behavior deeper in the pore is not so relevant. From this perspective, eGH(f) is the

most successful formulation as anticipated for SFD with high 〈X0〉. For Pex = 0.25, correlations

are far weaker, so any formulation gives reasonable results. As anticipated, eGH(a) performs

slightly better than eGH(f). In Section 3.4, we shall see that (3.12) allows successful analytic

treatment of behavior in the reactive steady state.

Finally, we have also analyzed behavior of fn for 〈X0〉 = 0.2 (not shown). For SFD (Pex = 0),

again fn increases smoothly now from f1 = 1.003 for n = 1 to f15 = 1.421 for n = 15 as de-

termined from KMC simulation (a much slower increase than for 〈X0〉 = 0.8). In this case the

eGH(a) predictions varying from f0 = 1.012 to f15 = 1.498 match better precise KMC results

than eGH(f) predictions varying from f0 = 1.024 to f15 = 1.948. For Pex = 0.25, spatial

correlations are very weak and again eGH(a) is very effective.

3.4 Results for Concentration-Dependent Selectivity: A→ Bc or Bt

First, we present results for the steady-state concentration profiles for single-file diffusion

(SFD with Pex = 0) where spatial correlations are strongest, and effective analytic treatment is

most difficult. Precise KMC simulation results in Figure 3.4 for L = 100 and 〈X0〉 = 0.8 show

that 〈An〉 ≈ 0 in the center of the pore, and that the 〈Bc
n〉 and

〈
Bt
n

〉
profiles exhibit plateaus

with nontrivial values subject to the constraint 〈Bc
n〉+

〈
Bt
n

〉
≈ 〈X0〉. This plateau behavior is

somewhat less clear for L = 100 with significantly lower 〈X0〉 = 0.2, but would become quite

clear for this 〈X0〉 in longer pores.

Since Bt is is preferentially created in regions with higher A concentration, one might have

expected a bimodal profile for
〈
Bt
n

〉
(rather than a plateau) with peaks near the pore open-

ings. Correspondingly, the profile for 〈Bc
n〉 would then be peaked in the pore center (since

〈Bc
n〉 +

〈
Bt
n

〉
≈ 〈X0〉). While such transient behavior is found if starting with an initially

empty pore (see Section 3.11), it cannot be sustained in the steady state. The reason is
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Table 3.2: fn values for 〈X0〉 = 0.8 for three different eGH formulations: fully asymmetric choice (f) expected

to be most appropriate for SFD and high 〈X0〉, asymmetric choice (a), and simple symmetric choice (s). Results

are shown for SFD (Pex = 0) and Pex = 0.25.

Pex = 0.00 Pex = 0.00 Pex = 0.00 Pex = 0.00 Pex = 0.25 Pex = 0.25 Pex = 0.25 Pex = 0.25

fn values eGH(s) eGH(a) eGH(f) KMC eGH(s) eGH(a) eGH(f) KMC

n = 1 1.00693 1.00717 1.01385 1.01081 0.99563 0.99551 0.99125 1.00029

n = 2 1.01870 1.02004 1.03741 1.04782 0.99568 0.99556 0.99135 1.00037

n = 3 1.03618 1.04011 1.07235 1.12252 0.99551 0.99538 0.99101 1.00031

n = 4 1.06268 1.07160 1.12535 1.24534 0.99533 0.99520 0.99065 1.00015

n = 5 1.10838 1.12740 1.21676 1.42971 0.99519 0.99506 0.99039 1.00029

n = 6 1.18651 1.22442 1.37301 1.69431 0.99492 0.99478 0.98984 1.00010

n = 7 1.32613 1.40026 1.65225 2.06707 0.99469 0.99454 0.98939 0.99976

n = 8 1.57841 1.72113 2.15682 2.59594 0.99439 0.99423 0.98877 1.00000

n = 9 2.02822 2.29550 3.05643 3.34233 0.99414 0.99398 0.98829 0.99964

n = 10 2.84333 3.34063 4.68666 4.39688 0.99382 0.99364 0.98764 0.99930

n = 11 4.36949 5.31141 7.73897 5.89006 0.99350 0.99332 0.98700 0.99925

n = 12 7.18499 8.95460 13.36998 8.04207 0.99308 0.99288 0.98616 0.99892

n = 13 12.46148 15.80610 23.92296 11.10158 0.99275 0.99254 0.98549 0.99885

n = 14 22.13462 28.34838 43.26924 15.62479 0.99233 0.99212 0.98467 0.99938

n = 15 40.48814 52.25351 79.97628 22.42215 0.99204 0.99181 0.98407 0.99845

simply that in the pore interior with no significant A population, concentration gradients in

Bc and Bt are eventually eliminated by small but nonzero diffusion fluxes, JC (n > n+ 1) ≈

−hFtr (n, n+ 1)∇n 〈Cn+1〉 with C = Bt and Bc.

We also show the predictions of the standard MF approximation and of our eGH formu-

lations [using the GH approximation for diffusion fluxes, and (3.10a) or (3.11a) for 〈AnAn+1〉].

The standard MF approximation fails completely to capture concentration profile behavior.

In contrast, the eGH formulations are particularly effective in capturing behavior even includ-

ing the heights of the plateaus for individual Bc and Bt concentrations. More specifically,

the eGH(f) formulation works especially well for higher 〈X0〉 and the eGH(a) formulation for

lower 〈X0〉, as anticipated previously. To highlight the success of the eGH formulations, we

emphasize that prediction of the values of the individual plateau concentrations is particularly

delicate. We have explored various other “hybrid” treatments which use the GH approximation

for diffusion fluxes, but either a MF treatment of reaction kinetics, or using other factorization

approximations to treat pair diffusion fluxes. These produce qualitatively reasonable forms for
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Figure 3.4: Steady-state concentration profiles for SFD with L = 100 and k/h = 0.001: (a) 〈X0〉 = 0.2; (b)

〈X0〉 = 0.8. Comparison of precise behavior obtained from KMC simulation (solid curves) with poor MF

predictions (dotted curves) and two successful eGH formulations (dashed curves).

concentration profiles, but do not have the quantitative predictivity of our eGH formulations.

See Section 3.10.

Next, we more briefly describe behavior when the SFD constraint is relaxed by selecting

Pex = 0.25. Here enhanced diffusion means greater reactant penetration into the pore, so longer

pore lengths than L = 100 are needed to display a clear plateau in the pore center. Results for

concentrations when L = 100 shown in Figure 3.5 reveal that MF predictions (dotted curves)

are significantly closer to precise behavior determined from KMC simulations (solid curves)

than for SFD, although still not quantitatively precise. In contrast, predictions of our eGH

formulations are effectively indistinguishable on these plots from the precise behavior.
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Figure 3.5: Steady-state concentration profiles with exchange, Pex = 0.25, for L = 100 and k/h = 0.001: (a)

〈X0〉 = 0.2; (b)〈X0〉 = 0.8. Comparison of precise behavior obtained from KMC simulation (solid curves) with

poor MF predictions (dotted curves). eGH formulations are effectively indistinguishable from precise behavior.

Perhaps more significant than prediction of concentration profiles is the assessment of se-

lectivity, i.e., determination of the relative yields of products Bc versus Bt. KMC simulation

allows precise determination of the entire conversion rate profiles, Rn (Bc) and Rn
(
Bt
)
, versus

n. See Figure 3.6 for results for SFD with L = 100, k/h = 0.001, and 〈X0〉 = 0.8. Also shown

are the results from a MF treatment, and from our analytic eGH(a) and eGH(f) treatments.

The total conversion rates, Rtot

(
Bc,t

)
=
∑

nRn
(
Bc,t

)
, determine the selectivity through the

ratio < = Rtot

(
Bt
)
/Rtot (Bc). Analysis of behavior in Figure 3.6 for SFD reveals that for

〈X0〉 = 0.8, one has < = 1.56 from precise KMC analysis versus our best analytic eGH(f)

estimate of < = 1.40, and the poor MF estimate of < = 0.64. For SFD with 〈X0〉 = 0.2, one

has < = 0.171 from KMC analysis versus our best eGH(a) estimate of < = 0.181, and the

poorer MF estimate of < = 0.135. A more comprehensive comparison of KMC results with

various analytic treatments are provided in Table 3.3. As might be anticipated, eGH formula-

tions reasonably recover precise behavior, but the MF treatment is inadequate particularly for

higher 〈X0〉 . Results are also given in Table 3.3 including exchange (Pex = 0.25), where even

the MF estimate is reasonable.

It is appropriate to provide further insight into the influence on selectivity of restricted

diffusion (and particularly SFD), which impacts reactant concentration profiles, and of spatial

correlations in the form of reactant clustering which impacts reaction kinetics. To this end, it is
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Figure 3.6: Steady-state concentration profiles with exchange, Pex = 0.25, for L = 100 and k/h = 0.001: (a)

〈X0〉 = 0.2; (b)〈X0〉 = 0.8. Comparison of precise behavior obtained from KMC simulation (solid curves) with

poor MF predictions (dotted curves). eGH formulations are effectively indistinguishable from precise behavior.

Table 3.3: fn values for 〈X0〉 = 0.8 for three different eGH formulations: fully asymmetric choice (f) expected

to be most appropriate for SFD and high 〈X0〉, asymmetric choice (a), and simple symmetric choice (s). Results

are shown for SFD (Pex = 0) and Pex = 0.25.

Analysis of < 〈X0〉 = 0.2, Pex = 0.00 〈X0〉 = 0.8, Pex = 0.00 〈X0〉 = 0.2, Pex = 0.25 〈X0〉 = 0.8, Pex = 0.25

n = 1 1.00693 1.00717 1.01385 1.01081

n = 2 1.01870 1.02004 1.03741 1.04782

n = 3 1.03618 1.04011 1.07235 1.12252

n = 4 1.06268 1.07160 1.12535 1.24534

n = 5 1.10838 1.12740 1.21676 1.42971

instructive to examine the value of < determined by other simple treatments. In an alternative

spatially coarse-grained description, one regards position in the pore as described by a contin-

uous variable x = na and the reactant concentration profile as a function of this continuous

variable 〈A (x)〉 = 〈An〉. In a MF treatment of reaction kinetics [factorizing expressions (3.2)

for rates and coarse-graining], one has that

Rtot

(
Bt
)
≈ k

∫
dx 〈A (x)〉2 , and Rtot

(
Bt
)
≈ k

∫
dx 〈A (x)〉 [1− 〈A (x)〉] . (3.13)

One can further show that for a MF treatment of diffusion, concentration profiles have

exponential variation near the ends of a long pore so that 〈A (x)〉 ≈ 〈X0〉 exp [− (x/Lp)] near

the left end of the pore where Lp denotes a penetration depth [7–9]. Then evaluation of the
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integrals in (3.13) yields

< (MF) ≈ 〈X0〉 / (2− 〈X0〉) , (3.14)

so the maximum < (MF) ≈ 1 occurs for 〈X0〉 = 1. For SFD with high 〈X0〉 = 0.8, this

yields < (MF) = 2/3 ≈ 0.67, far below the value above precise value of 1.56. (For SFD with

〈X0〉 = 0.2, one finds < (MF) = 1/9 ≈ 0.11 also well below the precise value of 0.17.)

Next, we consider a hybrid treatment retaining MF reaction kinetics, but utilizing a GH

formulation to account for the effect of SFD on the reactant concentration profile. If the GH

tracer diffusion coefficient decays like Ftr ∼ x−p into the pore, then it has been shown that

〈A (x)〉 ≈ 〈X0〉 exp [− (x/Lp)
q] where q = (2 + p) /2 where we discuss the appropriate values

of p > 0 and q > 1 below [2, 10]. Note that MF behavior corresponds to p = 0 and q = 1.

Evaluation of integrals in (3.13) now yields

< (hybrid MF) = 〈X0〉 /(21/q − 〈X0〉). (3.15)

For SFD with high 〈X0〉 = 0.8, behavior is well described by the choice p = 2 and thus

q = 2 [2, 10], which yields < (hybrid MF) ≈ 1.30 much closer to the precise value of 1.56 than

the pure MF estimate for q = 1. However, a more appropriate hybrid MF treatment (see

Section 3.10), based on discrete evolution equations using a GH formulation for diffusion fluxes

and MF treatment of reaction kinetics, obtains < ≈ 1.19 not so close to the precise value. [For

SFD with 〈X0〉 = 0.2, one finds an effective p ≈ 1 corresponding to q ≈ 3/2 [2,10]. This yields

< (hybrid MF) ≈ 0.14 improving over the simple MF estimate, but still below the precise value

of 0.17.]

We conclude that deviations from a MF exponential reactant concentration profile are

important in determining selectivity, but also clustering of reactants has a significant impact,

particularly in producing higher values for SFD with high 〈X0〉.

3.5 Conclusions

There is extensive interest within the statistical physics community in cooperative reaction-

diffusion phenomena where traditional MF treatments of chemical kinetics and transport are
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inadequate [1, 2]. Catalytic reactions in nanoporous materials with restrictive diffusive trans-

port provide such an example where spatial correlations of kinetic origin invalidate MF as-

sumptions. The additional feature of cooperative reaction kinetics, such as concentration- or

environment-dependent selectivity considered here, constitutes an additional complication in

the understanding and prediction of behavior. While KMC simulation of such reaction-diffusion

models can reliably characterize such behavior, we show that for the system of interest here,

an analytic formulation can be developed which provides deeper insight into the nature and

role of subtle non-equilibrium spatial correlations in determining reaction behavior.
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3.7 Appendix A: KMC Simulation Algorithms

The basic principle of KMC simulation is to implement various processes (adsorption, des-

orption, diffusion, reaction) in the stochastic reaction-diffusion model with probabilities pro-

portional to their physical rates.We first describe a rejection (rej) algorithm which is simpler to

implement, but includes a fraction of failed attempts thus its reducing efficiency. One assigns

a total rate rt = k+ 6h for all types of processes at each cell in the pore (reaction plus hopping

left or right of each of three types of species). The total rate, Rt (rej), for the system is rt times

the number of sites (taken as L+ 2 since we must consider sites just outside the pore to treat

adsorption). At each KMC step, simulation randomly picks sites and processes and attempts

to implement (reaction is only implemented with probability k/rt if the selected cell has an A;

hopping right of Bc is only implemented with probability h/rt if the selected cell has a Bc and
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the cell to the right is empty; etc.). The simulation is run for ∼ 1011 KMC steps to be certain

the steady state is reached, and then simulation data are collected for an additional ∼ 2× 1011

KMC steps.

A Bortz-type rejection-free (rf) algorithm maintains lists of the sets of particles which can

be involved in each type of process (all nA A’s in the pore can react; the set of nAr A’s with

empty right NN cells which can hop right; etc.) The list must be updated after each simulation

step, which requires extensive bookkeeping. Then the total rate of processes for the system is

Rt (rf) = nAk+nArh+ . . .. Now one picks a type of process with probability proportional to its

rate, i.e., nAk/Rt (rf) for reaction of A, picks a particle from the relevant list and implements

the process for that particle. (For reaction, one would also have to select the product based on

the local environment.) The simulation is run for ∼ 109 KMC steps to equilibrate, and then

data are collected for an additional ∼ 1010 KMC steps.

For our primarily focus on steady-state behavior, tracking of physical time in the simula-

tion is not relevant. However, for studies of transient behavior, see D, time is incremented by

∆t = −ln (w) /Rt at each Monte Carlo step where w is a random number uniformly distributed

on [0, 1].

3.8 Appendix B: MF Analysis of Tracer Diffusivity

It is possible to somewhat unconventionally assess tracer diffusivity, either at the MF-level or

for higher-level approximations, from behavior of the concentration profiles in the steady state

of our reaction-diffusion model [2,9]. This strategy exploits the feature noted in Section 3.2 that

the steady state corresponds to a counter diffusion mode where diffusion fluxes are proportional

to the tracer diffusion coefficient in a hydrodynamic formulation. Here it suffices to take Eqs.

(3.3) and (3.4) for C = A and apply MF factorization. After substantial simplification, this

equation reduces to

0 = d/dt 〈An〉 = −k 〈An〉+ (〈E0〉+ Pex 〈X0〉)h∇2 〈An〉 , (3.16)

where ∇2 〈An〉 = 〈An+1〉−2 〈An〉+〈An−1〉 represents a discrete Laplacian. Since the coefficient

in front of ∇2 〈An〉 corresponds to Dtr, we obtain Ftr (MF) = 〈E0〉+ Pex 〈X0〉.
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Figure 3.7: Comparison of 〈AnAn+1En+2〉, 〈AnEn+1An+2〉, and 〈EnAn+1An+2〉 versus n determined precisely

from KMC simulation and MF approximations near the left end of a pore for L = 100, 〈X0〉 = 0.8, k/h = 0.001,

and Pex = 0 (SFD).

3.9 Appendix C: Analysis of Multisite Configurational Probabilities

The form of the “pair diffusion terms” in (3.5) motivates consideration and comparison

of 〈AnAn+1En+2〉 , 〈AnEn+1An+2〉, and 〈EnAn+1An+2〉. The same argument as used for

〈AnEn+1〉 and 〈EnAn+1〉 in Section 3.3 suggests that these triplet probabilities will be much

closer than their MF values for SFD especially with high 〈X0〉. This feature, which is confirmed

in Figure 3.7 for SFD with 〈X0〉 = 0.8 and k/h = 0.001, complicates the requirement of accu-

rately describing differences in these quantities which constitute pair diffusion terms. Setting

〈AnAn+1En+2〉 − 〈AnEn+1An+2〉 ≈ 〈An〉 (〈An+1En+2〉 − 〈En+1〉 〈An+2〉) would enable use of

the GH approximation for the difference of pair probabilities. However, this crude factoriza-

tion, denoted by (c) below, is not reliable. Also, as shown in the inset to Fig 3.7, a standard

pair approximation, denoted (pa) below, reliably describes 〈AnAn+1En+2〉 and 〈EnAn+1An+2〉

in terms of pair quantities, but not 〈AnEn+1An+2〉. Thus, the pair approximation will fail to

describe key differences in these quantities. The failure of the pair approximation for the quan-

tity 〈AnEn+1An+2〉, and the failure of higher-order approximations for analogous probabilities

involving four or more cells, is further elucidated by the conditional concentration analysis

below.
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Figure 3.8: Comparison of various conditional reactant concentrations versus n determined precisely from KMC

simulation for L = 100, 〈X0〉 = 0.8, k/h = 0.001, and Pex = 0 (SFD).

Spatial correlations in the reactant distribution can be further elucidated by considering con-

ditional reactant probabilities or concentrations 〈An|Cn+1Dn+2 . . .〉 = 〈AnCn+1Dn+2 . . .〉 / 〈Cn+1Dn+2 . . .〉

describing the probability that site n is occupied by A given that site n + 1 is occupied by

C, site n + 2 is occupied by D, etc. In the absence of spatial correlations, one has that

〈An|Cn+1Dn+2 . . .〉 = 〈An〉. Results are shown in Figure 3.8 for SFD with 〈X0〉 = 0.8 and

k/h = 0.001 for a substantial set of conditional reactant concentrations with one or two condi-

tioning sites. These fall into distinct groups with values either above or below 〈An〉.

All of 〈An|An+1〉, 〈An|An+1An+2〉, 〈An|An+1En+2〉, 〈An|En+1An+2〉, 〈An|An+1Bn+2〉 and

〈An|Bn+1An+2〉 exceed 〈An〉, i.e., conditional reactant concentrations given one or more nearby

A exceed 〈An〉. We also expect this feature to apply for conditional concentrations with more

than two specified cells. This feature indicates a subtle type of clustering corresponding to

enhanced probabilities (relative to MF values) for configurations with an A on site n and one

or more other A’s on sites n+ 1 and n+ 2. The explanation of this behavior extends that used

to rationalize the inequality 〈An|An+1〉 > 〈An〉 in Section 3.3. A density fluctuation near the

pore opening reducing the density could facilitate diffusion of A and of clusters of A deeper

into the pore. Then it follows that 〈An|An+1〉, 〈An|An+1Bn+2〉, 〈An|En+1An+2〉, etc., exceed

〈An〉. It is perhaps less clear why 〈An|Bn+1An+2〉 > 〈An〉, but consider a triple of A’s diffusing

deep into the pore (aided by a density fluctuation) where the central A reacts to convert to B.
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Figure 3.9: Comparison of various hybrid approximations, including MF(H) and a crude factorization of pair

diffusion terms (c) and a pair factorization (pa) with precise behavior (KMC) and our eGH(f) treatment for

L = 100, 〈X0〉 = 0.8, k/h = 0.001, and Pex = 0 (SFD).

This scenario can lead to formation of AnBn+1An+2 configurations.

Next, we note that both 〈An|En+1〉 and 〈An|En+1En+2〉 are below 〈An〉. These results are

equivalent to the inequalities 〈AnEn+1〉 < 〈An〉 〈En+1〉 and 〈AnEn+1En+2〉 < 〈An〉 〈En+1En+2〉 =

〈An〉 〈En+1〉 〈En+2〉 (the latter equality following since empty cells are randomly distributed).

These inequalities have been explained at the beginning of Section 3.3, where we note that

values of 〈AnEn+1〉 and 〈EnAn+1〉 are close, as are those of 〈AnEn+1En+2〉, 〈EnAn+1En+2〉,

and 〈EnEn+1An+2〉 (due to the facile diffusion of A between the indicated pair or triple of

sites). Our resulting understanding of the contrasting behavior of 〈An|En+1〉 < 〈An〉 and

of 〈An|En+1An+2〉 > 〈An〉 explains the failure of the standard pair approximation to treat

〈AnEn+1An+2〉 and thus to treat pair diffusion fluxes in the evolution equation for 〈AnAn+1〉,

see Section 3.3.

Finally, we note that all of 〈An|Bn+1〉, 〈An|Bn+1Bn+2〉, 〈An|Bn+1En+2〉, and 〈An|En+1Bn+2〉

are also below 〈An〉 , but also that these quantities approach 〈An〉 for large n where the asso-

ciated correlations are diminished deeper in the pore.
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3.10 Appendix D: Hybrid Approximations

We have seen that a standard MF approximation applied to treat both diffusion fluxes and

reaction kinetics fails dramatically to describe reactant penetration into the pore for small Pex

and small k [10]. However, a GH formulation of diffusion fluxes yields reliable description of the

reactant concentration profile. Thus, it remains only to treat the reaction kinetics in order to

describe behavior of the A→ Bc or Bt conversion reaction. Here we first consider the simplest

hybrid formulation, MF(H), using a GH treatment of diffusion fluxes and a MF treatment of

of reaction kinetics (i.e. ignoring spatial correlations in the reactant distribution). MF(H)

results for steady-state concentration profiles shown in Figure 3.9 for SDF with 〈X0〉 = 0.8

qualitatively reproduce KMC simulation behavior. However, predictions for plateau concentra-

tions of Bc and Bt differ significantly from the precise values, in contrast our eGH formulation

accounting for reactant clustering. As noted in Table 3.3, one obtains < = 1.19 for MF(H)

versus < = 1.40 for eGH(f) versus the precise value of < = 1.56 from KMC simulation.

We have implemented other hybrid formulations which retain the GH treatment of diffusion

flux in the equations for single-cell concentrations, but apply various factorization approxima-

tions to the pair diffusion fluxes in the evolution equations for 〈AnAn+1〉. We have applied a

crude factorization (c), e.g., 〈AnAn+1En+2〉−〈AnEn+1An+2〉 ≈ 〈An〉 (〈An+1En+2〉 − 〈En+1〉 〈An+2〉),

and then used the GH treatment of the second factor. Figure 3.9 also reveals that for SFD with

〈X0〉 = 0.8, predictions of this approach (c) while qualitatively reasonable actually give a poorer

estimate of plateau concentrations even than the hybrid MF approach. As another alternative

denoted (pa), we have implemented a standard pair factorization for the pair diffusion terms

and then used the eGH approximation to describe 〈AnEn+1〉 and 〈En+1An〉 terms. Recall that

we know from Section 3.8 that the pair approximation is inadequate for 〈AnEn+1An+2〉. This

approach predicts concentration profiles very similar to the MF(H) prediction for SFD with

〈X0〉 = 0.8, and thus again deviating significantly from precise results in contrast to our eGH

approach. See Figure 3.9.
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Figure 3.10: KMC simulation results for the evolution of concentration profiles starting from an empty pore for

L = 100, 〈X0〉 = 0.8, and k/h = 0.001. Times are indicated (in units where h = 1) and increase from panels (a)

to (e).
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3.11 Appendix E: Transient Behavior With an Initially Empty Pore

We have performed simulations to characterize evolution of concentration profiles starting

with an initially empty pore for L = 100, 〈X0〉 = 0.8, and k/h = 0.001. See Figure 3.10.

The key features are as follows. The quasi-steady-state reactant profile develops relatively

quickly on the times scale of pore filling, where the filling process takes a time tf ∼ 2000

(in units of 1/h) to achieve a roughly constant total concentration of 〈Xn〉 ≈ 0.8. This time

scale follows from Einstein’s relation (L/2)2 ∼ h tf since particles must diffuse a length ∼ L/2

to fill the pore. At the end of this filling stage, Bt has a bimodal profile peaked towards

the pore openings, and the Bc profile is peaked in the pore center. The second stage of

evolution to achieve the true steady state, where both Bc and Bt profiles exhibit plateaus

in the pore center, takes much longer around tss ∼ 105. This much slower time scale is

understood since such evolution is controlled by the magnitude of the tracer diffusion coefficient

Ftr (n, n+ 1) ≈ (1− 〈X0〉) (〈X0〉)−1 /L ≈ 0.0025 in the pore center [35]. Diffusion over a length

scale of∼ 20 cells would only occur on a time scale of∼ tss given such a low diffusion coefficient.
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Abstract

We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-

counter-diffusion mode with the reactant (product) concentration strongly decaying (growing)

into the pore, but also with oscillations in the total concentration. These oscillations reflect

the response of the fluid to the transition from an extended to a confined environment near

the pore opening. We focus on the regime of strongly inhibited transport in narrow pores

corresponding to single-file-diffusion. Here, limited penetration of the reactant into the pores

and the associated low reaction yield is impacted by strong spatial correlations induced by

both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermo-

dynamic correlations). We develop a generalized hydrodynamic formulation to effectively de-

scribe inhibited transport accounting for the effect of these correlations, and incorporate this

*Author to whom correspondence should be addressed. Electronic mail: evans@ameslab.gov

mailto:evans@ameslab.gov
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description of transport into appropriate reaction-diffusion equations. These equations accu-

rately describe both shorter-range concentration oscillations near the pore opening and the

longer-range mesoscale variation of concentration profiles in the pore (and thus also describe

reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic

Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model.

This work elucidates unconventional chemical kinetics in interacting confined systems. Pub-

lished by AIP Publishing. [http://dx.doi.org/10.1063/1.4966543]

4.1 Introduction

Traditional mean-field (MF) rate and reaction-diffusion equations of chemical kinetics ap-

ply in weakly interacting systems with locally well-stirred and randomized distributions of

reactants and products. These formulations do not account for spatial correlations or the

impact of such correlations on particle-number fluctuations [1,2]. In fact, intermolecular inter-

actions generally induce non-trivial short-range ordering in fluids. However, extensive analysis

of equilibrium systems has provided substantial insight into the associated thermodynamic pair

correlations which aids assessment of their effect on reaction kinetics. Coincidentally, this type

of short-range ordering is also reflected in the presence of concentration oscillations for fluids

near walls and in confined environments [3]. There is less appreciation of the feature that for

systems with limited mobility, such as occurs in crowded reaction environments, distinct and

sometimes strong non-equilibrium correlations can be induced by the presence of reaction [1,2].

Examples include catalytic surface reactions under high-pressure conditions [4,5], and catalytic

conversion in nanoporous materials with inhibited transport due to narrow pores [2, 6]. The

most extreme case for the latter where such non-equilibrium correlations should be strongest is

where narrow pores impose a single-file diffusion (SFD) constraint, i.e., no passing of reactant

and product molecules [2,6]. The lack of a general theoretical framework to precisely determine

non- equilibrium correlations and their effect on reaction kinetics poses a major challenge for

reliable beyond-MF assessment of the reaction yield.

http://dx.doi.org/10.1063/1.4966543
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In this contribution, we develop stochastic models for first-order catalytic conversion reac-

tions A → B, where reactants A in a well-stirred external fluid diffuse into a decoupled array

of narrow linear pores in a nanoporous material [2, 7–13]. Conversion of A to product B can

occur anywhere inside the pores, but significant yield relies on efficient removal of product

from the pores to facilitate further entry of the reactant. We focus on the SFD regime where

product removal is most inhibited. However, we emphasize that our model and theoretical

formulation, as well as our basic observations, extend to the regime where passing within the

pore is possible [2].

Investigation of such reaction systems from the early 1990s was initially motivated by ex-

tensive studies of catalysis in zeolites, noting that a large subset of these materials do indeed

consist of very narrow (∼ 1 nm) decoupled linear pores [6]. Furthermore, experimental analysis

for selected zeolite systems revealed clear indication of the presence of SFD and its influence on

the reaction kinetics [8,14,15]. Subsequent studies have exploited new experimental techniques

to characterize SFD in these systems [16]. Additional interest in reaction systems subject to

SFD was motivated by more recent studies of liquid-phase reactions utilizing catalytically func-

tionalized mesoporous silica nanoparticles (MSN) [2,17,18]. In general MSN particles can have

coupling between pores. However, our particular interest relates to studies for MSN synthesized

with hexagonal arrays of decoupled parallel linear pores with length ∼ 100 nm which traverse

the entire nanoparticle, and where pores are not connected and are narrow [17]. We should

further emphasize that this synthesis procedure readily produces pores with nominal diameters

of ∼ 2 nm, and adsorption of species on the pore walls under reaction conditions can lead to

even narrower effective pore diameters. Significantly, such MSN systems have been shown to

induce SFD [18].

Coarse-grained spatially discrete stochastic modeling (described in more detail below) of

catalytic conversion subject to SFD has typically been applied in order to efficiently treat the

entire reaction-diffusion process [2, 7–13]. Behavior of such models was precisely character-

ized by kinetic Monte Carlo (KMC) simulation. For previous simpler models, which did not

incorporate non-trivial intermolecular interactions, it was recognized that a steady-state re-

action occurs with reactant (product) concentration strongly decreasing (increasing) into the
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pore [7–13]. Furthermore, the total concentration was constant for these simple models, and

thus the reaction-diffusion system was characterized by exactly counter- balancing gradients.

This corresponds to a classic counter-diffusion mode [2, 13,19].

With regard to analytic approaches to complement and provide further insight beyond

KMC analysis, the limitations of MF-type treatments for even these simple systems have been

recognized. In particular, such treatments were found to greatly overestimate diffusion fluxes

in the presence of inhibited diffusion [2,12,13]. Such treatments do account for the non-trivial

collective many-particle aspects of inhibited transport and its interplay with reaction. On the

other hand, the so-called hydrodynamic treatments also fail in that they underestimate dif-

fusion fluxes near pore openings [12]. Such treatments apply strictly only in the regime of

small concentration gradients. As an aside, here the term “hydrodynamic” is used in a broad

context of interacting particle systems [20,21], and in particular diffusive systems, rather than

just for convective fluid flow. Recent work on analytic treatments has shown the effectiveness

of generalized hydrodynamic (GH) treatments of transport in the presence of strong mesoscale

concentration gradients [13]. This GH terminology is borrowed from early studies of convective

fluid dynamics going beyond hydrodynamic treatments to describe transport on shorter time-

and length-scales [22]. Again our use is in a broader sense considering diffusive interacting

particle systems.

Our goal here is to extend previous simple reaction models to include steric intermolecular

interactions which are present in real systems. These interactions induce concentration oscil-

lations in an external fluid approaching the catalytic nanoparticle, and would induce radial

concentration oscillations in wider pores (although this feature is not included in or relevant

for our modeling of narrow pores). Perhaps unexpectedly, we show that these interactions do

induce oscillations along the pore axes near the pore openings, a key feature which must be

incorporated in our modeling. This feature implies that it is necessary to extend the standard

concept of counter-diffusion modes (applying just for constant total concentration), and also to

adapt the previous GH formulation to this more complex scenario. In Section 4.2, we present

our model for catalytic conversion in nanopores with SFD which incorporates intermolecular

interactions. Of particular significance is development of a strategy enabling explicit simula-
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tion of processes just inside the pore, avoiding computationally expensive simulation of the

surrounding well-stirred equilibrated fluid. Section 4.2 also presents basic KMC simulation

results for concentration profiles inside the pore. In Section 4.3, we develop our analytic GH

formulation, and demonstrate that it can accurately capture behavior seen in KMC simula-

tion analysis. Thus, the GH formulations provide insight into the failure of simple MF-type

formulations. Conclusions are provided in Section 4.4.

4.2 Model Specification and KMC Simulation Analysis

4.2.1 Specification of the stochastic reaction model

We first provide a detailed description of our model which is illustrated schematically in

Figure 4.1. In the spirit of classic lattice-gas descriptions of liquids [23], each pore is divided into

a linear array of cells labeled n = 1−L whose centers correspond to discrete molecular positions.

For prescription of adsorption and desorption at pore openings, it is actually convenient to

extend this linear array within the pore to a three-dimensional simple-cubic array of cells in

the surrounding fluid. The cell spacing, a ∼ 1 nm, is regarded as being slightly smaller than

molecular dimensions, so that nearest-neighbor (NN) cells cannot be occupied. For convenience,

we often set a = 1 below. This steric exclusion constraint suffices to induce all of the features

(equilibrium spatial correlations, concentration oscillations, etc.) associated with more general

molecular interactions [23]. The key ingredients of our model are as follows:

(i) Reactants A adsorb into the pore from the surrounding external fluid. This process is

described by hopping at rate h from cells just outside the pore to an end cell n = 1 or L,

provided the end cell and its NN cell within the pore are empty.

(ii) Reactants A diffuse within the pore by hopping to NN empty cells at rate h (in either

direction) provided that this creates no NN pairs of species.

(iii) Reactants A convert to products B at rate k at any cell inside the pore.

(iv) Products B diffuse within the pore by the same mechanism as for A. This prescription

automatically imposes SFD, i.e., no passing of A and B in the pore.
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(v) Reactants A and products B desorb from the pore to the surrounding external fluid, a

process which is described by hopping from end sites of the pore at rate h to cells just

outside the pore provided that such cells are empty, and also that all of the five NN cells

of that target cell are also empty.

Figure 4.1: The spatially discrete stochastic model for catalytic conversion in linear nanopores. Reactant (A)

and product (B) cannot occupy adjacent cells which constrains diffusive hops. c denotes catalytic sites. For

desorption, in addition to the target site just outside the pore, multiple additional cells (*) must be empty. A

desorption (not shown) at rate h as well as B desorption is active. The exterior fluid is represented by a 3D

array of cells (appearing as 2D in the schematic).

Thus, local diffusion within the pore in the direction along the pore axis is described by a

single hop rate, h (and a corresponding low-concentration diffusion coefficient of D0 = a2h). A

central component of the analysis in Section 4.3 is to appropriately describe the corresponding

chemical diffusion for finite concentrations in this multi-component system. Diffusion in the

radial direction within pores is not relevant for the model. The exterior fluid is regarded as

being in a well-stirred equilibrated state (corresponding to a lattice-gas with NN exclusion).

We emphasize that this equilibrium assumption means that the associated diffusive or convec-

tive dynamics in the external fluid is not relevant for modeling. (As an aside, we note that one

could regard this equilibrium state as being achieved by rapid effective hopping between neigh-

boring cells subject to NN exclusion.) Another key feature of our model is that the exterior

fluid has a large volume compared with the pores, so the desorbing product is quickly diluted

and does not re-enter the pore. Thus, the external bulk reactant concentration, 〈Ab〉, matches

the total external concentration, 〈Xb〉, and is a fixed constant. Finally, we emphasize that the
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equilibrium state of the external fluid is non-trivial with long-range ordering or crystallinity

developing above a critical concentration 〈Xc〉 ≈ 0.209 [23]. Consequently, we consider only

the regime with short-range order for bulk concentrations 〈Ab〉 = 〈Xb〉 below 〈Xc〉.

Since in this model, reactants and products are “identical” in terms of interactions and dif-

fusional dynamics, evolution of the total concentration corresponds to a pure diffusion problem

for a single-component lattice-gas model with NN exclusion. The current study just focuses

on steady-state behavior, so such evolution is not directly relevant. Nonetheless, we note that

evolution is non-trivial even in the hydrodynamic regime of small concentration gradients given

a non-trivial concentration-dependence of chemical diffusion in this model [24]. In the reactive

steady-state of interest here, the total concentration matches that of an equilibrium model with

NN exclusion. However, even this concentration distribution is non-trivial. The fluid + pore

geometry induces concentration oscillations in the external fluid approaching the interface with

the nanoporous material, and also a particularly complicated three-dimensional variation of the

concentration near the pore opening. Furthermore, we shall see that there are also concentra-

tion oscillations within the pore along its axis within, but restricted to near the pore openings.

All of these complex concentration variations will impact key adsorption and desorption rates

at the pore openings, as discussed below.

4.2.2 Optimal KMC simulation procedure treating explicitly just the pore

Behavior of the above stochastic model can be assessed precisely by KMC simulation. The

default treatment would simultaneously simulate behavior in both the pore interior and the

external fluid. However, this approach is inefficient due to the large external fluid volume. Fur-

thermore, it is unnecessary due to the assumed rapid equilibration of the external fluid. Thus,

we are motivated to develop a strategy to enable explicit simulation of just the pore region

while exactly accounting for the non-trivial coupling to the equilibrated external fluid. To this

end, we first perform tailored simulations of the exterior fluid region to extract key adsorption

and desorption parameters which will constitute the appropriate boundary conditions at pore

openings for these stand-alone simulations of the pore region.
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For adsorption, we first note that the concentration, 〈A0〉, at cells just outside the pore,

given that the end pore cell is empty, corresponds to the concentration of a fluid against the

wall in a semi-infinite fluid system. Thus, we perform a simulation analysis of our lattice-gas

model of the fluid with NN exclusion for a semi-infinite system, where the concentration only

depends on the distance from the wall and exhibits strongly decaying oscillations away from

the wall. Of most relevance, we find that the concentration, 〈A0〉, is enhanced relative to the

bulk concentration, 〈Ab〉. This enhancement is a natural consequence of the lower coordination

of cells against the wall (with 5 neighbors which could possibly be occupied) relative to the

coordination of cells in the bulk of the fluid (with 6 neighbors). See Section 4.7 for further dis-

cussion and results for these concentration oscillations and enhancement at the wall, including

a simple analytic estimate. This enhancement is quantified in Table 4.1 for a range of 〈Ab〉.

Finally, we note that the adsorption rate at empty end cells of the pore (which also have empty

NN cells within the pore) is given by Rads = h 〈A0〉 , and thus is not determined simply by the

bulk concentration 〈Ab〉, but rather by 〈A0〉.

For desorption, the presence of a particle at the end cell within the pore implies that

Table 4.1: Adsorption and desorption parameters as a function of bulk fluid concentration. Note that Q5 values

differ from the simple MF estimate, Q5 ≈ (1− 〈Ab〉)5, or from MF-type refinements accounting for concentration

variations.

Fluid conc. 〈Ab〉 〈A0〉 (adsorption) Q5 (desorption)

0.20 0.211 0.279

0.15 0.158 0.385

0.10 0.106 0.546

0.05 0.052 0.758

the cell just outside the pore is empty. However, desorption requires that in addition all five

cells adjacent to this cell are also empty. (The 2D analogue of these sites is denoted by *

in Figure 4.1.) Based on these observations, we perform additional tailored simulations of a

semi-infinite fluid with one cell against a wall specified empty. These reveal a complicated

three-dimensional variation of the concentration near the cell specified empty (in addition to

the type of concentration oscillations approaching the wall away from this cell described above).

See Section 4.8 for further discussion. These tailored simulations allow determination of the
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conditional probability, Q5, that these five additional cells are empty. Results for Q5 are given

in Table 4.1. Then, it follows that the desorption rate from the filled end cell of the pore equals

Rdes = hQ5.

As an aside, above we have described above the nontrivial and distinct concentration varia-

tions in the external fluid associated with both of our tailored simulations to extract adsorption

and desorption parameters. Neither of these corresponds to the concentration variation in the

external fluid under steady-state reaction conditions (which is just the equilibrium concen-

tration of a lattice-gas with NN exclusion in a geometry corresponding to the fluid + pore

system). However, we describe in Section 4.8 how this latter concentration distribution can be

reconstructed from the two distinct distributions extracted from our tailored simulations.

4.2.3 KMC results for basic steady-state behavior

Below, we present KMC results of basic steady-state behavior. These and subsequent results

are obtained from simulations just of the pore region with the appropriate nontrivial adsorption-

desorption boundary conditions described in Section 4.2.2. However, we have confirmed in

selected cases that results are consistent with large-scale simulations of the entire fluid + pore

system. Figure 4.2 shows typical steady-state concentration profiles in the pore for L = 30 with

k/h = 0.001 and 〈Ab〉 = 0.2. Oscillations are apparent in both the total concentration and the

reactant concentration near the pore openings. Thus, the steady-state does not correspond to

a conventional counter-diffusion mode with constant total concentration and exactly counter-

opposing gradients of A and B [19]. However, we describe it as a quasi-counter diffusion mode

since these conditions still apply away from the pore openings. See the supplementary material

FigureS1 for behavior with larger L where 〈An〉 ≈ 0 in the pore center.

With regard to total concentrations within the pore for L = 30 with k/h = 0.001 and

〈Ab〉 = 0.2 we specifically find that 〈X1〉 = 0.321, 〈X2〉 = 0.254, 〈X3〉 = 0.279, 〈X4〉 = 0.270,

〈X5〉 = 0.273, etc., and a total concentration near the pore center of around 〈Xint〉 = 0.272.

Clearly all of these values are substantially higher than in the bulk of the external fluid at

〈Xb〉 = 0.200, and also higher than the enhanced value of 〈X0〉 ≈ 0.211 just outside the pore

opening. This strong enhancement of concentration within the pore reflects the much lower

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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Figure 4.2: Steady-state concentration profiles for L = 30 with k/h = 0.001 and 〈Ab〉 = 0.2.

coordination of cells within the pore (with 2 neighbors which could possibly be occupied)

relative to the coordination of cells in the bulk of the fluid (with 6 neighbors which could be

occupied). See Section 4.9 for further discussion including a simple analytic estimate of this

strong enhancement. The sudden transition from high-coordinated sites just outside the pore

to lower coordinated sites within produces the concentration oscillations near pore openings as

is evident in Figure 4.1. We show in Section 4.3 that an accurate analytic description of this

complicated behavior is possible within our GH formulation.

4.3 Development of Analytic Theory and Comparison With KMC

4.3.1 Development of analytic GH theory

Deeper insight into reaction model behavior comes from an analytic formulation based on

exact master equations for the stochastic process. Let 〈Cn〉 denote the probability that cell n

in the pore is occupied by species C = A,B, or is empty E. It is also convenient to introduce

the notation X = A or B for either type of species, so that 〈Xn〉 = 〈An〉 + 〈Bn〉 denotes the

total concentration at cell n. Let 〈AnEn+1En+2〉 denote the probability that cell n is occupied

by A and cells n+ 1 and n+ 2 are empty, etc. The NN exclusion constraint and conservation

of probability impose various relations on these multisite probabilities [2]. The lowest-order

evolution equations have the form

d/dt 〈An〉 = −k 〈An〉 − ∇Jn>n+1
A
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and

d/dt 〈Bn〉 = +k 〈An〉 − ∇Jn>n+1
B , for 3 ≤ n ≤ L− 2, (4.1)

where

Jn>n+1
C = h [〈CnEn+1En+2〉 − 〈En−1EnCn+1〉] (4.2)

is the net diffusion flux of C = A or B from cell n to cell n+1. Also ∇Kn = Kn−Kn−1 denotes

a discrete derivative. Separate equations apply for the end cells, n = 1, 2 and L−1, L, reflecting

the non-trivial adsorption-desorption boundary conditions described above. See Section 4.10.

The overall conversion rate of A to B is given by Rtot = k
∑

n 〈An〉 simply reflecting the total

amount of reactant inside the pore. Equation (4.1) is not closed due to the appearance of

triplet probabilities in Jn>n+1
C , but equations can be developed for such multisite probabilities

generating a coupled hierarchy. See again Section 4.10.

Adding (4.1) for 〈An〉 and (4.1) for 〈Bn〉 leads to the pure diffusion equations

d/dt 〈Xn〉 = −∇Jn>n+1
X , for 3 ≤ n ≤ L− 2, (4.3)

for the total concentration 〈Xn〉 = 〈An〉+〈Bn〉 , for diffusion flux Jn>n+1
X = h [〈XnEn+1En+2〉−

〈En−1EnXn+1〉]. Again, separate equations are needed for end cells, n = 1, 2 and L − 1, L.

In the steady-state, the spatial Markov property of 1D lattice models with NN interactions

ensures the pair approximation factorization becomes exact, e.g.,

〈XnEn+1En+2〉 = 〈XnEn+1〉 〈En+1En+2〉 / 〈En+1〉

= 〈Xn〉 (1− 〈Xn〉 − 〈Xn+1〉) / (1− 〈Xn〉) . (4.4)

In obtaining the reduced expression after the last equality, we have also exploited NN exclusion.

Using a similar relation for 〈En−1EnXn+1〉 together with the adsorption-desorption boundary

conditions, one can solve exactly a coupled set of equations for 〈Xn〉 to recover the oscilla-

tions in the total concentration shown in Figure 4.2. See Section 4.11. Such exact solution for

steady-state 〈Xn〉 does not extend to the transient regime of pore filling, or to the individual

reactant and product concentrations.

The fundamental challenge in solving the reaction-diffusion Equation (4.1) is to develop ap-

propriate expressions for the diffusion fluxes, Jn>n+1
C . MF-type factorization approximations
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for probabilities of multi- cell configurations can fail dramatically. The site approximation ne-

glects all spatial correlations and thus fails even to account for NN exclusion. Furthermore,

it greatly overestimates diffusion fluxes for SFD, reactant penetration in the pore, and thus

reactivity. The refined pair approximation accounts for NN correlations and thus excludes NN

occupancy, but it still significantly overestimates diffusion fluxes and related quantities. See

Section 4.10. Substantial additional insights into these shortcomings are provided below. An

alternative hydrodynamic treatment applies for slowly varying concentration gradients, as men-

tioned previously. Thus, it is not geared to describe concentration oscillations occurring on the

nanoscale near pore openings, but it is potentially relevant for description of longer mesoscale

concentration variations deeper in the pore which do correspond to a classic counter-diffusion

mode. The hydrodynamic diffusion fluxes satisfy Jn>n+1
C = −Dtr∇〈Cn+1〉, where Dtr is the

tracer diffusion coefficient for particles X [2,12,19]. However, for SFD, such Dtr are negligible,

specifically decreasing to zero inversely with the pore length [25–28]. Consequently, this for-

mulation greatly underestimates diffusion fluxes, reactant penetration, and thus reactivity for

typical length pores.

Thus, another strategy is required to treat diffusive transport on the mesoscale, also ac-

counting for concentration oscillations. A key ingredient which is motivated by generalized

hydrodynamic (GH) treatments of fluids [22] is to replace hydrodynamic transport coefficients

with ones appropriate for a shorter mesoscale. In our case, these reflect distinct behavior near

the pore openings where fluctuations in adsorption-desorption processes are prominent. Specif-

ically, we replace Dtr with a spatially varying Dtr (n, n+ 1) for each NN pair of cells which

is enhanced near the pore openings (see below) [13]. In addition, to ensure the diffusion flux

vanishes in the steady-state, we define fractional coverages 〈cn〉 = 〈Cn〉 / 〈Xn〉 for C = A or B

(and c = a or b) and adopt a specific GH form

Jn>n+1
C = −1

2
Dtr (n, n+ 1) (〈Xn〉+ 〈Xn+1〉)∇〈cn+1〉 . (4.5)

Note that Equation (4.5) automatically recovers the standard choice for conventional hydrody-

namic counter-diffusion where JC = −Dtr∇〈C〉 in a continuum setting [2, 12,19].



74

Figure 4.3: TCP concentration profiles for L = 30 and 〈Xb〉 = 0.20; (b) GH Dtr (n, n+ 1) versus n for L = 30

for various external fluid concentrations 〈Xb〉; (c) variation Dtr (plateau) ∼ γh/L with increasing L, where

γ = 2.07, 3.23, 5.99, 15.3 for 〈Xb〉 = 0.2, 0.15, 0.1, 0.05, respectively.

Next, we outline the determination of the GH Dtr (n, n+ 1) from analysis of the so-called

tracer counter- permeation (TCP) [19]. Here, a species labeled 1 enters a pore only from the

left, and differently labeled species 2 (which is identical in terms of interactions and diffusional

dynamics) enters only from the right. Otherwise adsorption and desorption are treated as

for the above simulations incorporating non-trivial boundary conditions at the pore opening.

The TCP simulations reach a steady-state with equal and opposite fluxes of magnitude JTCP

of 1 from left to right, and 2 in the opposite direction through the pore. See Figure 4.3 (a).

Measuring the concentrations at different sites and equating the total flux with an expression

of the type (4.5) allows extraction of the generalized tracer diffusion coefficients. Results are

shown in Figure 4.3(b) for L = 30 (and for larger L in the supplementary material Figure S2).

As expected, Dtr is naturally strongly reduced for higher total concentrations. Also, the GH

Dtr (n, n+ 1) decays to a non-zero plateau value, Dtr (plateau), in the pore center for suffi-

ciently large L. Adapting previous studies which considered the overall tracer diffusivity for

SFD in finite systems without NN exclusion [13, 19, 27, 28] to account for NN exclusion in our

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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model, we anticipate that

Dtr (plateau) ∼ 〈Xint〉−1 (1− 2 〈Xint〉)h/L, for large L. (4.6)

Here, 〈Xint〉 is the plateau value of the total concentration 〈Xn〉 in the pore center. For L = 30,

we find that 〈Xint〉 = 0.272, 0.210, 0.134, and 0.059 for longer pores exceeds the external bulk

fluid concentration 〈Xb〉 = 0.20, 0.15, 0.10, 0.05, respectively. This relation for Dtr (plateau)

reasonably estimates precise KMC values reported in Figure 4.3(c).

Finally, we remark that the above-mentioned overestimation of the diffusion fluxes by the

site and pair approximations can be understood from the corresponding results for tracer

diffusivity,

Dtr (site) = h (1− 〈Xint〉)

and

Dtr (pair) = h (1− 2 〈Xint〉) / (1− 〈Xint〉) , (4.7)

which far exceed Dtr (plateau) for typical L. Derivation of these results is indicated in Section

4.10.

4.3.2 Predictions of analytic theory

Numerical solution of the GH reaction-diffusion Equation (4.1) is implemented incorporat-

ing the expression (4.2) for Jn>n+1
C and our exact analytic solution for 〈Xn〉. The results almost

exactly recover the individual reactant and product concentration profiles (including the con-

centration oscillations) obtained from KMC simulations shown in Figure 4.2 for k/h = 0.001,

L = 30, and 〈Ab〉 = 0.2. The degree of success of the GH theory for a range of k/h retaining

〈Ab〉 = 0.2 is shown in Figure 4.4 focusing on the reactant profiles. Since 〈Xn〉 is recovered

exactly, slight discrepancy in predicting reactant profiles is counterbalanced by a discrepancy

of the same magnitude in prediction product profiles. To contrast the success of the GH theory,

Figure 4.4 also shows shortcomings of the pair approximation which predicts far too great a

reactant penetration into the pore due to overestimation of the diffusion flux in the presence of

SFD. See the supplementary material Figure S3 for additional results. Since the total reaction

rate, Rtot, for conversion of A to B simply reflects the total amount of reactant in the pore,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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Figure 4.4: (a) Comparison of GH solutions (long dashed curves) and pair approximation PA (short-dashed

curves) predictions with precise KMC results (solid curves) for reactant concentration 〈An〉 for a pore of length

L = 30 for 〈Ab〉 = 0.20 and varying k/h. (b). Expanded view of behavior near the left end of the pore. GH and

KMC results are indistinguishable for k/h = 0.0001, and very close for k/h = 0.001.

success in predicting the reactant concentration profile automatically translates into success in

predicting Rtot.

The above results indicate that our GH theory is well-suited to describe the regime of

small k/h ≤ 0.001 where the reactant concentration exhibits slower mesoscale decay into the

pore. For larger k/h where the reactant concentration decays more quickly on the nanoscale,

the mesoscale GH treatment becomes somewhat less precise (although still reasonably accurate

and certainly qualitatively correct). Actually for k/h ∼ 0.1, higher-order MF type approxi-

mations achieve comparable accuracy to the GH formulation. See the supplementary material

Figure S4.

Figure 4.5: Reactant concentration 〈An〉 near the left end of a pore of length L = 30 with k/h = 0.001 and varying

〈Ab〉. Comparison of accurate GH solutions (long dashed curves), and pair approximation (PA) predictions, with

KMC simulation results (solid curves).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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To further illustrate the effectiveness of our GH formulation, one can also consider behavior

for fixed k/h = 0.001, say, but varying the external fluid concentration 〈Ab〉. Naturally, this

analysis necessarily incorporates the appropriate generalized tracer diffusion coefficients which

depend strongly on 〈Ab〉, as shown in Figure 4.3. Comparison of successful GH predictions

with precise KMC results (and also generally inadequate pair approximation predictions) is

shown in Figure 4.5. Naturally, for lower concentrations, oscillations become significantly less

prominent. Even the pair approximation becomes reliable for low enough concentrations where

SFD constraints become less significant.

4.3.3 Characterization of strong non-equilibrium spatial correlations

We have already provided one perspective on why MF-type approximations overestimate

reactant penetration into the pore (and thus reactivity), specifically tying this feature to their

overestimation of tracer diffusivity. Next, we provide an alternative perspective, and also a

deeper understanding of the failure of the conventional MF type approximations. We emphasize

that SFD in the presence of a reaction and also NN exclusion generates strong non-equilibrium

spatial correlations. A direct consequence of these strong spatial correlations is the feature that

the exact diffusion flux,

Jn>n+1
A = h [〈AnEn+1En+2〉 − 〈En−1EnAn+1〉] , (4.8)

from 4.2 is far smaller than site or pair approximation predictions, and similarly for Jn>n+1
B .

To restate this observation, these strong correlations imply that the triplet probabilities,

〈AnEn+1En+2〉 and 〈En−1EnAn+1〉 are far closer to each other than the site or pair approxi-

mation predictions.

In the site and pair approximations, neglecting oscillations in the total concentration, one

has that

〈AnEn+1En+2〉 ≈ G (〈Xint〉) 〈An〉

and

〈En−1EnAn+1〉 ≈ G (〈Xint〉) 〈An+1〉 , (4.9)
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where G (x) = (1− x)2 in the site approximation and G (x) = (1− 2x) / (1− x) in the pair

approximation. Thus, the large values of Jn>n+1
A derive from the significant difference in the

estimates of these triplet probabilities. This difference in turn derives from the significant dif-

ference between 〈An〉 and 〈An+1〉 near the pore openings given strong concentration variations

in that region.

On the other hand, to understand exact behavior, it is useful to first note the exact identities

〈AnEn+1En+2〉 = 〈En−1AnEn+1En+2〉

and

〈En−1EnAn+1〉 = 〈En−1EnAn+1En+2〉 . (4.10)

Here, we have used the feature that the site to the left (right) of A in the configuration

AnEn+1En+2 (En−1EnAn+1) must be empty due to NN exclusion. Next, considering the central

pair of cells n and n+1 in the quartet configurations En−1AnEn+1En+2 and En−1EnAn+1En+2,

we recognize that A is likely to hop back and forth between these two cells. This follows as the

cells on each end of the quartet are specified empty ensuring that such motion is compatible with

NN exclusion. This facile motion naturally tends to equalize these two probabilities. Precise

results from KMC simulation analysis shown in Figure 4.6 confirm this picture choosing a

longer pore with L = 100 to clearly show behavior.

Figure 4.6: Comparison of KMC estimates of key triplet probabilities controlling the diffusion flux of A with

site (SA) and pair (PA) approximation estimates for L = 100, k/h = 0.001, and 〈Ab〉 = 0.2. In 4.9, one has

that the prefactor G ≈ 0.530(0.626) in the site (pair) approximation, explaining why the latter predictions are

slightly larger in magnitude.
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4.4 Summary

In summary, catalytic conversion subject to SFD produces strong non-equilibrium spatial

correlations which occur in addition to correlations of thermodynamic origin due to intermolec-

ular interactions (NN exclusion in our model). After accounting for equilibrium correlations and

concentration oscillations in the total concentration, we show that a suitably refined GH treat-

ment can capture both non-equilibrium and thermodynamic correlations. As a consequence,

this formulation can reliably predict the mesoscale variation of the reactant concentration pro-

file (as well as the concentration oscillations), and thus also predict the reaction yield. Our

analytic formulation also provides deeper insight into the origin and nature of these correlations

than is provided just from KMC simulation studies.

It should also be emphasized that our model is readily amenable to refinement and exten-

sion. One can relax the SFD constraint by allowing the exchange of A and B on second NN

sites in the pore with rate pexh, where pex reflects the passing propensity (and pex = 0 for

SFD) [2]. Passing reduces the strength on the non-equilibrium correlations that develop during

reaction, so the GH formulation becomes even more accurate. Also, beyond treatment of just

the initial stages of reaction, one can analyze the reaction yield for various specified fractions,

f , of reactant converted to product in the external fluid, so now product can renter the pore.

(Note that we assume a separation of time scales where the steady-state for a specific f is

achieved on a short time scale compared to the overall reaction.) The overall reaction kinetics

can be pieced together from a sequence of such simulations for increasing f [2].

4.5 Supplementary Material

See the supplementary material for a more comprehensive set of simulation results for both

generalized tracer diffusivity and steady-state concentration profiles. Figure S1: Steady state

concentration profiles for increasing pore lengths. Figure S2: Generalized tracer diffusion coef-

ficients, Dtr (n, n+ 1), versus n for various pore lengths. Table SI gives values for Dtr (plateau).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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Figure S3. Comparison of KMC, GH, and PA predictions for reactant profiles for various pore

lengths. Figure S4. Comparison of predictions from MF-type site, pair, and triplet approxima-

tions.
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4.7 Appendix A: Concentration Oscillations in a Semi-Infinite Fluid

Determination of the adsorption rate for reactants into the pore in our model with NN

exclusion requires analysis of the concentration variation approaching a planar wall in a semi-

infinite lattice-gas model on a simple-cubic lattice with NN exclusion. Consistent with the

notation of Section 4.2, we let 〈X0〉 denote the concentration in cells in the layer adjacent to

the wall, 〈X−1〉 the concentration in cells in the next layer away from the wall, 〈X−2〉 the

concentration in the next layer further away, etc., and 〈Xb〉 denotes the bulk concentration far

from the wall.

Simple analytic estimation of this variation, and specifically of the (weakly) enhanced con-

centration adjacent to the wall, is possible utilizing a pair approximation. To this end, it is

convenient to consider the semi-infinite equilibrated fluid as having arbitrary-range exchange

dynamics described by a rate r, where exchange events are consistent with NN exclusion. In

equilibrium, the corresponding flux of atoms from a cell adjacent to the wall to the bulk, Jw→b,

and the reverse flux from the bulk to the wall, Jb→w, must balance. If P7 is the probability of

an empty cell in the bulk with all six NN cells also empty, then one has that

Jw→b = r 〈X0〉P7,
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where

P7 ≈ (1− 2 〈Xb〉)6 / (1− 〈Xb〉)5 (4.11)

in the pair approximation. Let P6 denote the probability that a cell against the wall, as well

as all 5 of the NN cells, are empty. Then, one has that

Jb→w = r 〈Xb〉P6,

where

P6 ≈ (1− 2 〈X0〉)4 (1− 〈X0〉 − 〈X−1〉) / (1− 〈X0〉)4 (4.12)

in the pair approximation. Let us first assume that 〈X−1〉 ≈ 〈Xb〉, i.e., that concentration

oscillations die out quickly away from the wall. Then, from the equality Jw→b = Jb→w, one

obtains that 〈X0〉 ≈ 0.2189 (versus the Monte Carlo simulation value 0.211) for 〈Xb〉 = 0.20.

We also obtain 〈X0〉 ≈ 0.1071 (versus the simulation value 0.106) for 〈Xb〉 = 0.10, etc. Thus,

the pair approximation gives a quite reliable estimate of the (weak) concentration enhancement

near the wall.

The above analysis can be refined to provide additional assessment of concentration oscilla-

tions away from the wall. The next level of analysis retains 〈X−1〉 as an independent variable,

but assumes that 〈X−2〉 ≈ 〈Xb〉. Then, in addition to the equality Jw→b = Jb→w, one also bal-

ances fluxes between the layer of cells with concentration 〈X−1〉 and the bulk. Using the pair

approximation, this yields two coupled equations for two unknowns, 〈X0〉 and 〈X−1〉 in terms

of 〈Xb〉. Their solution yields 〈X0〉 ≈ 0.2192 and 〈X−1〉 ≈ 0.1979 for 〈Xb〉 = 0.20. Thus, one

predicts that 〈X0〉 and 〈X−1〉 are 9% above and 1% below 〈Xb〉, respectively, versus simulation

results which give values 6% above and 0.5% below 〈Xb〉, respectively. This pair approximation

analysis also yields 〈X0〉 ≈ 0.1072 and 〈X−1〉 = 0.0995 for 〈Xb〉 = 0.10, also mimicking the

rapid decay seen in simulation studies. These results support the assumption in the simplest

analysis that concentration oscillations decay quickly away from the wall.

The analytic treatment is readily further refined for an even more complete assessment of

concentration oscillations. We have also performed a more complete Monte Carlo simulation

analysis of the semi-infinite system with NN exclusion. However, 〈X−2〉, 〈X−3〉, etc., are very

close to 〈Xb〉, so the above more limited analysis provides an essentially complete picture.
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4.8 Appendix B: Concentration Variations in the External Fluid

Our tailored simulations to extract adsorption and desorption parameters (described in Sec-

tion 4.2.2) produce nontrivial and distinct concentration variations in the external fluid which

might be regarded as a semi-infinite system. For the former, the concentration just depends

on distance from the wall. For the latter there is a complicated three-dimensional variation

with the strongest deviation from the bulk fluid concentration occurring around the cell spec-

ified empty just outside the pore. We argue that information from these tailored simulations

provides boundary conditions at pore openings which allow simulation of the reaction model

just in the pore region (which in turn recovers reaction behavior in the entire pore + external

fluid system). From this perspective, one would also expect that information from the tailored

simulations should allow recovery of the equilibrium concentration variations in the external

fluid under steady-state conditions. We note that these equilibrium variations are distinct from

those in tailored simulations for either adsorption or desorption parameters.

The tailored simulations for adsorption correspond to the situation where the end cell of

the pore is empty, which occurs a fraction 〈E1〉 = 1−〈X1〉 of the time. Those corresponding to

desorption correspond to the situation where this end cell in the pore is occupied, which occurs

a fraction 〈X1〉 of the time. Thus, we claim that the equilibrium distribution for the model is

simply given by a corresponding weighted average of the distributions in the tailored simula-

tions. This feature is illustrated schematically in Figure 4.7 where we just show concentration

variation along a 1D line of cells in the fluid which extend out from the pore opening. The

ability to reconstruct the equilibrium distribution from the tailored simulations also reflects a

spatial Markov field property of lattice-gas models with NN interactions [29] which applies not

just for infinite systems, but also in more complex (e.g., pore + external fluid) geometries. We

will elaborate on this feature in a separate paper dealing with more general models.

4.9 Appendix C: Internal Pore Versus External Fluid Concentrations

It is appropriate to provide further insight into the strong enhancement of total concen-

tration in the center of the pore, 〈Xint〉, relative to that in the external bulk fluid, 〈Xb〉. The
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Figure 4.7: Relationship of concentration in external fluid in tailored simulations for adsorption and desorption

parameters to the equilibrium concentration distribution for the model. Shown is a 1D cut of the concentration

for a line of cells extending from the left end of the pore (where n = 0 is just outside the pore, n = −1 is further

out, etc.). Behavior is shown for L = 30 and 〈Xb〉 = 0.2 where 〈X1〉 = 0.321 and 〈E1〉 = 0.679.

concentration in the center of long pores can be determined directly in terms of 〈Xb〉 by con-

sidering an infinite 3D lattice-gas model with NN exclusion suitably coupled to a 1D lattice-gas

model with NN exclusion. Analogous to Section 4.7, this coupling is realized by direct exchange

between the systems described by rate r, where exchange events are consistent with NN exclu-

sion. In equilibrium, the corresponding flux of atoms from the 3D to the 1D system, J3D→1D,

and the reverse flux from the 1D to the 3D system, J1D→3D, must balance. If P7 denotes the

probability of an empty cell in the 3D system with all neighbors empty as in (4.11), then one

has that

J1D→3D = r 〈Xint〉P7, (4.13)

where a pair approximation estimate of P7 is given in (4.11). If P3 denotes the probability of

an empty cell in the 1D system with both neighbors empty, then one has that

J3D→1D = r 〈Xb〉P3,

where

P3 = (1− 〈Xint〉)2 / (1− 〈Xint〉) . (4.14)

For this 1D model, a pair approximation factorization is in fact exact, so the only approxima-

tion is in the factorization of P7 in (4.13). Then, from the equality J1D→3D = J3D→1D, one

obtains 〈Xint〉 ≈ 0.3057 (versus the precise KMC value of 0.273) for 〈Xb〉 = 0.20. One also

obtains 〈Xint〉 ≈ 0.1374 (versus the precise KMC value of 0.134) for 〈Xb〉 = 0.10, etc. Not

surprisingly, one finds that the pair approximation is somewhat less accurate in predicting the
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strong enhancement of concentration in the pore interior relative to the bulk (at least for higher

〈Xb〉) compared to its success in predicting the weak enhancement near infinite walls in Sec-

tion 4.7. There are other analytic strategies which could be employed, e.g., matching chemical

potentials for the 1D and 3D systems, where the latter might be determined, e.g., from virial

expansion. However, the pair approximation clearly captures the key feature of concentration

enhancement inside the pore.

Precise direct assessment of concentration enhancement inside the pore can naturally also be

achieved by Monte Carlo simulation of the coupled 3D and 1D systems. We have implemented

such simulations and recover the previously reported values of 〈Xint〉 from KMC simulations

of the reaction model.

4.10 Appendix D: Further Analysis of Reaction-Diffusion Equations

In Section 4.3.1 we have described just the lowest-order equations in the coupled hierarchy

of exact evolution equations for the stochastic reaction model, e.g.,

d/dt 〈An〉 = −k 〈An〉 − ∇Jn>n+1
A ,

where

Jn>n+1
A = h [〈AnEn+1En+2〉 − 〈En−1EnAn+1〉] (4.15)

for 3 ≤ n ≤ L− 2. As indicated in Section 4.3.1, separate equations are needed for cells at the

end of the pore. For example, for n = 1, one has

d/dt 〈A1〉 =− k 〈A1〉 − h [〈A1E2E3〉 − 〈E0〉 〈E1A2E3〉]

− h [P5 〈A1〉 − 〈A0〉 〈E1E2〉] (4.16)

and

d/dt 〈A2〉 =− k 〈A2〉 − h [〈A2E3E4〉 − 〈E1E2A3E4〉]

− h [〈E0〉 〈E1A2〉 − 〈A1E2E3〉] , (4.17)

where 〈E0〉 = 1 − 〈A0〉, 〈E1A2E3〉 = 〈E1A2〉 = 〈A2〉 and appropriate factorizations are imple-

mented for probabilities of hopping involving the state of cells both inside and just outside the
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pore. An example of a next-highest-order equation in the hierarchy is

d/dt 〈AnEn+1En+2〉 =− k 〈AnEn+1En+2〉 − h [〈AnEn+1En+2〉 − 〈En−1EnAn+1En+2〉]

− h [〈En−2En−1AnEn+1En+2〉 − 〈An−1EnEn+1En+2〉]

− h [〈AnEn+1En+2An+3〉 − 〈AnEn+1An+2En+3En+4〉]

− h [〈AnEn+1En+2Bn+3〉 − 〈AnEn+1Bn+2En+3En+4〉] . (4.18)

We have grouped terms for forward and reverse hopping events between pairs of sites corre-

sponding to loss and gain of the configuration of interest. Since cells adjacent to A or B must

be empty, including this feature means that grouped hopping terms include the same set of

cells. For example, 〈AnEn+1En+2〉 = 〈En−1AnEn+1En+2〉 specifies the state of cells n − 1, n,

n+ 1, and n+ 2, as does 〈En−1EnAn+1En+2〉.

Next, we comment further on MF-type factorization approximations which facilitate trun-

cation of the hierarchy to yield a closed set of evolution equations. The site approximation

ignoring all correlations sets

〈CnDn+1Fn+2〉 ≈ 〈Cn〉 〈Dn+1〉 〈Fn+2〉 , (4.19)

so, e.g., 〈AnEn+1En+2〉 ≈ 〈An〉 〈En+1〉 〈En+2〉, leading immediately to a closed set of equations

for 〈An〉 and 〈Bn〉. However, as noted previously, this approximation does not impose the basic

constraint for models with NN exclusion that the concentration in any cell should be no higher

than 1/2. The pair approximation sets

〈CnDn+1Fn+2〉 ≈ 〈CnDn+1〉 〈Dn+1Fn+2〉 / 〈Dn+1〉 , (4.20)

so, e.g., 〈AnEn+1En+2〉 ≈ 〈AnEn+1〉 〈En+1En+2〉 / 〈En+1〉 = 〈An〉 (1− 〈Xn+1〉 − 〈Xn+2〉) / (1− 〈Xn+1〉).

This again leads to a closed set of equations for 〈An〉 and 〈Bn〉. Results from numerical analysis

of these equations are shown in Figs 4.4-4.6, and in the supplementary material. The triplet

approximation sets

〈CnDn+1Fn+2Gn+3〉 ≈ 〈CnDn+1Fn+2〉 〈Dn+1Fn+2Gn+3〉 / 〈Dn+1Fn+2〉 , (4.21)

Thus, this approximation does not directly approximate any quantities (in the flux terms) in

the lowest-order equations. However, in higher-order equations such as (4.18), one must im-

plement factorization, e.g., 〈An−1EnEn+1En+2〉 ≈ 〈An−1EnEn+1〉 〈EnEn+1En+2〉 / 〈EnEn+1〉.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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This expression can be recast noting that 〈EnEn+1En+2〉 = 〈En+1En+2〉 − 〈AnEn+1En+2〉 −

〈BnEn+1En+2〉 and 〈En+1En+2〉 = 1 − 〈Xn+1〉 − 〈Xn+2〉. From numerical analysis of the

equations for the triplet approximation, we find only minor improvement over the pair approx-

imation. See the supplementary material Figure S4. This further demonstrates the challenge of

capturing strong non-equilibrium spatial correlations with MF-type approximations, and also

highlights the success of the GH approach.

Finally, we discuss the evaluation of tracer diffusivity within the site and pair approx-

imations. To this end, consider the generic form of the reaction-diffusion equations, and

specifically the diffusion flux, away from the pore openings where 〈En〉 ≈ 〈Eint〉 = 1 − 〈Xint〉

is effectively constant. In the site approximation, factorizing 〈AnEn+1En+2〉 ≈ 〈Eint〉2 〈An〉

and 〈En−1EnAn+1〉 ≈ 〈Eint〉2 〈An+1〉 yields Jn>n+1
X = −h 〈Eint〉2∇〈An+1〉. On the other

hand, first utilizing exact identities and then factorizing corresponding to 〈AnEn+1En+2〉 =

〈An − En+2〉 ≈ 〈Eint〉 〈An〉 and similarly for 〈En−1EnAn+1〉, yields

Jn>n+1
A (site) = −h 〈Eint〉∇ 〈An+1〉 . (4.22)

We adopt the last analysis which to some extent accounts for NN exclusion. Noting that this

analysis applies for a standard counter-diffusion mode, it follows that Dtr (site) = h 〈Eint〉 =

h (1− 〈Xint〉). In the pair approximation, factorizing 〈AnEn+1En+2〉 ≈ 〈EnEn+1〉 〈An〉 / 〈En〉 ≈

(1− 2 〈Xint〉) 〈An〉 / (1− 〈Xn〉) and similarly for 〈En−1EnAn+1〉 yields

Jn>n+1
A (pair) = −h (1− 2 〈Xint〉) / (1− 〈Xint〉)∇〈An+1〉 . (4.23)

Noting that this analysis applies for a standard counter-diffusion mode, it follows thatDtr (pair) =

h (1− 2 〈Xint〉) / (1− 〈Xn〉). Hence, these analyses provide a derivation of (4.7).

4.11 Appendix E: Further Analysis of Reaction-Diffusion Equations for

〈Xn〉

The (pure) diffusion equations, d/dt 〈Xn〉 = −∇Jn>n+1
X , for the total concentration profile

〈Xn〉 within the pore are non-trivial due to the NN exclusion constraint. The nontrivial feature

is the appearance of triplet probabilities in the expression for the diffusion flux, Jn>n+1
X =

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-043641
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h [〈XnEn+1En+2〉 − 〈En−1EnXn+1〉], for 3 ≤ n ≤ L − 2. As with reaction-diffusion equations,

some modification is required for the end sites within the pore. For example, one has that

d/dt 〈X1〉 = −h [P5 〈X1〉 − 〈X0〉 〈E1E2〉]− h [〈X1E2E3〉 − 〈E0〉 〈E1X2〉] (4.24)

and

d/dt 〈X2〉 = h [〈E0〉 〈E1X2〉 − 〈X1E2E3〉]− h [〈X2E3E4〉 − 〈E1E2X3〉] , (4.25)

where 〈E0〉 = 1 − 〈X0〉, and appropriate factorizations are implemented for probabilities of

hopping involving the state of cells both inside and just outside the pore.

Our interest in these equations is the behavior of the solutions in the equilibrium steady-

state. We have argued in (4.4) that in the equilibrium state (but not for time evolution), the

factorization of the pair approximation, e.g., 〈XnEn+1En+2〉 = 〈XnEn+1〉 〈En+1En+2〉 / 〈En+1〉,

becomes exact. This is a consequence of the Markov random field property of equilibrium

lattice-gas models in any dimension with NN interactions [29]. It is applied here for the special

case of a 1D lattice-gas model with NN exclusion. To clarify this issue, consider the conditional

probabilities,

〈Cn|Dn+1Fn+2 . . .〉 ≡ 〈CnDn+1Fn+2 . . .〉 / 〈Dn+1Fn+2 . . .〉 , (4.26)

for cell n to be in state C given that cell n+1 is in state D, cell n+2 is in state F , etc. Then the

spatial Markov property implies that 〈Cn|Dn+1Fn+2 . . .〉 = 〈Cn|Dn+1〉, and in particular that

〈Cn|Dn+1Fn+2〉 = 〈Cn|Dn+1〉. The latter equality demonstrates that the factorization used in

the pair approximation becomes exact.

Application of this factorization allows exact solution for steady-state 〈Xn〉 by solution of

the resulting coupled set of equations given the values of 〈X0〉 and P5 in Section 4.2.2 recover

exactly the oscillations in total concentration within the pore, i.e., the concentration oscillation

which would be seen in the coupled 1D pore + 3D extended fluid system.

As a final aside, we offer a simple test case for the validity of our strategy of capturing

behavior in the pore for a coupled system with analysis just of the pore. Consider a coupled

1D pore + 1D extended fluid again with NN interactions. This just corresponds to an infinite 1D

lattice-gas model with NN exclusion so the concentration should be constant, 〈Xb〉, everywhere

in equilibrium. Refining the above equations for this 1D case (where 〈X0〉 is replaced by
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〈Xb〉 / (1− 〈Xb〉) and P5 is replaced by (1− 2 〈Xb〉) / (1− 〈Xb〉), we find that the equations are

consistent with a solution 〈Xn〉 = 〈Xb〉 for all n.
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Abstract

We consider a variety of diffusion-mediated processes occurring within linear nanopores,

but which involve coupling to an equilibrated external fluid through adsorption and desorp-

tion. By determining adsorption and desorption rates through a set of tailored simulations, and

by exploiting a spatial Markov property of the models, we develop a formulation for performing

efficient pore-only simulations of these processes. Coupling to the external fluid is described

exactly through appropriate non-trivial boundary conditions at the pore openings. This for-

malism is applied to analyze: (i) tracer counter permeation (TCP) where different labeled

particles adsorb into opposite ends of the pore and establish a non-equilibrium steady state;

(ii) tracer exchange (TE) with exchange of differently labeled particles within and outside the

pore; and (iii) catalytic conversion reactions where a reactant in the external fluid adsorbs

into the pore and converts to a product which may desorb. The TCP analysis also generates a

*Author to whom correspondence should be addressed. Electronic mail: evans@ameslab.gov

mailto:evans@ameslab.gov
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position-dependent generalized tracer diffusion coefficient, the form of which controls behavior

in the TE and catalytic conversion processes. We focus on the regime of single-file diffusion

within the pore which produces the strongest correlations and largest deviations from mean-

field type behavior. Behavior is quantified precisely via kinetic Monte Carlo simulations, but

also captured with appropriate analytic treatments.

5.1 Introduction

There is extensive interest in diffusion-mediated processes within arrays of linear nanopores

as found in microporous and mesoporous materials including zeolites, metal organic frameworks,

and classes of mesoporous carbon and silica nanoparticles [1–4]. Many related studies for

both gas-phase and solution-phase systems are motivated by applications to separations and

catalysis. Behavior of these diffusion-mediated processes is often strongly impacted by inhibited

transport within narrow pores. The extreme case of single-file-diffusion (SFD), where the

pores are so narrow that molecules cannot pass within the pore [5–8], is well-known to exhibit

anomalous tracer diffusion [9].

In gas-phase systems, Knudsen diffusion generally applies within the narrow pores of interest

here. Behavior can be quantified by Molecular Dynamics (MD) simulations, results of which

are sometimes mapped onto one-dimensional (1D) lattice models for diffusion with lattice sites

representing, e.g., distinct cages in zeolitic materials [1, 2, 4]. In the solution-phase systems

of primary interest here, each pore has open ends and its interior is typically coupled through

adsorption and desorption of particles to a well-stirred equilibrated external fluid. We will focus

on the transport of larger molecular species with linear size comparable to the pore diameter,

and thus which are subject to SFD, in a solvent of smaller molecules which will be treated

implicitly in our modeling. One could thus regard the larger species as following Brownian or

Langevin type dynamics due to random collisions with the solvent species [10,11]. Basic features

of the diffusion coefficient for such species might be suggested by predictions of hydrodynamic

formulations [12], including the effects of confinement [13, 14]. However, it is recognized that

related Stokes-Einstein-Debye type formulations can breakdown on the molecular scale [15,16].

Instead, a more precise characterization of diffusion behavior can in principle be provided by
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appropriate classical or Langevin MD simulations incorporating a complete specification of

relevant interactions in the system.

We argue that the detailed form of interactions between diffusing particles (other than

steric blocking which imposes SFD), and of any variation of diffusivity across the pore, will not

impact the basic features of transport subject to SFD which will be characterized in this study.

Indeed, for this reason, the majority of previous studies of SFD have used simplified models to

better elucidate the fundamental origins and nature of transport behavior.

There are in fact a variety of diffusion-mediated processes in finite-length nanopores for

which theoretical analyses, and where possible also experimental investigation, are of particular

interest. These include the following:

(i) Assessment of the mean-squared displacement (MSD) of a tagged particle within a pore

[17, 18]. Recently, the dependence of MSD behavior on initial location of the tagged

particle was used to define a location-dependent generalized tracer diffusion coefficient

[19,20].

(ii) Tracer exchange (TE) where tagged particles from the external fluid enter a pore initially

filled with untagged particles [21–23], and tracer zero-length column (TZLC) experiments

which can track the desorption of tagged particles initially within a pore to an external

fluid populated by untagged particles [18]. Behavior in both cases reflects the location-

specific and mean values of the intra-crystalline residence time [14]. These residence times

can also be determined directly by simulation.

(iii) Tracer counter permeation (TCP) analysis of transport within finite length nanopores

where different ends of each pore are connected to decoupled reservoirs with differently

labeled but otherwise identical particles [24, 25]. Assessment of steady-state fluxes of la-

beled particles through the pore then quantifies the intra-pore diffusivity. Characteriza-

tion of the concentration profiles for labeled particles, together with the above-mentioned

flux, provides another route for determination of a generalized tracer diffusion coeffi-

cient [20,24,25].
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(iv) Catalytic conversion reactions where a reactant diffuses into the pore from the external

fluid, converts to product at interior catalytic sites, and then possibly exits the pore

[19–21,26–29]. Catalytic yield is reduced by inhibited transport within the pore, especially

SFD, which greatly limits efficient removal of product from the pore.

To describe these processes, we will consider spatially-discrete stochastic lattice-gas (LG)

models where both the pore region and external fluid are tessellated into a simple-cubic ar-

ray of cells, and where discrete molecular positions correspond to the centers of the cells [20].

Adsorption to and desorption from a pore, and also diffusion within a pore, involve hopping

between adjacent cells. This modeling framework enables Kinetic Monte Carlo simulation of

the overall diffusion or reaction-diffusion process on the appropriate time- and length-scales.

Furthermore, by considering increasingly finer arrays of cells (relative to molecular sizes and the

pore dimensions), one can approach a more realistic stochastic continuum model. This strat-

egy is familiar for equilibrium studies of fluids [30]. For our application, the discrete models

approach a continuum multi-particle Langevin diffusion-type model (for which direct Langevin

simulation is generally not computationally viable).

However, even simulation of the spatially-discrete models would be prohibitive if it was nec-

essary simulate explicitly diffusive dynamics in the external fluid as well as in the pore interior.

Thus, our goal here is to show that this is not necessary. Specifically, one can perform “stand-

alone” simulations of the pore region provided that one determines appropriate non-trivial

boundary conditions (BC’s) describing the coupling to the external fluid through adsorption-

desorption processes. We will show that determination of these BC’s can be achieved with a

special set of tailored simulations to characterize adsorption and desorption propensities (and

sometimes other features), as will be described in detail in the following Sections. We emphasize

that the possibility of exact pore-only simulations utilizing just a finite number of boundary

conditions derives from the imposed equilibrium condition on the external fluid.

For simplicity, we focus attention on models with a single type of particle with regard to

both inter-particle interactions and pore-particle interactions, and also with regard to particle

hopping dynamics. However, these particles can be colored, labelled, or tagged differently as

is appropriate for various applications or analyses [17–22, 24–29], as will be described in Sec-
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tion 5.2.2. For these classes of models, in a “color-blind” characterization of the system which

does not distinguish between differently labeled particles, steady-states correspond to a classic

single-component equilibrium system. We shall see that the complex pore + exterior fluid ge-

ometry of the system induces a non-trivial heterogeneity in the total concentration for models

with non-trivial inter-particle interactions. Nonetheless, despite the complex model geometry,

one can exploit a spatial Markov “shielding” property of such equilibrium lattice-gas mod-

els [31]. This property allows, e.g., exact analytical determination of the behavior of the total

particle concentration within the pore given the above boundary conditions. In contrast, prop-

erties involving labeled particles cannot generally be determined exactly by analytical methods.

However, they can be obtained efficiently from pore-only simulations using appropriate BC’s.

In Section 5.2 we describe in more detail the basic stochastic LG models with just steric in-

teractions and uniform diffusivity on which we focus here, and introduce appropriate notation.

In Section 5.3, we develop an exact formulation and determination of adsorption-desorption

rates and boundary conditions for these models. KMC simulation results for TCP, TE, and

catalytic conversion are presented in Section 5.4. In Section 5.5, additional analytic results are

provided which provide deeper insight into observed behavior. Model refinements including the

introduction of finite strength interactions between particles, and variability in diffusion across

the pore, are described in Section 5.6. Finally, conclusions are presented in Section 5.7.

5.2 Basic Models and Notation

5.2.1 Stochastic LG models

In our LG models, the pore is represented by a cubic array of N × M × L cells, with

cross-section size of nx = N × M and pore length L, and where typically L ≈ 25 − 200.

For our applications, the lattice constant, a, is regarded as comparable to or smaller than

the typical molecular size of ∼ 1 nm, so these pore lengths are of the order of aL ∼ 100 nm.

Below, for convenience we set a = 1. The pore is connected at either end to reservoirs which

are represented by semi-infinite cubic lattices of cells. As noted in Section 5.1, particles have

discrete locations corresponding to cell centers. For the models considered in this study, these



97

particles are subject to finite-range R exclusion interactions. R = 0 corresponds to exclusion

of multiple occupancy of cells, but otherwise there are no interactions between particles; R = 1

corresponds to nearest-neighbor (NN) exclusion, so there are no occupied NN pairs of cells; R =
√

2 corresponds to NN and second NN exclusion, etc. Regarding particles as non-overlapping

spheres centered on cells, R = 0 corresponds to sphere diameter 0 < d ≤ 1, R = 1 to 1 <

d ≤
√

2, R =
√

2 to
√

2 < d ≤
√

3, R =
√

3 to
√

3 < d ≤ 2, R = 2 to 2 < d ≤
√

5, etc.

Particles hop at rate h (per direction) between adjacent cells within the pore, and also between

adjacent cells near the pore opening with one cell just inside and one just outside the pore.

In all cases, hopping is subject to the exclusion interactions. Thus, a hop occurs only if the

selected NN cell is empty and also if hopping to that cell creates no pairs of particles within

the exclusion range (e.g., no NN pairs of particles for R = 1). Previous studies have considered

these models extensively for 1× 1× L cell pores with R = 0 [17,19–22,25–29] and in one case

with R = 1 [32].

Particles within semi-infinite reservoirs coupled to each end of the pore are regarded as

equilibrated. In this respect, the hopping or exchange dynamics for such particles between

cells in the external fluid is irrelevant. However, one could regard this equilibration as being

due to very rapid hopping between adjacent cells, again subject to the range R exclusion

interactions.

For applications to TE, TCP, or catalytic conversion, particles will be appropriately assigned

one of two labels, A or B, or colors, blue or red, respectively, as described in detail below.

However, they retain the same hopping dynamics and interactions. Thus, as noted in Section

5.1, if one is color blind and just considers the distribution of particles of either color, X = A+B,

this distribution in the steady-state corresponds to a classic equilibrium distribution for a single-

component lattice-gas subject to range R exclusion. Even for the complex pore + exterior fluid

geometry, these models satisfy a spatial Markov property [31]. This property implies that a

wall of cells with specified state of suitably defined thickness, R, dividing the system into

two disconnected regions shields cells on one side from the influence of those on the other.

This feature is most useful considering walls composed of N ×M × R linear segments of cells

within the pore, as will be illustrated below. Another significant feature of these hard-core
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type models for the equilibrated external fluid on the 3D cubic lattice is that they exhibit

non-trivial phase transitions which correspond to order-disorder transitions for smaller R, and

first-order transitions for larger R [30]. For example, for R = 1 (NN exclusion), the interacting

particle model has a non-trivial equilibrium state exhibiting an order-disorder transition at a

critical concentration of 〈Xc〉 ≈ 0.209 [30]. For R =
√

2, the model exhibits an order-disorder

transition at critical concentration 〈Xc〉 ≈ 0.104 [30], etc.

Also of particular significance, we note that consideration of limiting behavior of these

equilibrium LG models for increasing R is well-known to provide an effective tool to elucidate

behavior of the continuum hard-sphere model [30]. Returning to the non-equilibrium TE, TCP

and catalytic conversion models, as noted in Section 5.1, our discrete LG models will approach

continuum Langevin diffusion or reaction-diffusion models upon simultaneously increasing the

exclusion range, R, and pore dimensions, so that R remains a fixed fraction of the pore diameter.

5.2.2 Particle labeling for various applications

Next, we describe the labelling or coloring of particles appropriate for various analyses or

applications. First, we discuss analysis of tracer diffusion of tagged particle(s) for studies of

MSD or TE. Extending basic studies of mean-square displacement (MSD) [17] for R = 0 to

R > 0, one would first equilibrate a distribution of unlabeled particles in the entire external

fluid + pore system at a prescribed external fluid concentration, 〈Xb〉. Then, a single particle

at a specified initial position inside the pore would be tagged or colored, with the rest of

the particles inside and outside the pore being untagged or uncolored. One must also specify

how the evaluation of MSD accounts for those trajectories where the tagged particle exits the

pore [13]. For analysis of tracer exchange (TE) [22], again one would first equilibrate unlabeled

particles for a prescribed 〈Xb〉. Then, particles initially outside the pore would be colored blue

and labeled A , and those initially inside the pore would be colored red and labeled B. Thus, A

diffuses into the pore, and B diffuses out of the pore irreversibly as it becomes instantaneously

diluted in the well-stirred external fluid of A and does not reenter. These studies track the

evolution of the concentration profiles and thus the total number of A and B in the pore.

The tracer exchange curve, γ (t), is defined as the fraction of A particles in the pore, so that
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γ (0) = 0 and γ (t) → 1 as t → ∞ [21]. The mean intercrystalline residence time can be

obtained from [21]

τintra =

∫
0<t<∞

dt [1− γ (t)] .

For tracer counter permeation (TCP) studies [24], particles in the reservoir coupled to the

left end of the pore are colored blue and labeled A, and those in the reservoir coupled to the

right end are colored red and labeled B, say. Both reservoirs have the same bulk concentration,

〈Xb〉. After adsorption, there is a finite probability that A (B) particles diffuse through the

pore and exit the opposite right (left) end, where they are immediately infinitely diluted in the

equilibrated reservoir of B (A) particles. Thus, particles after completely traversing the pore

do not re-enter. After a transient period depending on the initial conditions [25], the system

reaches a non-equilibrium steady state. In this steady-state, one can monitor the equal and

opposite but non-trivial fluxes of colored particles through the pore to assess diffusivity within

the pore. From the ratio of these fluxes and the local steady-state concentration gradients, one

can determine a generalized tracer diffusion coefficient [24,25].

In our treatment of simple first-order catalytic conversion reactions [19, 26–29], reservoirs

connected to both ends of the pore are exclusively populated by reactant particles which are

colored blue and labeled A, say. Once reactant particles have diffused into the pore, they

convert to product particles colored red or labeled B, say, at specified catalytic cells at rate

r. This reaction rate, r, is an additional parameter in the reaction model, behavior of which

depends strongly on the ratio r/h. Product particles have the same interactions and diffusion

dynamics as reactant particles, and can in principle exit the pore (although a SFD constraint

greatly inhibits this process). When product exits the pore, it is immediately infinitely diluted

in the reactant reservoirs and does not re-enter the pore. After a transient period reflecting

the initial conditions, the system reaches a non-equilibrium steady state with reactant (prod-

uct) concentration decaying (growing) into the pore with the center of long pores exclusively

populated by product. For systems subject to SFD, reactant penetration to the pore, and thus

catalytic yield, is greatly inhibited.
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We could (but do not) consider other more complex catalytic conversion processes within

this framework of a single type of particle (with regard to interactions and hopping dynamics)

but with different labels. For example, one could consider sequential multi-step conversion

reactions, A → B → C occurring at specified cells within the pore [33]. Alternatively, one

could consider different reactants A in the left and B in the right reservoirs which diffuse into

the pore and when on adjacent sites undergo a bimolecular reaction A+B → C +D (with C

replacing A, and D replacing B).

Finally, our primary interest here is in analyzing TCP, TE, and catalytic conversion subject

to a SFD constraint which induces the strongest non-equilibrium correlations and most non-

trivial behavior [20]. This SFD condition is simply imposed by selecting the range of the

exclusion interaction so that particles cannot pass within the pore.

5.2.3 Notation

Cells are labeled by (i, j, k) where k corresponds to the direction of the pore axis, and

layers or planes of cells within the pore correspond to k = 1 to L. Layers just outside the

pore correspond to k = 0 and k = L + 1. For all k, (i, j) labels the position of cells in planes

orthogonal to the direction of the pore axis. Again, the lattice constant is set as a = 1 below.

For particles of type C = A, B, or X, we let 〈Ci,j,k〉 denote the probability that cell (i, j, k)

is occupied by (the center of) a particle of type C. If 〈Ei,j,k〉 denotes the probability that

cell (i, j, k) is empty, then 〈Ai,j,k〉 + 〈Bi,j,k〉 = 〈Xi,j,k〉 and 〈Ei,j,k〉 + 〈Xi,j,k〉 = 1. We also

define the average concentration in a layer k within the pore as 〈Ck〉 =
∑

i,j 〈Ci,j,k〉 /
∑

i,j 1,

where
∑

i,j 1 = nx = N ×M . We will also need to consider probabilities of various multi-cell

configurations, e.g., 〈Ci,j,kEi,j,k+1〉 denotes the probability that cell (i, j, k) is occupied by C,

and cell (i, j, k + 1) is empty. It will also be instructive to consider associated conditional

probabilities, 〈Ω|Ξ〉 = 〈ΩΞ〉 / 〈Ξ〉, which denotes the probability of Ω given Ξ, where Ω and Ξ

denote the configurations of non-intersecting subsets of cells. For example 〈Ci,j,k|Ei,j,k+1〉 =

〈Ci,j,kEi,j,k+1〉 / 〈Ei,j,k+1〉 denotes the probability that cell (i, j, k) is occupied by C given that

cell (i, j, k + 1) is empty. Again, 〈Xb〉 denotes the particle concentration in the bulk external

fluid far from the pore openings, and 〈Eb〉 = 1− 〈Xb〉.



101

5.3 Adsorption-Desorption Boundary Conditions for Basic Models

Below, we describe the development of adsorption-desorption boundary conditions for var-

ious pore cross-sections and interaction ranges, R. First, we consider the simplest and most

coarse-grained model of a 1× 1 × L cell pore. Next, we consider the more complex cases of a

2× 1×L and more general N × 1×L cell pores. Finally, we treat cases of 2× 2×L and more

general N ×N × L cell pores.

5.3.1 1× 1× L cell pore (the coarsest model)

Cells in the pore correspond to (i, j, k) = (0, 0, 0) with k = 1 to L, and for these cells we

just use a single label k. The left (right) reservoir corresponds to cells (i, j, k) with k ≤ 0

(k ≥ L+ 1). We consider LG models for various exclusion ranges, R. As indicated in Section

5.2.1, we will utilize a spatial Markovian shielding property for the equilibrium steady-state

of these models [31]. One manifestation of this property is that strings of R contiguous cells

within the pore with specified state shield cells on one side of the string from the effect of cells

on the other side. Below we focus on determining adsorption and desorption rates for various

R. Schematics of these processes are provided in Figure 5.1(a)-(e) where the actual 3D cubic

lattice of cells in the semi-infinite external fluid reservoirs is for convenience represented by

2D square lattice of cells. The discussion below however refers to the actual 3D reservoirs.

Specifically, we develop expressions for the rates of adsorption and desorption of particles of

type C = A, B, or X, where adsorption, we assume that the relevant reservoir is exclusively

populated by C with a fixed bulk concentration 〈Cb〉 = 〈Xb〉.

Exclusion range R = 0, i.e., no interactions between particles on adjacent cells, but exclu-

sion of multiple occupancy of a single cell. See Figure 5.1(a)-(b). The maximum concentration

is 〈Xmax〉 = 1. This classic non-interacting model has been considered in most previous studies

of TE, TCP, and conversion reactions [17–22, 24–29]. The model thermodynamics is trivial,

the equilibrium state corresponding to a random distribution of particles with the prescribed

concentration 〈Xb〉. Thus, the rate of adsorption, Rads, to an end site within the pore, and the
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Figure 5.1: 2D schematic of configurations relevant for adsorption, desorption, and pre-desorption in 1×1×L cell

models for R = 0 and R = 1. E denotes empty cells; Ē in red denotes cells prescribed to be empty. Conditional

probabilities, Qn|m, indicating the number of sites required (n) and given (m) empty for a 2D (3D) exterior fluid

lattice.

rate of desorption, Rdes, from an end site within the pore to the exterior fluid, are trivially

Rads = h 〈C0,0,0E1〉 = h 〈Cb〉 〈E1〉 , and Rdes = h 〈C0,0,0C1〉 = h 〈Eb〉 〈C1〉 . (5.1)

Here, we use that 〈C0,0,0〉 = 〈Cb〉 = 〈Xb〉, since the external fluid concentration is uniform, and

we use that cell occupancies inside and outside the pore are uncorrelated.

Exclusion range R = 1, i.e., no nearest-neighbor (NN) pairs of particles. The maximum

concentration is now 〈Xmax〉 = 1/2 both within the pore and in the exterior fluid. Recall that

this R = 1 model exhibits an order-disorder transition in the external fluid at 〈Xc〉 ≈ 0.209 [30].

Treatment of adsorption and desorption in this model is now non-trivial [32]. Noting that both

cell 1 and cell 2 must be empty for adsorption to a left end cell 1 within the pore (see Figure

5.1(c)), the corresponding rate is given by

Rads = h 〈C0,0,0E1E2〉 = h 〈C0,0,0|E1E2〉 〈E1E2〉 ≡ h 〈C0〉 〈E1〉 〈E2〉 . (5.2)

Using the spatial Markov property that a single cell shields for R = 1, one has that 〈C0〉 =

〈C0,0,0|E1E2〉 = 〈C0,0,0|E1〉 is the conditional concentration at cells just outside the pore open-

ing given that the end cell within the pore is empty. In fact, 〈C0〉 corresponds to the con-

centration in the layer against the wall for a semi-infinite system with R = 1, and thus can

be determined from a tailored simulation for such a semi-infinite system. Its value is slightly
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enhanced relative to 〈Cb〉 since such cells against the wall in 3D have only 5 NN which could

be occupied (versus 6 in the bulk).

Desorption from an end site within the pore to the exterior fluid requires the target site

just outside the pore be empty as well as the additional five cells NN to that cell in the 3D

external fluid [32]. See Figure 5.1(d). The associated rate of desorption from the left end of

the pore is given by

Rdes = h 〈E0,0,−1E1,0,0E−1,0,0E0,1,0E0,−1,0E0,0,0C1〉

= h 〈E0,0,−1E1,0,0E−1,0,0E0,1,0E0,−1,0|E0,0,0C1〉 〈E0,0,0C1〉 = hQ5|1 〈C1〉 . (5.3)

We use that 〈E0,0,0C1〉 = 〈C1〉 and also use the spatial Markov property

Q5|1 = 〈E0,0,−1E1,0,0E−1,0,0E0,1,0E0,−1,0|E0,0,0〉 .

The conditional probability, Q5|1 is determined from a separate tailored simulation for a semi-

infinite system with R = 1 and one cell against the wall specified empty, where one determines

the conditional probability that 5 NN cells are empty in 3D.

Stand-alone simulations must also treat the pre-desorption step of hopping from cell 2 to

cell 1 at the end of the pore which requires the cell just outside the pore to be empty. This

probability is just 〈Epre〉 = 〈E0〉 = 1− 〈X0〉, as indicated in Figure 5.1(e).

Exclusion range R > 1. The rate of adsorption to an end site within the pore can again

be expressed as the product of the concentration, 〈C0〉, of particles against the wall in a semi-

infinite fluid times the probability of a suitable string of empty sites within the pore. Desorption

from and end site within the pore now requires a larger set of cells just outside the pore to be

empty, and the associated rate of desorption factors as the product of 〈C1〉 times a suitable

conditional probability. Multiple non-trivial pre-desorption rates must also be determined. See

Section 5.10 for R = 2.

5.3.2 2× 1× L cell pore

This case presents new features not seen for the 1 × 1 × L cell models, which are readily

illustrated schematically given the 2D pore geometry. Cells in the pore correspond to (i, j, k) =
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(0, 0, k) and (0, 1, k) with k = 1 to L, and for these cells we just use a label k− (k+) for

j = 0 (j = 1). Note that
〈
Ck−

〉
=
〈
Ck+

〉
, i.e., there is just a single independent concentration for

each layer k within the pore. Again, we will prescribe the treatment of adsorption, desorption,

and pre-desorption processes, but we must also now prescribe the treatment of diffusion within

the end layer in the pore. Exclusion range R = 0 again has a maximum concentration of

〈Xmax〉 = 1 and allows a simple treatment of adsorption-desorption since the exterior fluid is

random. However, R = 0 does not impose SFD and thus leads to greatly enhanced diffusion

within the pore relative to cases with SFD. We do not comment further on this case. We will

instead focus on the case R = 1 below, and provide extensive simulation results for this case

in Section 5.4.

Exclusion range R = 1, i.e., no nearest-neighbor (NN) pairs of particles. In this case, there

is at most a single particle in each layer k within the pore, and SFD is imposed. The maximum

concentration is 〈Xmax〉 = 1/2 both inside the pore and in the exterior fluid. An order-

disorder transition occurs in the external fluid at 〈Xc〉 ≈ 0.209 [30]. Appropriate treatment

of adsorption-desorption is non- trivial in this model in contrast to R = 0. In fact, the two

required parameters for adsorption and desorption correspond to those in the 1 × 1 × L cell

model with R = 1. However, we should note that for this 2 × 1 × L cell model with R = 1,

the spatial Markovian shielding property for the equilibrium steady-state is somewhat more

complicated than for 1× 1× L. Specifically, it implies that a layer of two vertical cells within

the pore with specified state shields cells on one side from the effect of cells on the other side.

This feature is utilized below.

For the adsorption rate, the relevant multisite probability factors as the concentration,

〈C0〉, of particles against the wall in a semi-infinite system with R = 1 (as determined for

the 1 × 1 × L cell model) times the probability of a triple of empty cells at the pore opening.

See Figure 5.2(a). This factorization follows rigorously from the Markov shielding property of

the pair of empty cells E1+E1− . For desorption, a particle at k = 1+ or (0, 1, 1) ensures that

cell (0, 1, 0) just outside the pore is empty, and five additional cells are required to be empty.

Thus, the configuration of the external fluid corresponds to that in a semi-infinite system with

a single cell against the wall specified empty, and is identical to that in the tailored simulation
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for desorption in the 1 × 1 × L cell model with R = 1. In this case, again we determine the

conditional probability, Q5|1, of five empty cells NN to this specified empty cell. See Figure

5.2(b). Pre-desorption where the particle hops from cell k = 2± to cell k = 1± must also

be treated appropriately, noting that this requires a cell just outside the pore to be empty.

However, the situation is analogous to the 1 × 1 × L cell model with R = 1. The relevant

conditional probability that a cell just outside the pore is empty given both cells in layer k = 1

are empty is given by 〈Epre〉 = 〈E0〉 = 1−〈X0〉, so it is determined without additional tailored

simulations. See Figure 5.2(c).

Figure 5.2: 2D schematic of configurations relevant for adsorption, desorption, and pre-desorption, and end layer

hopping in the 2× 1×L cell model with R = 1. Q’s with (without) parenthesis correspond to 3D (2D) exterior

fluid. All NN cells to particles are empty.

However, unlike the 1× 1× L cell model with R = 1, additional non-trivial information is

needed to treat lateral hopping within the pore in the end layer k = 1. See Figure 5.2(d). For a

particle at k = 1+ or (0, 1, 1) hopping to k = 1− or (0, 0, 1), both cells just outside the pore must

be empty as well as additional sites within the pore. This probability can be factorized exactly

using the Markov shielding property of the pair of cells C1+E1− as indicated in Figure 5.2(d).

The additional information needed to prescribe lateral hopping is the conditional probability,

Q1|1, to find an additional empty cell just above or below the cell specified empty. This is

obtained from the same tailored simulation used to assess desorption where one site against a

wall in a semi-infinite system is specified empty. Key parameters for this model (〈C0〉, Q5|1,

〈Epre〉, and Q1|1) are listed in Table 5.1.
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5.3.3 N × 1× L cell pore for N ≥ 3

While the 3D pore geometries of N ×N ×L cell models are of more physical relevance, the

N × 1× L cell models with 2D pore geometries present analogous features and complications.

These features are more readily illustrated schematically in the 2D pore geometry. Cells in the

pore correspond to (i, j, k) = (0, j, k) for j = 0 to N − 1 and k = 1 to L. Unlike the above

cases for N ≤ 2, all these models exhibit lateral concentration variation within pore. Note

that 〈C0,j,k〉 = 〈C0,N−1−j,k〉, etc., by reflection symmetry about the longitudinal pore center.

In fact, one can provide an exact analysis of this variation for the total concentration for the

equilibrium steady state in the center of a long pore. See Section 5.5.1 and Section 5.9. For

R = 0, adsorption-desorption is again trivial, so we do not discuss this case further. For R > 0,

we divide the discussion into two cases. For R < N − 1, SFD is not imposed, and these models

are characterized by multiple independent and non-trivial adsorption and desorption rates. For

R ≥ N−1, SFD is imposed. There is a single adsorption and desorption rate for smaller N ≤ 3,

but not necessarily for larger N ≥ 4.

Figure 5.3: 2D schematic of configurations relevant for determination of adsorption and desorption rates for

particles of type C = A, B, or X. (a,b) 3 × 1 × L cell model with R = 1 (no SFD). (c,d) 3 × 1 × L cell model

with R = 2 (SFD), and 4× 1× L cell mode with R = 3 (SFD).
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First, we illustrate behavior for R < N − 1 in the simple case N = 3 and R = 1. Here,

particles diffusing on the top and bottom row within the pore can pass each other. Also, sig-

nificantly, there are multiple populated configurations of the end row which complicates the

description of adsorption and desorption. Figure 5.3(a) illustrates three distinct situations

in which adsorption must be described. The rates for two of these involve the concentration

of particles against the wall in a semi-infinite system which comes from one tailored simula-

tion. The other requires a separate tailored simulation in a semi-infinite system where one

cell against the wall is specified empty. Figure 5.3(b) illustrates three distinct situations for

desorption. Two of these require the same tailored simulation as in the adsorption case with

one cell against the wall in a semi-infinite system specified empty. The third requires a separate

tailored simulation with two cells against the wall specified empty. Pre-desorption must also be

described for this model. There are three distinct configurations to be considered (not shown),

and diffusion within the end layer requires consideration of two cases (not shown), but the

associated tailored simulations are included in the treatment of adsorption and desorption.

Second, we briefly comment on cases with exclusion range R ≥ N − 1 (for N ≥ 3) which

imposes SFD. Schematics of adsorption and desorption processes are shown in Figure 5.2(c)

and Figure 5.2(d), respectively, where E labels cells required to be empty for the processes to

occur. For N = 3 and R = 2, a single adsorption and desorption rate apply. This follows since

the occupancy of the site indicated by the asterisk does not influence sites not already labeled

as E (empty) in the external fluid. On the other hand, for N = 4 and R = 3 (corresponding to

spheres with diameter 3 < d ≤
√

10), the occupancy of the site indicated by the asterisk does

influence the occupancy of two sites not already labeled by E in the external fluid. These two

sites are indicated by stars. Thus, one must determine two distinct adsorption rates and two

distinct desorption rates depending on whether the site labeled by the asterisk is occupied or

not. The TOC figure illustrates multi-particle configurations for N = 4 and R = 3 where cells

required to be empty due to exclusion are labeled by black E, and additional cells required to

be empty for implementation of the indicated adsorption and desorption processes are labeled

by blue E. For N = 4 with larger R =
√

10, there are still two distinct rates. However, for

N = 4 with still larger R ≥
√

13, a single adsorption and desorption rate apply.
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5.3.4 2× 2× L cell pore

Cells in the pore correspond to (i, j, k) for i = 0 or 1, and j = 0 or 1, and for k = 1 to

L. Again, by symmetry, there is just a single concentration, 〈C0,0,k〉 = 〈C0,1,k〉 = 〈C1,0,k〉 =

〈C1,1,k〉, in each layer k. Exclusion ranges R = 0 and R = 1 do not enforce SFD. Description of

adsorption-desorption is again trivial for R = 0, but not for R = 1. Now, R =
√

2 which is the

smallest R−value which imposes SFD. We describe the treatment of adsorption, desorption,

and pre-desorption processes for R = 1 and R =
√

2, but must also now consider diffusion

within the end layer in the pore. Extensive results for R =
√

2 are presented in Section 5.4.

Exclusion range R = 1, i.e., no NN pairs of particles, so there can be up to two particles

in each layer k within the pore, and SFD is not imposed. As for the 3 × 1 × L cell model

with R = 1, there are multiple adsorption and desorption rates to be determined, as we now

briefly describe. Adsorption can occur either into a completely empty end layer, or into a cell

in the end layer where the diagonally opposite corner cell is populated. Two separate tailored

simulations are required to determine these rates, one for a semi-infinite system, and the other

for such a system with a single cell against the wall specified empty. Desorption can occur

either from an end layer with a single particle, or from an end layer with two particle in diago-

nally opposite corner cells. Two appropriate tailored simulations are required to determine the

associated rates.

Exclusion range R =
√

2, i.e., no NN or second NN pairs of particles, so there is at most

a single particle in each layer k within the pore, and SFD is imposed. The maximum concen-

tration is 〈Xmax〉 = 1/4 both in the pore and in the exterior fluid. The latter corresponds to

layers of skewed 2 × 2 ordering. As noted above, an order-disorder transition occurs in the

external fluid at critical concentration 〈Xc〉 = 0.104 [30]. Appropriate treatment of adsorption-

desorption is of course non-trivial in this model, somewhat akin to the 2 × 1 × L cell model

with R = 1. For this 2× 2×L cell model with R =
√

2 (or with R = 1), the spatial Markovian

shielding property for the equilibrium steady-state has the following form: a complete layer
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of four cells within the pore, i.e., (i, j) = (0, 0), (1, 0), (0, 1), (1, 1) with fixed k, which have

specified state shields cells on one side from the effect of cells on the other side. This feature

is utilized below.

Figure 5.4: Schematic for the 2× 2×L cell model with R =
√

2 or configurations relevant for determination of:

(a) adsorption; (b) desorption; (c) pre-desorption; (d) hopping in the end layer, for particles of type C = A, B,

or X.

For the adsorption rate, the relevant multisite probability factors as the concentration, 〈C0〉,

of particles against the wall in a semi-infinite system times the probability of a configuration of

seven empty cells at the pore opening. See Figure 5.4(a). This factorization follows rigorously

from the Markov shielding property of the quartet of empty cells E(0,0,1)E(1,0,1)E(0,1,1)E(1,1,1).

For desorption, a particle at (0, 0, 1) ensures five cells (0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), and

(0,−1, 0) just outside the pore are empty, and an additional nine cells are required to be empty.

Thus, the configuration of the external fluid corresponds to that in a semi-infinite system with

five cells against the wall specified empty. A tailored simulation is performed to determine

the conditional probability, Q9|5, that the additional nine cells are empty. See Figure 5.4(b).

Pre-desorption where the particle hops from cell (0, 0, 2) to cell (0, 0, 1) must also be treated

appropriately. The particle at (0, 0, 2) ensures three cells with k = 1 are empty. Pre-desorption

requires the forth cell for k = 1 be empty, and an additional five cells just outside the pore

with k = 0 are also empty. See Figure 5.4(c). We exactly factorize the probability for pre-

desorption. One factor is the conditional probability that five sites outside the pore are empty

given the state of the sites inside the pore. The other is the probability of the configuration of
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sites inside the pore. The first conditional probability corresponds to the probability of finding

the five empty cells against the wall in a semi-infinite system, 〈E5pre〉, and can be obtained

from a tailored simulation.

As for the 2× 1× L cell model, additional non-trivial information to treat lateral hopping

within the pore in the end layer k = 1. See Figure 5.4(d). Consider a particle at (0, 0, 1)

hopping to (1, 0, 1). The presence of the particle implies that five cells just outside the pore are

empty. For hopping, an additional three cells just outside the pore must be empty (as well as

additional sites within the pore). This probability can be factorized exactly. One factor is the

conditional probability, Q3|5, for three empty cells outside the pore given the five empty cells

outside the pore and the specified configuration of cells inside the pore. The other factor is the

probability of the configuration of cells inside the pore. Using the Markov shielding property,

this conditional probability equals the conditional probability for a semi-infinite system with

five cells specified empty that an additional three cells are empty. See again Figure 5.4(d).

Q3|5 can be obtained from the same tailored simulation as used to assess desorption. Key

parameters for this model (〈C0〉, Q9|5, Q5pre, and Q3|5) are given in Table 5.1.

5.3.5 N ×N × L cell pore for N ≥ 3

Cells in the pore correspond to (i, j, k) for i = 0 to N − 1, j = 0 to N − 1 and k = 1 to L.

Unlike the above cases for N ≤ 2, all these models exhibit lateral concentration variation within

pore. Note that some 〈Ci,j,k〉 for fixed k are equal by rotational symmetry, and by reflection

symmetry about the longitudinal pore center. In fact, one can provide an exact analysis of this

variation for the total concentration for the equilibrium steady state in the center of a long pore.

See Section 5.9. For R = 0, adsorption-desorption is again trivial. For 1 ≤ R < (N − 1)
√

2,

SFD is not imposed, and these models are characterized by multiple independent and non-

trivial adsorption and desorption rates. For R ≥ (N − 1)
√

2, SFD is imposed. For smaller R

in this range, there can be multiple distinct adsorption and desorption rates.
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Table 5.1: Parameters from tailored simulations determining adsorption, desorption, pre-desorption, and end-

layer diffusion rates for the three SFD models. See Section 5.10 for analytic estimates of these parameters.

〈Cb〉 Adsorption Desorption Pre-desorption End Diffusion

1× 1× L, R = 0 〈C0〉 〈E0〉 = 1− 〈C0〉 − −
〈Cb〉 〈Cb〉 1− 〈Cb〉 − −

2× 1× L, R = 1 〈C0〉 Q5|1 〈Epre〉 = 1− 〈C0〉 Q1|1

0.20 0.2106 0.2792 0.7894 0.7331

0.10 0.1055 0.5466 0.8945 0.8821

2× 2× L, R =
√
2 〈C0〉 Q9|5 〈E5pre〉 Q3|5

0.10 0.1232 0.1936 0.4421 0.5190

0.05 0.0589 0.5326 0.7143 0.8003

5.4 KMC Simulation Results for TCP, TE and Catalytic Conversion

In the analysis below, we focus on comparison of behavior for three SFD models which are

all subject to the SFD constraint: a 1× 1×L cell pore with R = 0 and 〈Xb〉 = 0.4; a 2× 1×L

cell pore with R = 1 and 〈Xb〉 = 0.2; and a 2 × 2 × L cell pore R =
√

2 and 〈Xb〉 = 0.1. The

exterior fluid concentration consistently is selected to be 40% of the maximum possible value

for all models, so comparison of these cases is natural.

5.4.1 Characterization of TCP

Figure 5.5(a)-(c) shows steady-state TCP concentration profiles for the above three SFD

models for a pore with L = 25 obtained from pore-only simulations utilizing the non-trivial

boundary conditions for R > 0 described in Section 5.3. For the 1 × 1 × L cell model with

R = 0, we note stronger deviations from linearity persisting deeper into the pore, as will be

elucidated below. For the other models with R > 0, the concentration is strongly enhanced

in the pore interior due to the lower cell coordination number relative to the external fluid.

Profiles are more linear in the pore interior, but display oscillations near the pore openings

reflecting the change in coordination number of cells transiting from the external fluid to the

pore interior.

Figure 5.5(d) shows a schematic of steady-state TCP configurations for general systems

subject to SFD. These have the special feature that particles are strictly ordered with A on
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Figure 5.5: TCP profiles for: (a) 1 × 1 × L cell pore with R = 0 and 〈Xb〉 = 0.4; (b) 2 × 1 × L cell pore with

R = 1 and 〈Xb〉 = 0.2; and (c) 2 × 2 × L cell pore with R =
√

2 and 〈Xb〉 = 0.1. In all cases, SFD applies,

L = 25, and 〈Xb〉 / 〈Xmax〉 = 0.4. (d) Schematic of possible TCP steady-state configurations for SFD.

the left, and B on the right [18,25]. A “typical” configuration has an interface between the A-

and B-populated regions somewhere in the middle of the pore (top image). A non-zero flux

of A (B) from left to right (right to left) through the pore corresponds to situations where

the pore is completely populated by A (B). In these cases, the interface has reached the

right (left) end of the pore, as shown in the middle (bottom) image. This latter observation

motivates characterization of the distribution of interface locations [25]. However, first a more

precise definition of interface location is needed. A simple asymmetric choice identifies the

interface location with the right-most A (or left-most B). In this case, the location takes only

integer values. A symmetric definition identifies the interface location as midway between the

right-most A and the left-most B, which implies that the location can take both integer and

half-integer values. In either case, we set the location to k = 0 (k = L+ 1) if the pore is devoid

of A (B).
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Figure 5.6: Interface location distribution for TCP profiles with SFD in pores with L = 50 for: (a) 1× 1×L cell

model with R = 0 and 〈Xb〉 = 0.4; (b) 2× 1×L cell model with R = 1 and 〈Xb〉 = 0.2; (c) 2× 2×L cell model

with R =
√

2 and 〈Xb〉 = 0.1. Left row: symmetric definition. Right row: right-most (RM) A (solid orange)

and left-most (LM) B (dashed blue).

Interface location distributions are shown for the three SFD models in Figure 5.6(a)-(c).

In the most simple picture, one might anticipate a uniform distribution of interface locations

within the entire pore. This behavior would correspond to exactly linear TCP profiles. In

fact, for long enough pores, the distribution does have a plateau in the pore interior, i.e., the

interface location is uniformly distributed apart from pore end effects. Indeed, this depletion

of the distribution near the pore ends corresponds to the flattening of the TCP profiles in that

region, which in turn has significant consequences for the generalized tracer diffusivity discussed

below. Note that for maximal concentrations in the three models which we consider with one

particle for each layer k, the interface location using the symmetric definition is restricted to
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half-integers. From Figure 5.6(a)-(c) we see that this preference for half-integer locations is

weakened but maintained at lower concentrations.

5.4.2 Determination of generalized tracer diffusivity

Next, we utilize the above results for TCP concentration profiles, together with an assess-

ment of the flux, JA (JB = −JA) of A (B) through the pore, to determine the generalized

tracer diffusion coefficient, Dtr (k, k + 1), for each adjacent pair of layers in the pore [19,20,24].

Our treatment is motivated by hydrodynamic transport theory for continuum systems with

a single type of particle carrying one of two labels, A or B, with slowly varying concentra-

tion gradients [20, 24, 34, 35]. In a counter-diffusion mode with constant total concentration,

〈X〉 = 〈A〉 + 〈B〉, so that ∇〈A〉 = −∇〈B〉, one has JA = −Dtr∇〈A〉 and JB = −Dtr∇〈B〉

which are equal and opposite, and where Dtr is the tracer diffusion coefficient. As an aside, we

note that for more general diffusion modes, the diffusion fluxes also depend on the chemical or

collective diffusion coefficient, Dc, which is concentration-independent for R = 0 [20, 36], but

which has a non-trivial dependence on concentration for our models with R > 0 [37].

We generalize these considerations to our discrete system where the total concentration in

each layer 〈Xk〉 =
〈
Xeq
k

〉
is equilibrated, but not constant for R > 0 [32]. We first introduce

fractional concentrations via 〈ck〉 = 〈Ck〉 /
〈
Xeq
k

〉
for C = A or B. If Jk>k+1

C denotes the net flux

of C from cell k to k+ 1 (which is independent of k for steady-state TCP). Then, Dtr (k, k + 1)

is defined via

Jk>k+1
C = −1

2

(〈
Xeq
k

〉
+
〈
Xeq
k+1

〉)
Dtr (k, k + 1)∇〈ck+1〉 , (5.4)

where ∇Gk = Gk − Gk−1 is a discrete derivative. Note that this definition correctly ensures

equal and opposite fluxes for A and B, and recovers the hydrodynamic expressions. The form

of Jk>k+1
C for general 〈Xk〉 is more complex [38], but is not needed here.

Results for Dtr (k, k + 1) based on (5.6) are shown for the three SFD models in Figure

5.7(a)-(b). Concentrations and their gradients are obtained from profiles of the type shown in

Figure 5.5(a)-(c). Flux values can be obtained either from counting the number of A’s and B’s

transiting the pore during the simulation, or from end layer concentrations. For example, one

has JA = hQ 〈AL〉 where Q is the appropriate conditional probability that a particle on the
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end site within the pore can desorb, e.g., Q = 〈Eb〉 for the 1 × 1 × L cell model with R = 0,

Q = Q5|1 for a 2× 1× L cell model with R = 1, and Q = Q9|5 for a 2× 2× L cell model with

R =
√

2.

Figure 5.7: Comparison of Dtr (k, k + 1) for three models for: (a) L = 25 where Dtr (max) /h = 0.3188, 0.1545,

and 0.0861 for 1× 1×L, 2× 1×L, and 2× 2×L. (b) L = 50 where Dtr (max) /h = 0.3174, 0.1532, and 0.0835

for 1× 1× L, 2× 1× L, and 2× 2× L.

We emphasize two key features of these results. First, there is a well-defined minimum

plateau, Dtr (min), in the values of Dtr (k, k + 1) in the pore interior, especially for longer

pores. The plateau value decreases with increasing L as discussed further below. Second, near

pore openings, there is a strong enhancement in Dtr (k, k + 1)-values. This enhancement is

most substantial in 1 × 1 × L cell model with R = 0, a feature corresponding to the strong

deviations in linearity of the TCP profiles for this case. It has been suggested [25] that an upper

bound on the maximum value, Dtr (max) = Dtr (1, 2) = Dtr (L− 1, L) of Dtr (k, k + 1) might

be obtained from appropriate mean-field type estimates of Dtr. The MF site approximation for

the 1×1×L cell model yields [20] Dtr (1× 1× L, site) = h (1− 〈Xint〉) = 0.6h for 〈Xint〉 = 0.4,

and appropriate MF pair approximations for the 2× 1×L and 2× 2×L cell models also yield

estimates well above Dtr (max). See Section 5.10.

Previous treatments for the classic 1 × 1 × L cell model with R = 0 have considered an

overall diffusivity, Dtr (pore), for finite pores of length L. The dependence of Dtr (pore) on

concentration and pore length was assessed by simulations and also analytic treatments for

systems both with periodic boundary conditions [17,39,40], and for a TCP setup with a near-
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jammed pore [18]. We will associate the minimum plateau value, Dtr (min), with Dtr (pore)

not just for the 1×1×L cell model with R = 0 but for all models. Adapting previously derived

expressions for Dtr (pore) for 1 × 1 × L cell models with R = 0 [17, 18, 39, 40] to more general

models, one might anticipate that

Dtr (min) ≈ 〈Xeff〉−1 (1− 〈Xeff〉)h/Leff ? (5.5)

Here, 〈Xeff〉 = 〈Xint〉 / 〈Xmax〉 denotes a scaled effective concentration, and Leff ∝ L is an

appropriate measure of pore length. Indeed, results shown in Figure 5.8 reveal an almost

perfect inverse proportionality to pore length, L for all models consistent with (5.5).

Figure 5.8: Linear variation of Dtr (min) with 1/L where Dtr (min) ≈ 1.42h/L, 0.82h/L, and 0.46h/L for the

1× 1× L, 2× 1× L, and 2× 2× L cell model, respectively.

For the 1 × 1 × L cell model with R = 0, the 2 × 1 × L cell model with R = 1, and

also the 2 × 2 × L cell model with R =
√

2, a maximally populated or jammed pore has one

particle per layer k, and we set Leff = L [41]. If one makes the crude approximation that

〈Xint〉 ≈ 〈Xb〉 for the 2 × 1 × L and 2 × 2 × L cell models, then the three models considered

in this section all have the same 〈Xeff〉 ≈ 0.4 yielding Dtr (min) ≈ 1.5h/L for all models. This

estimate is quite effective for the classic 1× 1×L cell model with R = 0, but not for the other

models. Correcting this estimate by using the simulation value of 〈Xint〉 yields slightly improved

Dtr (min) ≈ 1.03h/L with 〈Xint〉 = 0.246 for the 2× 1×L cell model and Dtr (min) ≈ 0.83h/L

with 〈Xint〉 = 0.136 for the 2 × 2 × L cell model. However, these values are still significantly

above the precise simulation values. Thus, we conclude that tracer diffusivity is intrinsically
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lower in the 2× 1× L and 2× 2× L cell models relative to the 1× 1× L cell model, and that

the traditional treatments must be modified.

This behavior presumably reflects the feature that diffusional dynamics is intrinsically more

inhibited due to special features of superlattice ordering in the 2 × 1 × L and 2 × 2 × L cell

models. To illustrate this feature, we note that unlike 1× 1×L cell models, there are frozen or

jammed configurations (where no hopping is possible) with concentrations below the maximum

value. Such configurations can be constructed, e.g., by removing every third particle along the

pore from a configuration with maximum coverage. The consequences of such ordering have

not been considered in previous analyses.

5.4.3 Characterization of tracer exchange

Figure 5.9(a)-(c) show KMC simulation results for the three SFD models for tracer exchange

concentration profiles of particles of type A entering a pore initially filled with particles of type

B. We emphasize that in contrast to previous studies of TE for the classic 1 × 1 × L model

with R = 0, in our studies for models with R > 0, the equilibrated total concentration is not

uniform inside the pore (both initially and subsequently). As time t→∞, the concentration of

A-type particles inside the pore converges to this total equilibrium concentration. Profiles are

shown for a sequence of quickly growing times ht = 5n with n = 1, 2, . . .. Results reflect slow

pore filling which is a consequence of inhibited transport due to SFD. Predictions of behavior

assuming a position-independent mean-field tracer diffusion coefficient would produce much

faster pore filling. Discussion of an effective beyond-mean-field analytic treatment of TE is

presented in Section 5.5.4. Associated results are also shown in Figure 5.9(a)-(c).

5.4.4 Characterization of catalytic conversion

We consider reaction models where all sites within the pore are catalytic and convert reac-

tant A to product B at rate r. Figure 5.10(a)-(c) shows KMC simulation results for the three

SFD models for steady- state concentration profiles for both reactant, A, and product, B, in

a first-order catalytic conversion reaction. Specifically, we show the variation of these profiles

with decreasing ratio of reaction rate, r, to hopping rate, h, for r/h = 0.1, 0.01, 0.001 and
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Figure 5.9: Profile evolution for tracer exchange for the three models. Time: 0, 5, 52,. . . , 57. Solid curves: KMC

simulation. Dashed curves: generalized hydrodynamic theory.

0.0001. The key feature is that reduced r/h allows deeper penetration of reactant into the pore

before reaction. However, it should be emphasized that the reactant penetration depth does not

scale like (h/r)1/2 which would be expected (and is found) in mean-field treatments. Instead-

reactant penetration is greatly reduced and described by distinct scaling behavior reflecting the

special features of reaction in the presence of SFD [19, 20]. Discussion of an effective beyond-

mean-field analytic treatment of catalytic conversion is presented in Section 5.5.4. Associated

results are also shown in Figure 5.10(a)-(c).
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5.5 Further Insights From Analytic Treatments

Figure 5.10: Steady-state concentration profiles for catalytic conversion of the three models for a range of

r/h = 0.1, 0.01, 0.001, and 0.0001 for L = 50. Solid curves: KMC simulation. Dashed curves: generalized

hydrodynamic theory.

The above KMC simulation based studies provide a self-contained comprehensive character-

ization of diffusion and reaction-diffusion behavior. However, deeper insight into some features

of behavior can be obtained from the following analytic treatments.

5.5.1 Pore Interior versus external fluid concentrations

A key feature for models with exclusion range R > 0 is the enhancement of the total particle

concentration within the pore interior, 〈Xint〉, relative to that in the external fluid, 〈Xb〉. This

behavior can be understood since cells in the pore region can have a smaller number of nearby
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cells within the interaction range (which could potentially be occupied by particles) relative to

cells in the external fluid. This tends to boost the concentration. To quantify this behavior,

we consider an equilibrium pore + external fluid system with long-range exchange dynamics

between pairs of sites in the bulk external fluid and in the center of a long pore at rate f .

We exploit the feature that fluxes for exchange into and out of the pore must balance in

equilibrium [32].

First, consider the 2 × 1 × L cell model with R = 1. Let P7 denote the probability that

a cell in the external fluid together with all its six NN cells are empty. Since P7 includes 6

NN pairs, a MF-type pair approximation implies that P7 ≈ (1− 2 〈Xb〉)6 / (1− 〈Xb〉)5. Also,

let P4 denote the probability that a cell in the middle of a long pore together with all its

three NN cells are empty. Since P4 includes 3 NN pairs, in a pair approximation, one has

that P4 ≈ (1− 2 〈Xint〉)3 / (1− 〈Xint〉)2. Then, the exchange flux of atoms from a cell in the

middle of a long pore to the cell in the bulk external fluid, J2×1→3D, and for the reverse process,

J3D→2×1, are given by

J2×1→3D = fP7 〈Xint〉 and J3D→2×1 = fP4 〈Xb〉 . (5.6)

Finally, equating J2×1→3D = J3D→2×1 yields 〈Xint〉 = 0.2663 (0.1245) versus the simulation

values of 0.246 (0.122) for 〈Xb〉 = 0.20 (0.10).

For the 2 × 2 × L cell model with R =
√

2, let P19 denote the probability that a cell in

the bulk external fluid together with all its 6 NN cells and 12 second NN cells are empty.

Since P19 includes 30 NN pairs and 32 second NN pairs, a pair approximation implies that

P19 ≈ (1− 2 〈Xb〉)62 / (1− 〈Xb〉)105. Also, let P10 denote the probability that a cell in the

middle of a long pore together with all its 4 NN cells and 5 second NN cells are empty.

Since P10 includes 14 NN pairs and 16 second NN pairs, a pair approximation implies that

P10 ≈ (1− 2 〈Xb〉)30 / (1− 〈Xb〉)50. Then the exchange flux out of the pore, J2×2→3D, and into

the pore, J3D→2×2, satisfy

J2×2→3D = fP19 〈Xint〉 and J3D→2×2 = fP4 〈Xb〉 . (5.7)

Finally equating J2×2→3D = J3D→2×2 yields 〈Xint〉 = 0.1437 (0.0672) versus the simulation

values of 0.136 (0.066) for 〈Xb〉 = 0.10 (0.05).
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5.5.2 Determination of the total concentration profile in the pore interior

For the 1 × 1 × L cell model with R = 0, the total concentration is uniform within and

outside the pore with value 〈Xb〉. However, for the 2 × 1 × L cell model with R = 1, and

the 2 × 2 × L cell model with R =
√

2, KMC simulation results reveal oscillatory behavior of

the total concentration, 〈Xk〉, near the pore ends. See Figure 5.5(b)-(c). We show that the

complete profile, 〈Xk〉, not just 〈Xint〉 =
〈
XL/2

〉
, can be recovered with an analytic treatment

incorporating the appropriate non-trivial boundary conditions.

For either of these models with R > 0, we start by developing a set of diffusive evolution

equations for the 〈Xk〉 which will ultimately be solved in the steady-state. However, these

equations couple through the diffusive flux terms to probabilities of various multisite proba-

bilities. Using the spatial Markov property [31], these multisite probabilities can be factorized

and expressed in terms of 〈Xj〉 and 〈Xj,j+1〉 where the latter gives the probability for one of

the configurations with a pair of particles in layers j and j + 1. These closed coupled sets

of equations for 〈Xk〉 and 〈Xk,k+1〉 have a generic form for k = 2 to L = 2. Those for the

end layers k = 1, 2, L − 1, and L − 2 have a special form reflecting the non-trivial boundary

conditions and involving the quantities described in Section 5.3. See Section 5.9 for a more

detailed discussion.

5.5.3 Reconstruction of the external fluid concentration distribution

The tailored simulations for R > 0 which determine adsorption and desorption parameters

produce non-trivial and distinct concentration variations in the semi-infinite external fluid. In

the simplest case for determination of 〈C0〉, the concentration just depends on distance from

the wall. In cases where sites against the wall are specified empty, there is a complicated three-

dimensional variation. Since these tailored simulations provide boundary conditions at pore

openings which allow exact analysis of behavior within the pore region, one might anticipate

that information from them should also allow recovery of equilibrium concentration variations

in the external fluid under steady-state conditions [32]. Indeed, this is the case. Various

tailored simulations correspond to different configurations of the end of the pore. A suitable
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weighted average of the external fluid concentrations in these recovers that in the steady-state

of the reaction model. The ability to reconstruct the equilibrium distribution from the tailored

simulations also reflects the spatial Markov field property [31] of these lattice-gas models.

For the 2 × 1 × L cell model with R = 1, or the 2 × 2 × L cell model with R =
√

2, the

two required tailored simulations have the end layer in the pore either completely empty or

populated by one particle. The former occurs with probability, 〈E1〉, and the latter involves

nx = N ×M = 2 or 4 equivalent configurations each occurring with probability 〈X1〉, so that

〈E1〉 + nx 〈X1〉 = 1. Then the external fluid concentration is obtained by weighting that for

the semi-infinite fluid by 〈E1〉 and that for each of the nx positions of the particle in the end

layer by 〈X1〉 [32]. The reconstruction is more complicated for models where multiple tailored

simulations are required to account for all possible configurations of the layer(s) at the end of

the pore influencing the external fluid (e.g., 1× 1× L for R ≥ 2, and N × 1× L with N ≥ 3,

or N ×N × L with N ≥ 2 for R = 1).

5.5.4 Labeled particle concentration profiles in non-equilibrium states

Given the definition of our generalized tracer diffusion coefficient, Dtr (k, k + 1), it is clear

that one could reconstruct the TCP profiles by solving the appropriate discrete diffusion equa-

tions incorporating this Dtr (k, k + 1). However, we claim that knowledge of Dtr (k, k + 1),

together with the non-trivial boundary conditions at the pore opening, also enables character-

ization of other non-trivial behavior including the form of the labelled particle concentration

profiles in TE and in catalytic conversion reactions. This characterization is achieved through

analysis of appropriate discrete generalized hydrodynamic equations for the relevant diffusion

or reaction-diffusion processes [19,20].

With regard to TE, there exist previous analytic studies for the 1× 1× L cell model with

R = 0 [21, 22], but our approach is different. We solve the discrete time-dependent diffusion

equation,

d/dt 〈Ck〉 = −∇Jk>k+1
C with Jk>k+1

C from (5.4) and ∇Gk = Gk −Gk−1, (5.8)
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together with the appropriate initial conditions for labeled particles and with time invariant

〈Xk〉 =
〈
Xeq
k

〉
. We find that this analytic prediction recovers the evolution of the concentration

profiles determined precisely from KMC simulation in Section 5.4 for all three models consid-

ered. See Figure 5.9(a)-(c).

For description of the non-trivial reactant and product concentration profiles in catalytic

conversion reactions, we use the discrete reaction-diffusion equations

d/dt 〈Ak〉 = −r 〈Ak〉 − ∇Jk>k+1
A and d/dt 〈Bk〉 = +r 〈Ak〉 − ∇Jk>k+1

B . (5.9)

The form of Jk>k+1
C must be generalized from (5.4) to treat cases with evolving total con-

centration [38], but here we focus on analysis of behavior in the reactive steady state where

d/dt 〈Ck〉 = 0 and Jk>k+1
C reduces to (5.4). Extending previous success with this approach for

the 1 × 1 × L cell model with R = 0 [19, 20] and with R = 1 [32], we find that the analytic

treatment recovers steady-state concentration profiles given in Section 5.4 for the 2 × 1 × L

cell model with R = 1 and the 2 × 2 × L cell model with R =
√

2. See Figure 5.11(a)-(c).

There is one caveat in the analysis of these equations which does not arise in the KMC

Figure 5.11: Key single- and multi-cell probabilities and exact relations between them.

simulations. This relates to determination of the rate at which particles adsorb into the pore.

For the 2 × 1 × L cell model with R = 1, from Figure 5.2(a), the adsorption rate is given by

Rads = 〈C0〉
〈
E1+E2+E1−

〉
. The concentration 〈C0〉 was determined from tailored simulations.
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The quantity
〈
E1+E2+E1−

〉
was determined “in-situ” in the pore-only KMC simulations. For

the above analytic treatment, an estimate of
〈
E1+E2+E1−

〉
is needed which we obtain directly

from simulations of an equilibrated single-component system (although analytic determination

is also possible). For example, we find that
〈
E1+E2+E1−

〉
= 0.3433 (0.6482) for 〈Xb〉 = 0.2

(0.1). The situation is analogous for the 2 × 2 × L cell model with R =
√

2 where the ad-

sorption rate is given by Rads = 〈C0〉 〈E0,0,1E1,0,1E0,1,1E1,1,1E0,0,2E1,0,2E0,1,2〉. Appropriate

simulations to determine the probability of these seven empty cells give values 0.2112 (0.5688)

for 〈Xb〉 = 0.1 (0.05).

5.6 Refined Models: Finite Interactions, Diffusion Variability, etc.

5.6.1 Finite-strength interactions

First, we consider the inclusion of finite-strength interactions beyond possible short-range

steric blocking for the three SFD models for which detailed analysis was presented in Section

5.4. In the simplest case, we modify the 1× 1× L cell model with R = 0 to include finite NN

interactions between particles [21]. This model satisfies a spatial Markov property wherein,

e.g., single cells within the pore shield cells on one side from the influence of those on the

other [31]. Now hopping rates must be selected to be consistent with detailed-balance. In a

so-called initial-value approximation (IVA), these depend only on the state of cell(s) NN to

the initial cell before hopping, but in general choices they depend on state of cells NN to both

initial and final cells [42]. The adsorption rate is determined from simulations in a semi-infinite

system assessing the probability for various configurations of NN sites for a particle against the

wall. For IVA, one simply multiplies these probabilities by the appropriate hopping rates. For

more general choices, one also needs to account for the state of site k = 2. Determination of

the desorption rate requires a separate simulation to assess for the IVA choice the probability

of an empty cell just outside the pore with a populated end site. For general choices, one must

also determine the probabilities of all possible configurations of NN external fluid sites to this

empty cell.
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For the 2 × 1 × L cell model with R = 1, one might naturally include finite-strength

interactions of range
√

2. It is still the case that a vertical wall of two cells within the pore

shields cells on one side from the influence of those on the other. A more extensive set of analysis

is now required to determine the probabilities of various configurations impacting adsorption

and desorption rates, analogous to the above 1 × 1 × L cell example. For the 2 × 2 × L cell

model with R =
√

2, one might naturally include finite strength-interactions of range 2. Now

a vertical wall of eight cells of thickness two (rather than thickness one) within the pore is

required to shield cells on one side from the influence of those on the other. Thus, for example

in determining rates for the adsorption process shown in Figure 5.4(a), one needs to perform

tailored simulations for two separate cases with cell (1, 1, 2) for k = 2 occupied and empty as

this impacts the state of the external fluid. Again, extensive analysis is required to determine

probabilities of various configurations impacting adsorption and desorption rates.

Certainly, the presence of these finite-strength interactions will impact the concentration

in the pore interior relative to that in the external fluid. Analytic assessment can again come

from the type of flux balance described in Section 5.5.1. One could also include finite-strength

interactions between particles and the pore walls which would also impact the concentration in

the pore interior. It is also well-recognized that finite strength interactions impact the collective

diffusion coefficient for the system [37,42]. However, the presence of finite-strength interactions

should not alter the basic features of transport for SFD which reflect the (generalized) tracer

diffusion behavior and are dominated by the stronger no-passing constraint.

5.6.2 Diffusion variability

Next, consider incorporation of spatial variability in diffusivity across the pore for N×1×L

or N × N × L cell pores with N ≥ 3. (For N ≤ 2, all rows of cells in the direction of the

pore axis are equivalent by symmetry, and thus are characterized by the same hop rates for

diffusion.) In the absence of finite inter-particle interactions, all cells which are not blocked by

steric interactions are energetically equivalent. Thus hopping rates between NN pairs of cells

must be the same in both directions according to detailed-balance. However, one can specify

different rates for hopping between NN cells in different symmetry-inequivalent rows of cells
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along the pore, e.g., a different rate for the central row in a 3× 1× L cell model compared to

the outer rows. Different rates can also be specified for the cross-channel direction. Clearly

these alternative prescriptions of diffusive kinetics will not impact the spatial Markov properties

of the model (an equilibrium property) or our basic formulation and determination of exact

boundary conditions for adsorption and desorption.

With regard to the basic features of transport for SFD, the main impact of the more general

prescription of diffusivity is that the generalized tracer diffusion coefficient will scale with the

average hop rate in the direction of the pore axis (which replaces the single hop rate in the

simpler models).

5.6.3 Distinct particle types

For the catalytic conversion reaction models, in general the product species will have dif-

ferent diffusivity (and interactions) than the reactant species. Now in a “color-blind” analysis,

where one cannot distinguish between reactant and product species, steady-states do not corre-

spond to a single-component equilibrium model [20]. Consequently, a spatial Markov property

does not apply for the non-equilibrium steady-state within the pore, although it does still apply

for the external fluid as we retain a well-stirred equilibrium assumption. This condition suffices

to still allow exact determination of adsorption and desorption rates from tailored simulations.

Thus, one can still implement stand-alone pore simulations with exact boundary conditions.

5.7 Conclusions

We have successfully developed an approach which allows efficient pore-only simulation

for various intra-pore diffusion and reaction-diffusion processes in linear nanopores where we

exactly account for coupling to an equilibrated external fluid. This is achieved by formulating

exact adsorption-desorption boundary conditions (BC’s) describing the coupling to an external

fluid. Parameters in these BC’s are obtained from suitably tailored simulations. We describe

these processes by spatially discrete lattice-gas models with finite-range exclusion, and our

formulation exploits an exact spatial Markov shielding property of these models. These models
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converge to continuum hard-sphere Langevin type models upon taking increasingly fine lattices

(i.e., reducing the lattice constant relative to molecule and pore dimensions).

Our formulation is tested for various models where transport within the pore is subject to

single-file diffusion. Specifically, we assess behavior for tracer counter permeation (TCP), tracer

exchange (TE), and catalytic conversion reactions within the linear nanopore. Furthermore,

after extracting a generalized tracer diffusion coefficient from the TCP analysis, we show how

simulation results for TE and catalytic conversion can be recovered from an analytic generalized

hydrodynamic formulation incorporating the generalized tracer diffusion coefficient.
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5.9 Appendix A: Derivation of Governing Equations for 〈xk〉

Utilizing the non-trivial boundary conditions at the pore openings together with the spatial

Markov property of the lattice-gas models, it is possible to determine analytically the entire

profile for the total concentration, 〈Xk〉, inside the pore. As noted in Section 5.5.2 we start

by developing a set of diffusive evolution equations for 〈Xk〉. For the simplest 1 × 1 × L cell

models with R = 0 or R = 1, one can obtain a closed set of equations for the 〈Xk〉 [20, 32].

However, for other more complex models, these equations couple through the diffusive flux

terms to probabilities of various multisite probabilities.

2× 1× L model with R = 1. This case, while being relatively simple, illustrates the key

features of the more complicated models. Thus, it is instructive to provide a detailed pre-

sentation. First, in Figure 5.11, we provide some examples of relevant single- and multi-cell
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Figure 5.12: Evolution equations for: (a) 〈Xk〉 and (c) 〈Xk,k+1〉 for the 2 × 1 × L cell model with R = 1.

Steady-state factorized forms of these equations are shown in (b) and (d).

probabilities and of the exact relationships between them based on conservation of probability.

Of particular significance will be the pair probability 〈Xk,k+1〉 for one of the two configurations

with a pair of particles in layers k and k + 1. Next, in Figure 5.12(a),(c) we show the generic

form of the evolution equations for 〈Xk〉 in the pore interior, as well as those for 〈Xk,k+1〉.

Note that cross-pore hopping terms cancel in the equation for 〈Xk〉. In the steady-state where

the total concentration is equilibrated, we can factor these multi-site probabilities using the

Markov property for this model which implies that a vertical pair of cells of any specified state

shields cells on one side from the influence of those on the other. The steady-state factorized

form of these equations is shown in Figure 5.12(b),(d). Using the relations in Figure 5.11,

all of the quantities can be rewritten in terms of 〈Xk〉 and 〈Xk,k+1〉. These coupled sets of

equations for 〈Xk〉 and 〈Xk,k+1〉 have a generic form for k = 2 to k = L − 2. To provide

a closed set of equations for these quantities we must add appropriate equations for the end

layers k = 1, 2, L − 1, and L. These are illustrated in Figure 5.13(a)-(d) and have a special
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form reflecting the non-trivial boundary conditions and involving the quantities described in

Section 5.3.

Figure 5.13: Evolution equations for: (a) 〈X1〉; (b) 〈X2〉; (c) 〈X1,2〉; and (d) 〈X2,3〉 for the 2× 1× L cell model

with R = 1. Steady-state factorized forms of these equations can be obtained analogous to Figure 5.12(b),(d).

In the interior of a very long pore, it is clear that 〈Xk〉 = 〈Xint〉 and 〈Xk,k+1〉 = 〈X2int〉

are independent of k and are intimately related. This relationship follows from the factorized

equation in Figure 5.12(d), together with the relations in Figure 5.11, imply that

〈Xint〉 (〈Xint〉 − 〈X2int〉) = 〈X2int〉 (1− 3 〈Xint〉+ 〈X2int〉) , (5.10)

which determines 〈X2int〉 in terms of 〈Xint〉. One finds the expected behavior that 〈X2int〉 ∼

〈Xint〉2 for 〈Xint〉 << 1, and 〈X2int〉 ∼ 〈Xint〉 ∼ 1/2 for a jammed pore.

3× 1× L cell model with R = 1. We first note that an alternative treatment of the above

2 × 1 × L cell model with R = 1 could use as two independent variables the probabilities of

the possible configurations of an adjacent pair of columns (i.e., of 4 cells) with one particle

and three empty cells, and with two particles and two empty cells. (The latter is the variable

〈Xk,k+1〉 selected above.) In this spirit, for the 3×1×L cell model, one might naturally choose

as independent variables the probability of configurations of an adjacent pair of columns (i.e.,

of 6 cells) with one, two, and three particles (and other cells specified empty). The Markov

property for this model implies that columns of three cells shield. This allows factorization of
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the configuration probabilities appearing in the steady state version of these equations so that

they can ultimately be written as a closed set in terms of the selected variables. This analysis

for a long pore determines the distinct concentration for the central row versus the upper and

lower rows.

2× 2× L cell model with R =
√

2. The treatment of this case is quite analogous to that of

the 2 × 1 × L cell model with R = 1. Again, the evolution equations for 〈Xk〉 for the concen-

trations in each layer couple to the pair probability, 〈Xk,k+1〉, for one of the four configurations

with a pair of particles in layers k and k + 1. Again, cross-pore hopping terms cancel in the

equation for 〈Xk〉. In the steady-state where the total concentration is equilibrated, we can

factor these multi-site probabilities using the Markov property for this model which implies

that a layer of four cells of any specified state shields cells on one side from the influence of

those on the other.

5.10 Appendix B: Supplementary Material

5.10.1 Boundary conditions for a 1× 1× L cell pore with R = 2

To illustrate the additional complications in treating models with longer interaction range

R ≥ 2, we consider the simplest case: the 1 × 1 × L cell model for R = 2, i.e., no pairs of

particles with separations 2 or less. In this case, there are no pairs of particles in the 3D fluid

with separations 1,
√

2,
√

3, or 2. The maximum concentration in this model is 〈Xmax〉 = 1/3

within the pore. The rate of adsorption to an end site within the pore is given by

Rads = h 〈C0,0,0E1E2E3〉 = h 〈C0,0,0|E1E2E3〉 〈E1E2E3〉 = h 〈C0〉 〈E1E2E3〉 . (5.11)

Using the spatial Markov property that a pair of cells shields for R = 2, one has 〈C0〉 =

〈C0,0,0|E1E2E3〉 = 〈C0,0,0|E1E2〉 is the conditional concentration, 〈C0〉, at cells just outside

the pore opening given that the end pair of sites within the pore are empty. Again, 〈C0〉

corresponds to the concentration in the layer against the wall for a semi-infinite system, and

can be determined from a tailored simulation. See Figure 5.14(a).

Desorption from an end site within the pore to the exterior fluid requires 23 sites just

outside the pore to be empty in 3D. Using the spatial Markov property, the associated rate of
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Figure 5.14: 2D schematic of configurations relevant for adsorption, desorption, and pre-desorption in 1× 1×L
cell model for R = 2. E denotes empty cells; Ē in red text denotes cells prescribed to be empty. Conditional

probabilities, Qn|m indicating the number of sites required (n) and given (m) empty for a 2D (3D) exterior fluid

lattice.

desorption is given by

Rdes = hQ13|10 〈C1〉 . (5.12)

Here Q13|10 is the conditional probability for 13 cells to be empty given 10 cells closest to the

pore opening are empty in 3D. Q13|10 is determined from a second tailored simulation for a

semi-infinite system with 10 cells against the wall specified empty. See Figure 5.14(b).

Stand-alone simulations must also treat the pre-desorption step of hopping from cell 2 to

cell 1 at the end of the pore which requires 10 cells just outside the pore to be empty in 3D.

Analysis of the associated conditional probability, Q9|1, requires a third tailored simulation

given one cell against the wall in a semi-infinite system is specified empty. See Figure 5.14(c).

One must also treat hopping from cell 3 to cell 2 which requires a single cell just outside the

opening of the pore to be empty. See again Figure 5.14(d).

5.10.2 Mean-field type treatments of tracer diffusivity

Below, Jk>k+1
C denotes the net flux of C = A or B from cell layer k to k + 1. We consider

behavior in a counter diffusion mode where the pore is occupied by just A and B such that

the total concentration of particles X = A+B or either type is constant (at least in the pore

interior). Thus 〈Xint〉 and 〈Eint〉 = 1−〈Xint〉 are independent of k. Schematics of the multi-cell

probabilities associated with this diffusion flux are given in Figure 5.15 for the 1 × 1 × L cell

model with R = 0, the 2× 1×L cell model with R = 1, and 2× 2×L cell model with R =
√

2.
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Figure 5.15: Schematic of multi-cell configurations probabilities defining Jk>k+1
C for the: (a) 1×1×L cell model

with R = 0; (b) 2× 1× L cell model with R = 1; and (c) 2× 2× L cell model with R =
√

2.

First, we consider behavior for the 1x1xL cell model with R = 0 where it is natural to apply

a standard mean-field (MF) site approximation to obtain 5.15(a)

Jk>k+1
C = h (〈CkEk+1〉 − 〈EkCk+1〉)

≈ (〈Ck〉 〈Ek+1〉 − 〈Ek〉 〈Ck+1〉) = −h 〈Eint〉∇ 〈Ck+1〉 , (5.13)

where ∇〈Ck〉 = 〈Ck〉 − 〈Ck−1〉. We thus conclude that

Dtr (1× 1× L,R = 0,MF site) = h 〈Eint〉 = h (1− 〈Xint〉) . (5.14)

This result implies that Dtr (1× 1× L,MF site) = 0.6h for 〈Xint〉 = 0.4 which is significantly

above Dtr (max) ≈ 0.32h for this model with L ≥ 25.

For any model with R > 0 , the site approximation is inadequate as it does not account for

the exclusion of nearby pairs of particles. However, the pair approximation is reasonable for

the 2 × 1 × L cell model with NN exclusion. We now consider the 2 × 1 × L cell model with

R = 1. Here, we use the simplified notation 〈C0,j,k〉 = 〈Cj,k〉 for cells within the pore where

j = 0 or 1 and 1 ≤ k ≤ L. After applying the standard pair approximation to factorize the

probabilities of multi-cell configurations appearing in Figure 5.15(b) for Jk>k+1
C , one obtains

Jk>k+1
C ≈h

〈C1,kE0,k〉 〈C1,kE1,k+1〉 〈E0,kE0,k+1〉 〈E1,k+1E0,k+1〉 〈E1,k+1E1,k+2〉
〈C1,k〉 〈E0,k〉 〈E0,k+1〉 〈E1,k+1〉2

− h
〈C1,k+1E0,k+1〉 〈C1,k+1E1,k〉 〈E0,kE0,k+1〉 〈E1,k+1E0,k+1〉 〈E1,k−1E1,k〉

〈C1,k+1〉 〈E0,k+1〉 〈E0,k〉 〈E1,k〉2
. (5.15)
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Using that exact relations including 〈C1,kE0,k〉 = 〈Ck〉, 〈E0,k〉 = 〈Eint〉, 〈E0,kE0,k+1〉 = 2 〈Eint〉−

1, etc., it follows that

Jk>k+1
C ≈ h (2 〈Eint〉 − 1)3 〈Eint〉−4∇〈Ck+1〉 . (5.16)

From (5.16), we conclude that

Dtr (2× 1× L,R = 1,pair) =h (2 〈Eint〉 − 1)3 / 〈Eint〉4

=h (1− 2 〈Xint〉)3 / (1− 〈Xint〉)4 . (5.17)

This result implies that, e.g., Dtr (2× 1× L,R = 1, pair) = 0.406h for 〈Xint〉 = 0.246 which is

significantly above Dtr (max) ≈ 0.15h for this model with L ≥ 25.

For the 2×2×L cell model with R =
√

2, it is reasonable to implement a pair approximation

which accounts for the feature that both NN and second NN pairs of cells cannot be occupied.

Each of the multi-site configurations shown in 5.15(c) determining the particle flux include: 3

NN CE pairs, 14 NN EE pairs, 3 second NN CE pairs, and 16 second NN EE pairs. Either

the NN or second NN EE pairs produce a factor 2 〈Eint〉 − 1. Also accounting for cells shared

between multiple NN and second NN pairs, we obtain

Dtr

(
2× 2× L,R =

√
2,pair

)
=h (2 〈Eint〉 − 1)30 / 〈Eint〉56

=h (1− 2 〈Xint〉)30 / (1− 〈Xint〉)56 . (5.18)

This result implies that Dtr

(
2× 2× L,R =

√
2,pair

)
= 0.263h for 〈Xint〉 = 0.136 which is

significantly above Dtr (max) ≈ 0.08h for this model with L ≥ 25.

5.10.3 Analytic estimates of adsorption parameters

Determination of the adsorption rate for reactants into the pore in our 2× 1×L cell model

with R = 1 and the 2 × 2 × L cell model with R =
√

2 requires analysis of the concentration

variation approaching a planar wall in a semi-infinite lattice-gas model on a simple-cubic lattice

with R = 1 and R =
√

2, respectively. We let 〈X0〉 denote the concentration in cells in the

layer adjacent to the wall, 〈X−1〉 the concentration in cells in the next layer away from the

wall, etc., and 〈Xb〉 denotes the bulk concentration far from the wall. Analytic estimation
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of this concentration variation, and importantly of 〈X0〉, is possible utilizing appropriate pair

approximations. In this analysis, we consider the semi-infinite equilibrated fluid as having

arbitrary-range exchange dynamics described by a rate f , where exchange events are consistent

with range R exclusion. In equilibrium, the corresponding flux of atoms from a cell adjacent to

the wall to the bulk, Jw→b, and the reverse flux from the bulk to the wall, Jb→w, must balance.

First, we estimate 〈X0〉 for models with R = 1. The probability, P7, of an empty cell in

the bulk with all six NN cells also empty is estimated in a standard pair approximation as

P7 ≈ (1− 2 〈Xb〉)6 / (1− 〈Xb〉)5. The probability, P6, of an empty cell against the wall with all

five NN cells also empty is estimated as P6 ≈ (1− 2 〈X0〉)4 (1− 〈X0〉 − 〈X−1〉) / (1− 〈X0〉)4.

Then it follows that

Jw→b = r 〈X0〉P7 and Jb→w = r 〈Xb〉P6. (5.19)

Assuming that 〈X−1〉 ≈ 〈Xb〉, i.e., rapid decay of concentration oscillations, the equality

Jw→b = Jb→w, yields 〈X0〉 ≈ 0.2189 (0.1071) versus the Monte Carlo simulation values of

0.211 (0.106) for 〈Xb〉 = 0.20 (0.10). The above analysis can be refined to provide additional

assessment of concentration oscillations away from the wall.

For models with R =
√

2, we implement a pair approximation which accounts for the fea-

ture that both NN and second NN pairs of cells cannot be occupied. The probability, P19, of

an empty cell in the bulk with all six NN cells and all additional twelve second NN cells also

empty is estimated as P19 ≈ (1− 2 〈Xb〉)18 / (1− 〈Xb〉)17. The probability, P14, of an empty

cell against the wall with all five NN cells and all additional eight second NN cells also empty

is estimated as P14 ≈ (1− 2 〈X0〉)8 (1− 〈X0〉 − 〈X−1〉)5 / (1− 〈X0〉)12. Then, it follows that

Jw→b = r 〈X0〉P19 and Jb→w = r 〈Xb〉P14. (5.20)

Assuming again that 〈X−1〉 = 〈Xb〉, the equality Jw→b = Jb→w, yields 〈X0〉 ≈ 0.187 (0.081)

versus the Monte Carlo simulation values of 0.123 (0.059) for 〈Xb〉 = 0.10 (0.05). The above

analysis can be refined to assess concentration oscillations [32].
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Figure 5.16: Profile evolution for tracer exchange for the three models. Time: 0, 5, 52,. . .,57. Solid curves: KMC

simulation. Dashed curves: generalized hydrodynamic theory.

5.10.4 Analytic estimates of desorption parameters

To treat desorption, one needs to assess the conditional probabilityQ5|1 (Q9|5) in the 2×1×L

(2× 2×L) cell model with R = 1 (R =
√

2). Recall that Q5|1 = P6/P1 denotes the conditional

probability in a semi-infinite system to five empty cells NN to a specified empty cell against

the wall in the semi-infinite system for R = 1. Here P6 (P1) is the probability of all 6 cells (just

one cell against the wall) being empty. See Figure 5.3(b). Q9|5 is the conditional probability to

find nine empty cells NN to a set of five empty cells against the wall for R =
√

2. Here P14 (P5)

is the probability of all 14 cells (just 5 cells against the wall) being empty. See Figure 5.4(b).

For the 1×1×L cell model with R = 1, a standard pair approximation leads to the estimate

P6 ≈ 〈E0,0,−1E0,0,0〉 〈E0,0,0E1,0,0〉 〈E0,0,0E0,1,0〉 〈E0,0,0E−1,0,0〉 〈E0,0,0E0,−1,0〉 / 〈E0〉4 .
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Figure 5.17: Simulated tracer exchange curves for the three models in Figure 5.16.

Since 〈E0,0,−1E0,0,0〉 = 1 − 〈X0〉 − 〈X−1〉, 〈E0,0,0E1,0,0〉 = 1 − 2 〈X0〉, etc., and 〈E0〉 =

1− 〈X0〉 = P1, it follows that

Q5|1 (pair) = P6/P1 = (1− 〈X0〉 − 〈X−1〉) (1− 2 〈X0〉)4 / (1− 〈X0〉)5 . (5.21)

For 〈Xb〉 = 0.2, we conclude that Q5|1 (pair) = 0.237 (0.213) just using 〈X0〉 ≈ 〈X−1〉 ≈

〈Xb〉 = 0.2 (using simulation values of 〈X0〉 = 0.212 and 〈X−1〉 = 0.199). These compare

with the simulation value of Q5|1 = 0.279 for 〈Xb〉 = 0.2. For 〈Xb〉 = 0.1, we conclude that

Q5|1 (pair) = 0.555 just using 〈X0〉 ≈ 〈X−1〉 ≈ 〈Xb〉 = 0.1, compared to the simulation value of

Q5|1 = 0.547.

For the 2 × 2 × L cell model with R =
√

2, we implement a pair approximation which

accounts for the feature that both NN and second NN pairs of cells cannot be occupied. P14 is

factorized into 4 NN pairs and 4 second NN pairs in layer k = −1, 12 NN pairs and 8 second

NN pairs in layer k = 0, and 5 NN pairs and 16 second NN pairs with one empty cell in layer

k = 0 and the other in layer k = −1. Likewise, P5 factorizes into 4 NN pairs and 4 second NN

pairs in layer k = 0. One concludes that

Q9|5 (pair) = P14/P5

= (1− 〈X0〉 − 〈X−1〉)21 (1− 2 〈X−1〉)8 (1− 2 〈X0〉)12 /
[
(1− 〈X−1〉)32 (1− 〈X0〉)41

]
. (5.22)

For 〈Xb〉 = 0.1 (0.05), we conclude that Q5|1 (pair) = 0.233 (0.562) just using 〈X0〉 ≈ 〈X−1〉 ≈

〈Xb〉 = 0.1 (0.05), compared to the simulation value of Q5|1 = 0.194 (0.533).
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5.10.5 Additional analysis of tracer exchange

Here, we provide a more complete presentation of results than in Section 5.4.3 for TE where

the pore is initially populated by B and the exterior reservoir by A (and the total concentration

is equilibrated). Figure 5.16 shows the evolution of concentration profiles both for A entering

the pore and for B exiting the pore. In Figure 5.17, we show the corresponding tracer exchange

curve, γ (t), versus t, where γ (t) simply gives the fraction of particles inside the pore which are

of type A at time t.
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CHAPTER 6. MOLECULAR PASSING PROPENSITY IN NARROW

PORES: 2D LANGEVIN ANALYSIS OF MONOMERS AND LINEAR

OLIGOMERS IN A RECTANGULAR CHANNEL

Abstract

We consider a two dimensional monomer-oligomer system in an infinitely long rectangular

channel of width W , where the monomers and oligomers diffuse undergoing Brownian motion.

The oligomers are linear and are made out of non-intersecting circles. The interactions between

the monomers, oligomers and the channel’s walls are purely steric; meaning that the oligomers

cannot intersect with each other or the pore walls. Based on this, we measure the passing

propensity of the monomers and the oligomers in the small gap regime, where we expect

the passing propensity as a function of gap size to follow a power law P ∼ (g/r)σ. Using the

scaling law, we determine σ for the monomer-dimer system and the monomer-trimer system. We

compare the results for the monomer-dimer and monomer-trimer case using Langevin molecular

dynamics simulations to those obtained by solving the corresponding Fokker-Planck equation.

For wider gaps, the asymptotic behavior of the passing propensity for longer monomer-oligomer

systems is examined.

6.1 Introduction

Solution-phase transport and reaction processes in nanoporous materials are strongly im-

pacted when the diameter of the pores become comparable to a suitable defined linear size of

the relevant molecular species [1]. There is broad recognition that inhibited passing within the

pores, and in particular the extreme case of single-file-diffusion (SFD) which corresponds to

no passing, produces anomalous diffusion behavior. In the case of SFD, the mean-square dis-
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placement of a tagged particle increases sub-linearly with time contrasting the standard linear

increase [2]. It is also clear that such inhibited passing should impact behavior in more com-

plicated reaction-diffusion processes such as catalytic polymerization. In such solution-phase

polymerization processes, monomers diffuse in the presence of a solvent into catalytically func-

tionalized nanoporous material and the polymerization reaction occurs when monomers meet

other monomers or previously formed oligomers in the vicinity of catalytic sites [3–5].

Despite the evident importance of assessing suitably-defined passing propensities, P , for

various species within pores, there has been relatively little analysis of such quantities [6, 7].

A reasonable strategy to assess solvent-mediated passing of species of interest is to implement

Langevin molecular dynamics simulations for this process where the solvent is treated implic-

itly. It is also appropriate to note that an alternative but mathematically equivalent treatment

of such passing processes can instead analyze boundary-value problem for the Fokker-Planck

equations (FPE) which correspond to the Langevin dynamics [6]. Given the lack of previous

systematic studies of this phenomena, here we implement simple modeling for the passing on

monomers and linear oligomers as a function of oligomer length. Furthermore, given the lack

of basic insight into such behavior, we consider just a 2D version of this process where the

monomers are chosen as circles of radius r, and the oligomers as linear strings of circles also of

radius r, where both species diffuse within a rectangular pore of width W . The only interac-

tions are the pore walls. One advantage of this system is that one can more readily compare

the results of Langevin simulations with those of an equivalent Fokker-Planck analysis, where

the latter has greater potential to provide deeper insight into behavior.

For the above system, it is clear that passing is sterically blocked for pore width smaller

than a critical value of Wc = 4r. Thus, if one defines a gap size as g = W − 4r, the passing

propensity P must vanish as g decreases to gc = Wc − 4r = 0. Furthermore, it is natural to

explore possible scaling behavior P ∼ (g/r)σ, where σ denotes a non-trivial exponent [6]. Such

a scaling analysis will be the one component of the current study.
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6.2 Description of the System

Consider a mesoporous material that is immersed in a continuous fluid in which two kind

of molecules are dissolved in it. The molecules in the fluid are monomers and oligomers, as

described in Section 6.1, that can diffuse into and within the pores. These oligomers ran-

domly diffuse within the pore following a Wiener process, i.e. Brownian motion; see Figure

6.1. In a somewhat coarse grained model, the oligomers are regarded as spheres and the pores

as cylindrical channels. Further simplifications of the system requires: (i) The system to be

two-dimensional, (ii) the oligomers, instead of being composed of spheres, to be composed of

circles, and (iii) instead of a cylindrical channel of radius R, a rectangular channel of width

W ; that will be referred to as the “pore” from here on, see Figure 6.2.

Figure 6.1: Schematic of the diffusion model. Particles of different species undergo Brownian motion and diffuse

into the pore. Within the pore they can pass each other.

In the case of a two-dimensional and less coarse grained model, the oligomers can be com-

posed of circles of not necessarily the same radius, and in different arrangements. It is the

case that we shall focus on linear oligomers; that is, monomers, dimers, trimers, tetramers, and

pentamers, all made of non-intersecting circles of equal radius, that is set to unity; see Figure

6.3.

To determine the passing propensity, we shall consider a monomer-oligomer system. Specif-

ically, the five types of setups that are going to be considered are monomer-monomer (m-

m), monomer-dimer (m-d), monomer-trimer (m-tr), monomer-tetramer (m-te), and monomer-

pentamer (m-p). To describe the system thoroughly, the following assumptions are made: (i)

The oligomers move in a viscous isotropic and homogenous fluid, meaning that if a rigid set

of axis is set and fixed on an oligomer, no matter where the oligomer is placed, or how the

oligomer is rotated, the diffusion tensor remains the same when calculated with respect to the

fixed axis. (ii) The pore in an infinite length rectangle along the main axis and it has a cross
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Figure 6.2: Mapping of the 3D problem to 2D. The case depicted above would be that of a dimer and trimer.

The oligomers that are made of spheres and move in an infinitely long cylinder with cross-section diameter Dp

are mapped into an infinite rectangular pore of width W .

section width W , see Figure 6.1. (iii) The solvent is an ideal fluid, where no-slip boundary

conditions are used. (iv) There is no hydrodynamic interaction of the oligomers with the walls.

(v) The oligomers only have steric interactions with each other and the pore walls; other type

of long and short range interactions are suppressed. (vi) The oligomers are made of circles, all

of equal radii. (vii) The oligomers are rigid, meaning that the relative angles and distances of

the atoms within an oligomer are constant.

With these assumptions, the equations of motion are obtained and two methods are pre-

sented to obtain the scaling exponent σ, for a m-d and m-tr system.

6.3 The Equations of Motion

To get the translational equations of motion, one uses Newton’s second law

~Finet = mi~̈ri, (6.1)

with ~̇r = d~r
dt , ~̈r = d2~r

dt2
, etc. The net force exerted on the ith oligomer, ~Finet , is just the sum of

all forces on all the atoms in the oligomer. The forces that are applied on the oligomers, in

this case, are the frictional forces, that are proportional to the velocity and a force described

by random Wiener process, so that the equations read

m~̈r = −ζ̃t~̇r + ~F (t) ; (6.2)
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(a) (b) (c)

(d) (e)

Figure 6.3: 2D oligomers to be examined. The shapes of the oligomers to be used, not to scale, are (a) monomer,

(b) dimer, (c) trimer, (d) tetramer and (e) pentamer. The radius of each circle is r = 1 and the mass of each

circle is taken as m = 1, such that, for each oligomer, the center of mass of coincides with the geometrical center.

where ζ̃t is the mass independent translational friction tensor. Assumptions on ζ̃t are given

further ahead. The last term in Equation 6.2, ~F (t), is a random normal distributed force, such

that the time average of the force is zero and the forces are spatially uncorrelated

〈
~F (t)

〉
= 0, (6.3a)〈

Fi (t)Fj
(
t′
)〉

= 2kBTζtiδijδ
(
t− t′

)
. (6.3b)

This equation is now not a deterministic differential equation, but a stochastic differential

equation. Thus, we are forced to use different methods to solve this equation. We shall

consider the overdamped equations of motion, ~̈r = 0, thus, Equation 6.2 becomes

ζ̃t~r = ~F (t) with ~F (t) =
√

2kBT ζ̃
1/2
t W̃ and D̃t = kBT ζ̃

−1
t ; (6.4)
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where D̃t is the positive definite translation diffusion tensor and W̃ is a 2×1 vector of normally

distributed random numbers. From Equation 6.4, the stochastic differential equation to be

solved is

~̇r =
√

2µ̃t ~W, (6.5)

where µ̃t is a tensor such that µ̃tµ̃
T
t = D̃t. Physically, D̃t is required to be a symmetric positive

definite tensor, thus, µ̃t is obtained from a Cholesky decomposition and is symmetric.

For oligomers that are composed of two or more circles, besides the oligomers translating,

the oligomers can rotate. Since the system is analyzed in two dimensions, the oligomer can

only rotate about the plane, that is simpler than that of the formulation of the problem in

three dimensions. The rotational equation of motion is simple and given by

τinet = Iiθ̈i. (6.6)

The net torque exerted on the ith oligomer, ~τinet , is just the sum of all torques on all the atoms

in the oligomer. The torques that are applied on the oligomers, in this case, are the frictional

torques applied to the oligomer with respect to center of mass of the oligomer. The torques that

are applied are proportional to the angular velocity with respect to the plane and a random

Wiener process, i.e., a torque due to Brownian motion, so that the equation reads

Iθ̈ = −ζrθ̇ + τ (t) ; (6.7)

where ζr is the inertia independent rotational friction coefficient, ζr > 0. The term τ (t) is the

random normal distributed torque, such that the time average of the torque is zero and obeys

〈τ〉 = 0, (6.8a)〈
τ (t) τ

(
t′
)〉

= 2kBTζrδ(t− t′). (6.8b)

Since we are working in the overdamped regime, θ̈ = 0, thus, the equation to be solved is

ζrθ̇ = τ (t) . (6.9)

To solve the equations, there is the possibility of solving the differential equations using a

FPE approach, since for every Langevin equation there exists a FPE [6, 8, 9]. In this context,
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Figure 6.4: Conventions for translation and rotation of an oligomer. The oligomers are made of circles, in this

example a trimer, of the same radius, that is set to unity, r = 1. For translation, the ith oligomer translates

along the x′i and y′i body-fixed axes, represented by the solid arrows. If the oligomer is not a monomer, it rotates

about its geometrical center. The diffusion coefficients Dx′i , Dy′i and Dθi , are all set to unity. The surrounding

disk is defined as the disk of radius Rie that encloses the oligomer, and is centered at the geometrical center.

The pore-fixed axes are represented by the dashed lines.

a FPE has already been used to analyze the system for the m-m and the m-d case [6]; where

Langevin MD simulations were also used to validate the results. The small gap limit for a

trimer and wider gaps for longer linear oligomers are going to be examined.

6.4 Using an Algorithmic Process to Solve the Equations

To obtain the passing probabilities, a FPE method can be used. In particular, the limit of

small gaps has already been examined for the m-m and higher dimensional cases such as sphere-

sphere and sphere-dimer case [6, 10]. To solve Equation 6.9 and Equation 6.5, a stochastic

simulation method is used. We make the assumptions: (i) The oligomers are made of circles

of the same radii, that we label as r. For simplicity, we use r = 1. (ii) A body-fixed frame for

each oligomer is used to calculate the diffusion tensor and calculate the displacements. The

rotations are calculated about the center of mass of the oligomer, that in this case coincides

with the geometrical center, e.g., see Figure 6.4. (iii) The oligomers are chosen so that they

are linear, and the circles of which they are composed do not intersect each other. (iv) Choose

the translational diffusion tensor and the rotational diffusion coefficient of the oligomers to be
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independent of the oligomer length and width. Also the forces and torques are uncorrelated,

so that in the body-fixed frame

D̃t =

 Dx′ 0

0 Dy′

 and Dr = Dθ; (6.10)

in the appropriate units. The dimensions of the diffusion tensor, D̃t, are units of length squared

divided by time,
[
D̃t

]
= L2/T . In the rotational case, the dimensions of the diffusion tensor,

Dr, are 1 divided by units of time, [Dr] = 1/T . This choice simplifies the FPE, and makes

it suitable to compare the translational and rotational scales by setting [L] = 1. This will be

useful to compare the results with the ones in [6].

It is worth mentioning that there is currently no theory to choose the diffusion coefficients

for complicated shaped oligomers in two dimensions, whereas for the three dimensional case

the coefficients can be approximately obtained using several assumptions [11–14].

The discrete version of Equation 6.8b is obtained from the relation

〈Gi (t)Gj (t)〉 =
1

∆tn

∫ tn+1

tn

Gi (t)Gj (t) dt =
2kBT ζ̃iδij

∆tn
; (6.11)

where G can represent either the components of the force F or the torque τ . To solve the

equations, an Euler-Maruyama scheme is used

~ri+1 − ~ri
∆t

=

√
2

∆t
µ̃ti

~Wi,
θi+1 − θi

∆t
=

√
2

∆t
µ̃ri

~Wi; (6.12)

with µ̃ti =
√
Dti = 1 and µ̃r =

√
Dr = 1, that results in the simplification in the equations

~ri+1 − ~ri
∆t

=

√
2

∆t
~Wi,

θi+1 − θi
∆t

=

√
2

∆t
~Wi. (6.13)

The form of Equation 6.13 provides an algorithm to solve the equations at each time step.

6.4.1 The simulation algorithm

Define the following quantities: (i) The position of the ith oligomer as the position of the

center of mass of the ith oligomer, ~xi = (xi, yi). (ii) The orientation of an oligomer as the

direction of the unit vectors fixed in the oligomer with respect to a fixed frame in the pore.

(iii) The separation of the oligomers as the difference in position of the first and the second
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oligomer ∆~x = ~x1 − ~x2 = (x1 − x2, y1 − y2). (iv) A move is the change in position and/or

orientation of the oligomers. (v) The initial separation in the x axis of the oligomers as ∆x0.

(vi) A pass as the separation of the oligomers such that ∆x ≤ −∆x0. (vii) A fail as the

separation of the oligomers such that ∆x ≥ 2∆x0. (viii) A trial as a series of valid movements

from a starting position that end in a pass or a fail. (ix) A run as a defined number of trials.

(x) The passing propensity as the number of trials in a run that result in a pass, divided by the

total number of trials (passes + fails).

Using these definitions, the algorithm used follows the steps:

Step 1 Setup the width of the pore so that there is a possibility of oligomers passing each other;

if there is not such a pore width, terminate the program. Set the pass and fail counters

to zero, and the number of maximum trials, Nmax, to some integer number greater than

zero.

Step 2 Setup the oligomers in a valid initial configuration and set the initial separation of the

oligomers in the x axis as ∆x0.

Step 3 Save the information of the current configuration of the oligomers.

Step 4 Make a move for oligomer 1 and oligomer 2:

(a) Stochastically change the position and orientation of oligomer 1 and oligomer 2. The

orientation of an oligomer only has to be changed if it is not a monomer.

(b) If the oligomers intersect the wall or each other, reset the oligomers to the configu-

ration before making the moves and go to Step 4(a); otherwise, continue to Step

5.

Step 5 Check the separation of the oligomers:

(a) If the separation of the oligomers in the x axis is less than or equal to −∆x0, add

one to the pass counter and continue to Step 6.

(b) If the separation of the oligomers in the x axis is greater than or equal to 2∆x0, add

one to the fail counter and continue to Step 6.
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(c) If the separation of the oligomers in the x axis is such that −∆x0 < ∆x < 2∆x0, go

to Step 3.

Step 6 Check if the simulation is done:

(a) If the number of trials is less than Nmax, go to Step 2; otherwise continue to Step

7.

Step 7 Get the passing propensity as P = # of passes/Nmax and finish the program.

To exactly determine the minimum pore width of the linear oligomers used here, it is trivial to

see that the minimum vertical phase space that the oligomer has available is psmin = W − 2r,

that is when the oligomer’s longest axis is aligned with the main axis of the pore. Discussion

for general shaped configurations is discussed in Section 6.8.

6.4.2 Setting up the initial configuration

The initial configuration of the oligomers is important since it influences the passing propen-

sity. The physical condition that we choose for the starting position is when the oligomers are

separated by a distance along the x axis of the pore ∆x0 = rc = R1e + R2e , where rc is the

sum of the radius of the surrounding disks of the oligomers, see Figure 6.4. The surrounding

disk of an oligomer is defined as the minimum disk with radius Rie from the center of mass of

the oligomer that encloses all the atoms in the oligomer. Even if the surrounding disk gives an

idea of the typical oligomer size, it often provides no information about the shortest or longest

axis of the oligomer.

The fixed choice of the initial separation of the oligomers along the x axis leaves two free

parameters, that are the y position and orientation of the oligomers within the pore. The

initial y position of the oligomers are randomly determined from the available phase space for

the oligomer to move in. The procedure to determine the initial y position of each oligomer

is to: (i) Set the center of mass of the oligomer in the y = 0 coordinate, see Figure 6.5a)

(ii) Randomly rotate the oligomer about the center of mass, such that the oligomer does not

intersect the pore walls, and fix the orientation of the oligomer; the oligomers will not intersect
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each other because of the initial ∆x0 position, see Figure 6.5b) (iii) For the ith oligomer, get

the available space in the y axis and call it Lpsi = Lti + Lbi , as defined in Figure 6.5b) . (iv)

Include the physical constraint that the oligomers will always have a tendency to be in an

initial orientation such that the phase space for them to move is maximum, i.e., get the ratio

P = Lps/(W − 4r) and choose a random number in the range n = (0, 1). If n is less than

or equal to P , accept the orientation of the oligomer and choose a random position for the

oligomer in the y direction, such that the oligomer does not intersect the pore walls.

As it is important to keep track of the position of the atoms in the oligomers, it is impor-

tant to keep track of the position of the center of mass, and the orientation of the axis of the

oligomers, since the moves will always be performed with respect to this body-fixed frame. An

example of a valid initial configuration of the oligomers is shown in Figure 6.5c).

6.4.3 Moving the Oligomers: Translation and Rotation

To get the translational and rotational quantities, it is convenient to refer to Equation 6.13,

that clearly gives an algorithm to choose the displacements. Since we are working in a body-

fixed frame and the fluid in which the oligomers are moving in is isotropic and homogeneous, the

diffusion tensor and coefficient will remain constant. To get the displacements, the procedure

is to: (i) Get 3 normal distributed random numbers. (ii) With the diffusion tensor for each

component, calculate the displacement. Following Equation 6.13

di =
√

2∆tWi, (6.14)

where i ∈ {1, 2, 3}. (iii) The translational quantities are associated with the first two indices,

i ∈ {1, 2}, and the rotational with the last, i = 3. To implement the translational algorithm,

a transformation to the pore-fixed frame is needed. If the body-fixed frame vector basis of the

ith oligomer is defined by {êi1 , êi2}, where the vectors are expressed in the pore-fixed frame,

the displacement vector of the oligomers in the pore-fixed frame is

∆~xi = d1êi1 + d2êi2 . (6.15)

(iv) Translate the center of mass by ∆~xi and all the atoms by ∆~xi.
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(a)

(b) (c)

Figure 6.5: 2D oligomers initial trial setup. The procedure to set up a trial, initially, is to (a) setup the oligomers

separated by a distance of ∆x0 = R1e + R2e , as shown. (b) Rotate each oligomer by an arbitrary angle about

its geometrical center and get the available phase space. Determine if the configuration is valid. (c) If the

configuration is valid, set the y position of each oligomer randomly, according with the available y phase space;

otherwise, repeat the process until a valid configuration is reached.
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To rotate the oligomer: (i) Translate the oligomer such that the center of mass of the

oligomer lies at the (x, y) = (0, 0) coordinate. (ii) Rotate the atoms of the oligomer, along with

êi1 , êi2 , about the plane of the oligomer. (ii) Move the atoms and the center of mass such that

the position of the center of mass matches with the original position of where it was.

Once the oligomers are moved, it has to be checked whether the oligomers obey the steric

constraints, i.e., the oligomers do not intersect each other or the pore walls; the two cases are

evaluated separately. To check if the oligomers intersect the pore walls, it is useful to first check

if the surrounding disks (defined in Section 6.4.2) intersect the pore wall. If the surrounding

disk of an oligomer does not intersect the pore walls, the oligomer does not intersect the pore

walls. Otherwise, intersection of every circle in the oligomer with the pore walls has to be

checked. To check the intersection of the oligomers, it suffices to check if the surrounding disks

do not intersect each other. If this does not happen the oligomers cannot intersect. Otherwise,

the intersection of the oligomers has to be checked for each of the circles the oligomers are

composed of.

To evaluate the intersection criteria of the oligomers within the pore, define three logical

variables Acw1 , Acw2 and Ac12; where Acw1 and Acw2 are the binary logical variables (true/-

false) that denote the intersection of the oligomers with the wall and Ac12 the binary logical

variable that denotes if the oligomers intersect each other. To accept a move of the oligomers

Am (Acw1 , Acw2 , Ac12) must be true, where

Am (U1, U2, . . . , UN ) = U1 ∧ U2 ∧ . . . ∧ UN ; (6.16)

the “∧” operator makes reference to the logical “and” operator and “∨” to the logical “or”

operator.

To evaluate Acwi , the intersection of the oligomers’ circles with the pore walls have to be

tested. Define yt = +W/2 and yb = −W/2 as the equations of the lines where the pore has its

walls. For the oligomer not to intersect the pore walls, then either two of the conditions have

to be met: (i) That the surrounding disk, Risurr , does not intersect the pore walls; a condition

that is enough for the oligomer to not intersect the pore walls; or (ii) the individual circles, of
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which the oligomer is composed of, should not intersect the pore walls. Thus,

Acwi = {[(yicm +Risurr) ≤ yt] ∧ [(yicm −Risurr) ≥ yb]}∨
Ni∧
j=1

{[(
yij + rij

)
≤ yt

]
∧
[(
yij − rij

)
≥ yb

]}
(6.17)

must be true. To determine if the oligomers do not intersect each other, Ac12, then either

two of the conditions have to be met: (i) That the surrounding disks of the oligomers do not

intersect each other; a condition that is enough for the oligomers to not intersect each other;

or (ii) the individual circles of both oligomers should not intersect each other. Thus,

Ac12 =
{[

(x1cm − x2cm)2 + (y1cm − y2cm)2
]
≥ (R1surr +R2surr)

2
}
∨

N1∧
i=1

N2∧
j=1

{[(
x1i − x2j

)2
+
(
y1i − y2j

)2] ≥ (r1i + r2j

)2}
(6.18)

must be true. See Figure 6.6.

To determine the outcome of a trial, the following criteria is used: (i) If the molecules

have passed each other, the separation of the centers of mass of the oligomers along the x axis

of the pore has to be less than or equal to −∆x0, or (ii) if the molecules have failed to pass

each other, the separation of the centers of mass of the oligomers along the x axis of the pore

has to be greater than or equal to 2∆x0, see Figure 6.7. If the separation of the centers of mass

of the oligomers along the x axis of the pore does not meet the pass or fail criteria, the trial

continues until one of the two conditions is met.

It is important to notice that if the problem is to be solved computationally, for relatively

narrow pores and when oligomers are in the passing positions, the number of conditions to

be evaluated are N1 ·N2, a quantity that must be evaluated at least once for each move. The

evaluation of these conditions, the translation and rotation of the oligomers, and the generation

of the normal distributed random numbers are the main sources to determine the speed at

which the program runs. Thus, it is of the highest importance to determine an appropriate

time step ∆t, so that the oligomers appropriately explore the possible phase space and make

no unphysical moves (e.g., pass through each other), but is fast enough to output results in an

acceptable amount of time.
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(a) (b)

(c)

Figure 6.6: 2D oligomers, examples of valid and invalid configurations. The configuration is not valid when

(a) one or both oligomers intersect the pore, or (b) the oligomers intersect each other. An example of a valid

configuration is when both oligomers (c) do not intersect each other or the pore.
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(a) (b) (c)

Figure 6.7: 2D oligomers, examples of a passing and failing criteria. Define ∆x0 from (a) a valid initial condition.

The oligomers have (b) passed each other if the separation of the centers of mass of the oligomers along the

x axis of the pore is greater than or equal to −∆x0. The oligomers have (c) failed to pass each other if the

separation of the centers of mass of the oligomers along the x axis of the pore is greater than or equal to 2∆x0.

6.5 Results

To determine the passing propensity of the oligomers, the diffusion tensor for each oligomer

in the body-fixed axis and in dimensionless units is given by

Dx′i
= Dy′i

= Dθi = 1; (6.19)

see Figure 6.4. To obtain the passing propensity in the wide pore limit, the oligomer systems

that are chosen are (see Figure 6.8): (i) m-m, (ii)m-d, (iii) m-tr, (iv) m-te, and (iv) m-p.

Using dimensionless quantities, all the circles have unit radius r = 1, the pore widths to be

explored are in the range W/r ∈ [4.4, 10.8]. Define the gap as the vertical phase space available

for oligomers to pass each other, when in the transition state, see Figure 6.9; for this particular

case the gap is simply given by g = W − 4r, that clearly implies (g/r) = (W/r) − 4. Thus,

gaps in the range of (g/r) = [0.4− 6.8] are examined. The remaining parameter that needs to

be chosen is the time step ∆t. To get physical results, a time step that is small enough for the

oligomer to properly explore the phase space is needed. However, the smaller the time step,

the longer it will take for the simulations to run. Thus, it is convenient to probe several time

steps, and determine which is the biggest time step at which the results start converging. The

passing propensity is obtained as a function of the gap divided by the unit radius.



158

Following the algorithm in Section 6.4.1, the results for the different monomer-oligomer

systems are obtained. The number of trials needed to get the simulations to converge to a stable

result is N = 2.5× 105. To determine the number of trials needed to get accurate results, the

passing propensity P = # of passes/n is calculated each n = 100 trials, until n = N , and

a visual estimate of how many trials are needed to get a constant probability, i.e., a small

fluctuation of results about a fixed value; examples are shown in Figure 6.11.

The passing propensity as a function of the gap for the different systems are presented

in Figure 6.11. From the results in Figure 6.11, the optimal time step for the simulations is

determined to be ∆t = 10−4. The results for ∆t = 10−4 for all the systems are compared in

Figure 6.12.

(a) (b) (c)

(d) (e)

Figure 6.8: 2D oligomers systems to be examined, (a) m-m, (b) m-d, (c) m-tr, (d) m-te and (e) m-p. All the

circles have the same radius r = 1 and the same diffusion coefficients along the body-fixed axis. Diagrams not

to scale.
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Figure 6.9: Gap definition for a 2D system of oligomers. The gap is defined as the minimum amount of phase

space available for the oligomers to pass each other in the transition state.

Figure 6.10: 2D passing propensity evolution with number of trials, the m-d case. A time step of ∆t = 10−4 is

used. The passing propensity for several gap sizes is shown; fluctuations after n = 120 000 trials are small and

can be considered as the minimum number of trials to get a reliable estimate.
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(a) (b)

(c) (d)

Figure 6.11: Passing propensity for different monomer-oligomer systems. Time steps of ∆t ={
100, 10−1, 10−2, 10−3, 10−4, 10−5

}
are used to determine the optimal time step for the (a) m-d, (b) m-tr, (c)

m-te and (d) m-p systems. The optimal time step is determined to be ∆t = 10−4.
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For specific gap sizes, the passing propensity for longer monomer-oligomer system is bigger

than that for shorter oligomers. This can be explained by the available phase space for the

oligomers to move in. Assume a linear oligomer made out of N barely touching but non-

intersecting circles, as the oligomers that were used as the models, see Figure 6.8. If a gap

is fixed, as the oligomer becomes longer, the less phase space available the oligomer will have

to move and rotate in it. With the additional constraint that the long axis of the oligomer

is more likely to be initially aligned with the x-axis of the pore, the longer the oligomer, the

more likely it will remain aligned with the pore with increasing oligomer length, whereas for

shorter oligomers, as the gap grows wider, the longest axis of the oligomer will be more likely

to be perpendicular to the x-axis of the pore (see Figure 6.5). If the results are examined for

(g/r) = 0.4 and (g/r) = 0.8, the results are consistent in that the smallest passing propensity

is for the m-p system, and gradually increases as the number of circles of the oligomer decrease

down to two, i.e., the m-d system; see Figure 6.12. It can also be inferred that the magnitude

of the passing propensity, for larger gaps than the ones shown, will eventually assume the order

Pmonomer ≥ Pdimer ≥ Ptrimer ≥ Ptetramer ≥ Ppentamer; as one would expect.

Figure 6.12: Passing propensity for different monomer-oligomer systems as function of (g/r). A time step of

∆t = 10−4 is used. To determine the passing propensity for each (g/r) data point, N = 250 000 trials are used.
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Figure 6.13: Results for the m-m system. The results obtained for this work match (red markers/triangles), to

within the uncertainty, with those reported in [6, 10] (black markers/circles), specially when going to the small

gap regime.

To validate the results, the m-m system is compared with the Langevin MD simulation

results of [6, 10]. The results are further validated for the small gap regime, see Section 6.5.1.

The results for m-m obtained in this work are compared to those in [6, 10] in Figure 6.13 and

Figure 6.16(a), and the numerical results are compared in Table 6.1.

Of special interest are the results obtained for the m-d and m-tr systems. Using the results

for the m-d and m-tr systems implementing the FPE [15] are obtained and compared to those

obtained in this work, see Figure 6.14. It must be noted that when using the FPE, the same

technique from [6] is implemented for the longer monomer-oligomer system, i.e., the flux of

“injected” probability is kept constant, so that the boundary valued problem can be solved;

the reader is referred to [6] for details. The results using the FPE approach do not really

match the Langevin MD simulation results as the gap starts to get bigger, however, for smaller

gaps the methods start to converge, see Section 6.5.1; consistent with the assumption that the

probability for small gaps should converge. However, for scaling purposes, if the results are

plotted in a log-log scale, when using the FPE approach, the general trend is that the results

converge with those of the Langevin approach, in particular for the m-tr system.
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(a)

(b)

Figure 6.14: Comparing results for the monomer-oligomer system with the FPE. Comparing the results from (a)

this work compared to the (b) results using the Fokker-Planck equation [15] for m-m (black circles), m-d (blue

squares) and m-tr (orange diamonds). The results are qualitatively similar.
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Table 6.1: Results for the m-m system. The results obtained for (a,c) this work match, to within the uncertainty,

with (b,d) those reported in [6, 10] , specially when going to the small gap regime.

Comparing M-M Results

P Log10(P )

(g/r) (a) (b) Log10(g/r) (c) (d)

0.6 0.0486 0.04262 -0.221849 -1.31336 -1.37039

1.2 0.09506 0.08473 0.0791812 -1.022 -1.07196

1.8 0.13052 0.11699 0.255273 -0.884323 -0.931851

2.4 0.15593 0.14161 0.380211 -0.80707 -0.848906

3. 0.17521 0.16145 0.477121 -0.756441 -0.791962

3.6 0.19083 0.1795 0.556303 -0.719353 -0.745936

4.2 0.20193 0.19004 0.623249 -0.694799 -0.721155

4.8 0.21411 0.19979 0.681241 -0.669363 -0.699426

5.4 0.22531 0.21108 0.732394 -0.64722 -0.675553

6. 0.22707 0.21962 0.778151 -0.64384 -0.658328

6.6 0.23779 0.22472 0.819544 -0.623806 -0.648358

7.2 0.24114 0.23552 0.857332 -0.617731 -0.627972

7.8 0.24672 0.24058 0.892095 -0.607796 -0.61874

8.4 0.25136 0.24594 0.924279 -0.599704 -0.609171

9. 0.25716 0.24999 0.954243 -0.589797 -0.602077

6.5.1 Small Gap Results

In the small gap limit, the passing propensity is believed to behave as a power law, P ∼

(g/r)σ. From results in [6], in a m-m system the σ parameter is determined to be σ = 1.4 using

Langevin MD simulations that matches well when solving the FPE. For this case, the scaling

coefficient σ for the m-d and m-tr system is determined, both using the Langevin method. As

for the previous Section, all the radii of the circles in the ith oligomer are set to r = 1 and

the diffusion coefficients in the body-fixed frames axes are chosen to be Dx′i
= Dy′i

= Dθi = 1;

see Figure 6.4. Since for smaller gaps the probability is significantly lower, a larger number of

trials have to be run. We choose this number to be N = 5 000 000 for gaps that are smaller

than (g/r) = 0.2, otherwise, the number of simulations remains the same, N = 250 000. As

noted before, the time step is of crucial importance to optimize the data acquisition process.

Thus, we choose a time step of ∆t = 10−5, that is the time step for which the results barely

change if the time step is decreased, as noted in [10].



165

(a) (b)

Figure 6.15: Passing propensity as a function of gap size for small gaps. Results for (a) m-d and (b) m-tr

are shown. Since the difference in the results for the two time steps is significant, we choose ∆t = 10−5 for

subsequent analysis.

The first feature to be explored is how well the passing propensity converges by changing

the time step, in the small gap regime. For bigger time steps than ∆t = 10−4, it is clear

that the simulations will not produce acceptable results, so we mainly focus on the time steps

∆t =
{

10−4, 10−5
}

. Since for small gaps the passing propensity is small, a subtle change in

results will change the scaling σ in a significant way. Since the results for ∆t = 10−4 differ

significantly from the results for ∆t = 10−5, we choose to use the time step ∆t = 10−5 for the

subsequent analysis; see Figure 6.15.

For wider gaps, the FPE analysis yields results that do not agree with the Langevin

analysis. However, for smaller gaps, the results should converge. To see how well the results

converge, a log-log plot of the passing propensity against the full range of gaps examined is

presented in Figure 6.16; the data for the m-m case corresponds to that in [6]. It is the case

that for the m-m and the m-tr case, the results for both the Langevin simulations and the FPE

agree for small gaps, whereas the results for the m-d do not. However, it is seen that in the last

few data points for the m-d case, the results begin to be closer together and possibly converge

at smaller gap sizes.

To determine the scaling exponent σ, the results from the Langevin simulations are going

to be used. It is worthwhile to mention again that the definition of “small gap” refers to the

regime where P ∼ (g/r)σ. As can be seen from Figure 6.16, the small gap regime for the m-m

system starts at gap sizes smaller than that for m-d and m-tr systems. Thus, it is important
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(a)

(b) (c)

Figure 6.16: Passing propensity as a function of gap size for small gaps with ∆t = 10−5, log-log scale. Results

for (a) m-m, (b) m-d and (c) m-tr are shown. Triangles are used to represent the results obtained in this work,

circles for the results in [6] and squares for the FPE results.
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(a) (b)

Figure 6.17: Small gap scaling for the different systems. Results for parameter (a) fitting using gaps up to

(g/r) = 0.4, and parameter (b) fitting using gaps up to (g/r) = 0.8. The data points for the m-m system are

represented by the blue circles, for the m-d system by the tan squares and for the m-tr system by the green

diamonds.

to determine what gap sizes are adequate to determine σ for each system. The systems to

be examined are m-d and m-tr; the m-te and m-p systems are not examined. The small gaps

range for both the m-d and the m-tr systems range from (g/r) = 0.05 to (g/r) = 0.2. Of

particular interest is the point where the m-d and the m-tr curves intersect, and the ordering

of the magnitude of the passing propensity becomes natural, i.e., for longer monomer-oligomer

systems the passing propensity should be smaller than for shorter monomer-oligomer systems.

The methodology to determine the scaling exponent σ exploits the properties of logarithms

P = α(g/r)σ ⇒ Logb (P ) = σLogb (g/r) + Logb (α) . (6.20)

Thus, we use the logarithm of the gaps and with the respective passing propensity of the system

under consideration, and then make a linear fit y = ax + c of the data; with y = Log10 (P ),

x = Log10 (g/r), and a = σ. Results are presented in Figure 6.17. The results for the fits are

presented in Table 6.2.

From Figure 6.17, it can be inferred that the points used to fit the data changes significantly,

and it is not clear if the point with (g/r) = 0.8 lies within the small gap regime. Statements

about the validity of the linear fits can be made from Table 6.2. The R2 values for the linear

fits indicate that for the m-m system, the gap value (g/r) = 0.8 might be too big, this from a
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Table 6.2: Linear fits to determine the small gap scaling exponent σ. Refer to Figure 6.17 for the definition of

(a) and (b); (c) corresponds to the fits from the data obtained by solving the FPE [15]. The R2 values, or how

close the values are to the regression line, are given below each data set.

Fits for monomer-oligomer small gap results

Oligomer monomer dimer trimer

(a) y = 1.46x− 0.944 y = 1.50x− 1.45 y = 2.17x− 1.14

R2 0.9974 0.9998 0.9990

σ 1.46± 0.1 1.50± 0.1 2.17± 0.1

(b) y = 1.37x− 1.03 y = 1.49x− 1.47 y = 2.06x− 1.24

R2 0.9943 0.9998 0.9971

σ 1.37± 0.1 1.49± 0.1 2.06± 0.1

(c) y = 1.41x− 0.92 y = 1.36x− 0.60 y = 1.96x+ 1.77

R2 0.9998 0.9999 0.9987

σ 1.41 1.36 1.96

slight decrease in the R2 value for data set (b); thus, to two significant figures, the value for

the scaling exponent of the m-m system can be considered to be σ = 1.4, as the results in [6]

suggest. For the m-d system, the R2 value remains the same when adding the (g/r) = 0.8 gap

to the fitting data. Thus, it can be inferred that the scaling exponent for the m-d system, to

two significant figures, is σ = 1.5, slightly above the σ = 1.4 predicted by solving the FPE, and

the gap (g/r) = 0.8 correspond to the small gap regime. For the m-tr system, the R2 value

slightly changes when adding the (g/r) = 0.8 gap to the fitting data, and the scaling exponent

σ is slightly different for both cases. Thus, it can be inferred, that the scaling exponent will lie

somewhere between 2.17 and 2.06, that can be taken as σ ≈ 2.1; a value slightly above the one

proposed by solving the FPE for the m-tr system [15].

It is worth noticing that the intersection point of the curves for the m-d and the m-tr

intersect twice; the intersection point for the wider gap regime can be easily obtained. In

Figure 6.17(b), the monomer- dimer and m-tr fitted curves intersect closer at the location

where the data points are, so that the most likely values for scaling exponent are closer to

those in data set (b) of Table 6.2(b).
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6.6 Summary and Conclusion

The passing propensity within infinite rectangular pores of width W for monomer-oligomer

systems has been elucidated by using a Langevin simulation approach, and the results have

been compared to those obtained by solving the FPE [6, 15]; both in the small gap regime,

where P ∼ (g/r)σ, and for wider gaps. For the small gap regime, m-m, m-d and m-tr systems

were examined; for the wider gap the former, including m-te and m-p systems, were examined.

The scaling exponents for the small gap regime are determined to be σm-m = 1.4 ± 0.1,

σm-d = 1.5 ± 0.1 and σm-tr ≈ 2.1 ± 0.1, that are consistent with the idea that the longer the

oligomer is, the passing propensity should get smaller faster, and are consistent with those

obtained by solving the FPE in the small gap regime, however, they exhibit a slightly higher

value than those predicted in [6, 15].

For wider gaps, the passing propensity for some of the oligomers, in general, do not follow

the order Pm-d ≥ Pm-tr ≥ Pm-te ≥ Pm-p, however it is natural to expect it, since the physical

condition that initially the shortest axis of the oligomer tends to be perpendicular to the longest

axis of the pore, favors passing for longer oligomers in a specific gap regime. Asymptotically, it is

expected that the natural order of the passing propensity becomes Pm-d ≥ Pm-tr ≥ Pm-te ≥ Pm-p.

The systems examined here have given insight in the scaling limit of small gaps for the

monomer-oligomer system. Further work can be devoted to elucidating the scaling exponent

for more complex systems such as dimer-oligomer systems. Further work can be directed

towards the determination and scaling of more realistic three-dimensional systems such as

sphere-oligomer, or even oligomer-oligomer, using more detailed modeling, as the exact diffusion

coefficients can be exactly obtained from the procedure in [13].
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6.8 Appendix A: Determining the Initial Orientation for a General Shaped

Oligomer.

To approximately, but accurately, get the minimum pore width for oligomers to be able to

fit the pore is to algorithmically get the shortest distance that transverses the oligomers, that

will be defined as the shortest axis of the oligomer; in an analogous way, the longest distance

that transverses the oligomers will be defined as the long axis of the oligomer.

To get the shortest oligomer axis and length, project each atom position vector onto a se-

lected unit vector r̂ = (cos (θ) , sin (θ)); with θ ∈ [0, π); and add and subtract the corresponding

atom radius from this value, make a set of values out of the maximum values and a second

list out of minimum values. From the set of these maximum values get the maximum value;

for the list of the minimum values, get the minimum value. Subtract the minimum value from

the maximum value and take the absolute value, this will be the length of the oligomer along

r̂, given a fixed angles θ. Do this for the complete range of θ and obtain the maximum length

lmax and the minimum length lmin. The minimum width of the pore for the oligomer to fit is

lmin. In Figure [add references] the shortest axis of the oligomers are shown.

In the particular case of two dimensions, the value of the shortest axis determines the min-

imum pore width for a single oligomer to fit in the pore, even if the oligomer does not have

a symmetry axis. The minimum passing space will be useful to determine the initial setup of

each trial.
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CHAPTER 7. LANGEVIN ANALYSIS OF THE MOLECULAR

PASSING PROPENSITY IN CYLINDRICAL PORES: APPLICATION

TO PNB CONVERSION INTO AN ALDOL PRODUCT

Abstract

Langevin molecular dynamic simulations are used to determine the passing propensity of

4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone in a cylindrical channel. The molecules

are coarse-grained to molecules made out of spheres. By imposing non-overlapping steric con-

straints on the molecules with the pore walls and between themselves, the passing propensity

of the molecules in the channel is determined. Then, the passing propensities, along with other

parameters, are then mapped into a further coarse-grained kinetic Monte Carlo model, where

the whole reaction-diffusion system is modeled. The results for the product yield in the Monte

Carlo simulation are then compared with the experimental results. All length units are given

in angstroms (Å) and mass units in atomic mass units (au), unless otherwise stated.

7.1 Introduction

Solution-phase catalytic conversion processes in nanoporous materials involve diffusion of

reactant from the exterior fluid into the pores, conversion to product in the vicinity of catalytic

sites, and ideally efficient diffusion product out of the pores. The latter is necessary to free up

space for additional reactant to enter the pores. Thus, there is some recognition that inhib-

ited passing of reactants and products within the pores, and in particular the extreme case of

single-file-diffusion (SFD) corresponding to no passing, strongly inhibits reaction yield [1–4].

A detailed molecular-level description of this process could in principle be provided by

many-particle Molecular Dynamics (MD) simulations, or many-particle Langevin simulations
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(where the solvent is treated implicitly). However these approaches are not particularly useful

due to the large number of particles and/or the fundamental difficulty in accessing experimen-

tally relevant time scales. Thus, instead typically coarse-grained stochastic lattice-gas modeling

is implemented where the pore is divided into a linear array of cells with size comparable to the

reactant and product species . Adsorption and desorption from the pore, and diffusion with the

pore, are treated by movement of reactants and products between the cells with appropriately

selected rates. Just allowing hopping to adjacent unoccupied cells corresponds to imposing a

SFD constraint. Thus, in general one allows exchange of reactant and product on adjacent

sites at a rate controlled by an exchange probability, Pex, [2,4] defined precisely in subsequent

sections. From the comments above, it is clear that reaction yield should depend strongly on

this parameter Pex.

For modeling of specific reaction processes, it is clear that reliable systems specific param-

eters are needed for input into the coarse-grained modeling. In particular, it is important to

obtain a reliable estimate of some measure of passing propensity, P , for reactants and prod-

ucts (defined in subsequent sections), which directly determines the exchange probability, Pex,

introduced above. While the above mentioned many-particle MD or Langevin simulations of

the overall process are not viable, we suggest that targeted Langevin simulations of a single

pair of reactant and product molecules is viable, and can provide effective quantification and

insight into the behavior of P . There is a lack of such analysis for specific systems in the

literature. However, such simulations will be the main focus of this Chapter. Our modeling

will be simplified assuming that the major factor controlling P is steric effects (i.e., non-overlap

of reactant and product molecules treated as rigid with hard-core interactions, and no overlap

of these species with the pore walls).

In Section 7.2, the general strategy to model the molecules and the Langevin equations of

motion are presented. In Section 7.3, the implementation of the Langevin simulations is dis-

cussed and algorithm to determine the passing propensity P is given. In Section 7.4, details on

how to get the numerical quantities needed as input for the Langevin simulations are examined.

In Section 7.5, the results for the Langevin simulations are analyzed and a brief discussion of

how to get parameters for the kinetic Monte Carlo (KMC) simulations is presented. Finally, in
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Section 7.6, the results for the KMC simulations are presented, ending with a brief summary

and conclusion in Section 7.7.

7.2 General Strategy to Model the Molecules and the Langevin Equations

of Motion

To determine passing propensity of the molecules, P , and the product yield for the reaction

described in Section 7.1, the parameters of the system must be determined. To determine these

parameters, a thorough description of the system under study is necessary. The system under

consideration consists of amine functionalized mesoporous silica nanoparticles. These nanopar-

ticles are characterized by the structure of its nanopores, i.e., the nanopores are linear, cylin-

drical, transverse the particle and do not intersect with each other [5–7], see Figure 7.1. The

nanoparticles are immersed in an acetone and 4-nitrobenzaldehyde solution. Inside the pore,

the 4-nitrobenzaldehyde molecules diffuse near the pore walls, where the 4-nitrobenzaldehyde

molecules catalytically and irreversibly react with the acetone in the presence of catalytic

amine groups, and forms 4-(4-nitrophenyl)-2-butanone [8]. The width of the pores in the silica

nanoparticles we consider range from ∼ 2 nm − 5 nm, pores that are wide enough for the 4-

nitrobenzaldehyde and 4-(4- nitrophenyl)-2-butanone molecules to be able to pass each other.

When the molecules are close to the pore ends, the product molecules can diffuse out of the

pore, thus populating the outside of the pore with product, that can eventually diffuse into the

pore again, when the outside concentration is high enough.

7.2.1 The equations of motion

To describe how bodies move in a three-dimensional environment, the way the bodies trans-

late and rotate are needed. For an isotropic body, i.e., a sphere, the equations of motion take

a simple and straight forward form. Spheres are often used in modeling complicated shaped

bodies [9–11]. The main strategy will be to coarse grain the molecules as a set of spheres whose

radii corresponds to the van der Waals radius of the atoms which they are composed of.

Before writing the equations of motion for the molecules, we shall make some approxima-

tions: (i) The molecules move in a viscous isotropic and homogeneous liquid, meaning that if a
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Figure 7.1: Schematic of the process and silica nanoparticles. To the left Schematic of the conversion of PNB to

an aldol compound by reaction with acetone in amine-functionalized MSN. The attachment of PNB to the amine

functionalized groups form a Schiff base, reducing the effective pore diameter. In the middle, pore cross-sectional

schematic. To the right, TEM image of mesoporous silica nanoparticle (MSN) with visible pores oriented from

left to right.

Figure 7.2: Pore model for the 3D Langevin simulations. The molecules, that are modeled as a collection of

spheres, undergo Brownian motion within an infinite length cylindrical pore of cross-sectional diameter Dp.

rigid set of axis is set and fixed on a molecule, no matter where the molecule is placed, or how

the molecule is rotated within the fluid, the diffusion tensor remains the same when calculated

with respect to the fixed axis. (ii) The pore is an infinite length cylinder along the main axis

and it has cross section diameter Dp, see Figure 7.2. (iii) The solvent is an ideal fluid, where

no-slip boundary conditions are used. (iv) The molecules only have steric interaction with each

other and the pore walls; other type of long and short distance interactions are suppressed.

To get the translation equations of motion, one uses Newton’s second law

~Finet = mi~̈ri, (7.1)
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with ~̇r = d~r
dt , ~̈r = d2~r

dt2
, etc. The net force on the ith molecule, ~Finet , is just the sum of all forces

on all the atoms in the molecule. The forces that are applied on the molecules, in this case,

are the frictional forces, that are proportional to the velocity, and a random Wiener process,

reflecting the thermal fluctuations in the solvent environment, so that the equations read

m~̈r = −ζ̃t~̇r + ~F (t) ; (7.2)

where ζ̃t is the mass independent translational friction tensor, further details are given in Section

7.2.2. The last term in Equation 7.2, ~F (t), is a random normal distributed force, such that

the time average of the force is zero and the forces are spatially correlated [12]〈
~F (t)

〉
= 0, (7.3a)〈

Fi (t)Fj
(
t′
)〉

= 2kBTζtij δ
(
t− t′

)
; i, j ∈ {x, y, z} . (7.3b)

The equation is now not a deterministic differential equation, but a stochastic differential

equation. Thus, we are forced to use a numerical or computational method to solve this

equation. We consider exclusively the overdamped regime, where ~̈r = 0, so that Equation 7.2

becomes [13,14]

ζ̃t~̇r = ~F (t) with ~F (t) =
√

2kBT ζ̃
1/2
t

~W and D̃t = kBT ζ
−1
t ; (7.4)

where D̃t is the positive definite symmetric translation diffusion tensor and ~W is a 3×1 vector of

normally distributed random numbers. From Equation 7.4, the stochastic differential equation

to be solved is

~̇r =
√

2 µ̃t ~W, (7.5)

where µ̃t is a symmetric tensor such that µ̃tµ̃
T
t = D̃t. Physically, D̃t is required to be a

symmetric positive definite tensor, thus, µ̃t is obtained from D̃t by a Cholesky decomposition.

To solve the equations, an Euler-Maruyama scheme is used so that the discrete correlation of

~F (t) is [15]

〈Fi (tn)Fj (tn)〉 =
1

∆tn

∫ tn+1

tn

Fi (t)Fj (t) dt =
2kBT ζtij

∆tn
. (7.6)

The solution of the equation, at each time step, is given by

~ri+1 − ~ri
∆t

=

√
2

∆t
µ̃ti

~Wi → ~ri+1 = ~ri +
√

2∆ti µ̃ti
~Wi; fi = f(ti) . (7.7)
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Figure 7.3: Rotations of asymmetric molecules. In general the molecules are asymmetric and rotations about

the different axes have to be distinguished. The translational coordinates and rotation angles are shown; the x,

y, z coordinates correspond to the translational coordinates and θx, θy and θz to the rotation angles.

For rotations, the equations of motion to be solved are similar to those of Newton’s equations

for translation

~τinet = Ĩi~̈θi; (7.8)

where Ĩi is the moment of inertia tensor and ~θi represents the angles of rotation around the

different axis of the ith molecule , see Figure 7.9 and Figure 7.10. As for the translational

equations, the net torque on the ith molecule, ~τinet , is the sum of all torques on all the atoms

in the molecule.

As for the translational part, the rotational equations of motion include a random Wiener

process, that represent the torques induced by the thermal fluctuations in the solvent, and

a frictional force that is proportional to the angular velocity of the body. The equations of

motion are given by

Ĩ ~̈θ = −ζ̃r~̇θ + ~τ (t) ; (7.9)
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where ζ̃r is now the rotational friction tensor. In an analogous way to translations, the random

torque obeys

〈~τ (t)〉 = 0, (7.10a)〈
τi (t) τj

(
t′
)〉

= 2kBTζrij δ
(
t− t′

)
; i, j ∈ {x, y, z} . (7.10b)

Since we are working in the over-damped regime, ~̈θ = 0, the equations of motion are simplified

to

0 = −ζ̃r~̇θ + ~τ (t) ; (7.11)

for which the solution is

~̇θ =
√

2 µ̃r ~W, (7.12)

where µ̃t is a symmetric tensor such that µ̃rµ̃
T
r = D̃r, and is the rotational analogous of D̃t.

To solve the equations, an Euler-Maruyama scheme is used so that the discrete correlation of

~τ (t) is [15]

〈τi (tn) τj (tn)〉 =
1

∆tn

∫ tn+1

tn

τi (t) τj (t) dt =
2kBT ζrij

∆tn
. (7.13)

The solution of the equation, at each time step, is given by

~θi+1 − ~θi
∆t

=

√
2

∆t
µ̃ri

~Wi → ~θi+1 = ~θi +
√

2∆ti µ̃ri
~Wi. (7.14)

In principle, the equations of motion could be considered separately, however, it is well

known that, in general, there is coupling between the translation and rotation of bodies [16].

It is a good strategy to merge Equations 7.2 and 7.9 into a single set of equations [14], that

will be the topic of the next section.

7.2.2 Coupled translational and rotational equations of motion

To get the coupled equations of motion, define a 6 × 1 vector that contains the force and

torque. The vector is defined as

~Fnet =

 ~Fnet

~τnet

 . (7.15)
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with an adjustment of units for either one of the quantities ~Fnet or ~τnet, so that the units in

Equation 7.15 match. We now proceed to write the equations of motion for the coupled system

in terms of the friction tensor and the Wiener process in a body-fixed frame, where there is

only fluid resistance

~Fnet = −ζ̃ ~V + ~F (t) ; (7.16)

with ζ̃ the grand resistance tensor, that contains all the information of the rotation, transla-

tion, and translation-rotation coupling friction terms. ~V is a 6 × 1 vector that contains the

time derivatives of the linear displacements, ~x, and angular displacements, ~θ; with one of the

quantities multiplied by the appropriate units so they can be merged into a single vector. ζ̃ is

the friction tensor, that is independent of the masses of the particles of which the molecule is

composed of. The random force ~F (t) is chosen in an analogous way to Equation 7.3, so that

the properties of ~F (t) are

〈
~F (t)

〉
= 0, (7.17a)〈

Fi (t)Fj
(
t′
)〉

= 2kBT ζ̃ij δ
(
t− t′

)
; i, j ∈ {1, 2, 3, 4, 5, 6} . (7.17b)

Thus, following the procedure in Section 7.2.1, the equations of motion to be solved in the

overdamped regime ~Fnet = 0 are

ζ̃
d ~R
dt

=
√

2kBT ζ̃
1/2 ~W → d ~R

dt
=
√

2µ̃ ~W; (7.18)

with µ̃µ̃T = D̃. The form of D̃ is a 6 × 6 positive definite symmetric tensor that is naturally

decomposed into four 3×3 blocks, each of which contains the diffusion coefficients for translation

(Dtt), rotation (Drr), and translation-rotation (Dtr) coupling

D̃ =

 Dtt DT
tr

Dtr Drr

 , where T denotes the transposition operation. (7.19)

This tensor is a quantity that depends on the choice of the origin of the set of axis, the

orientation of these with respect to the molecule, and the viscosity of the fluid in which the

molecule is immersed. The diffusion tensor can be calculated by following the procedure in [9];

the procedure is outlined in Section 7.10. The vector ~R is a 6 × 1 vector that contains the
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translational displacements ~x = (x, y, z) and the rotational angles, ~θ = (θx, θy, θz), about the

x, y, and z axis, respectively. The vector ~W is a 6× 1 vector of independent and uncorrelated

random normal distributed numbers.

To solve the equations of motion, at each time step, an Euler-Maruyama scheme is used.

Define the ith component of a vector ~v as vi, and the ij component of a two dimensional tensor

η̃ by ηij . The solution at each time step of Equation 7.18 is

Rin+1 = Rin +
√

2∆tn µijWjn , (7.20)

where Einstein summation over repeated indexes is used.

7.3 Simulation Algorithm

In Section 7.2.2 the solution for each time step to the equations using an Euler-Maruyama

scheme were derived (Equation 7.20). This solution to the equations and the constraints pro-

vide an algorithm to determine the passing propensity, P , as defined in Section 7.1.

It is convenient to define terminology before proceeding. Define the following quanti-

ties: (i) The position of the ith molecule as the position of the center of mass of the ith

molecule, ~xi = (xi, yi, zi). (ii) The orientation of a molecule as the direction of the unit

vectors fixed in the molecule with respect to a fixed frame in the pore. (iii) The sepa-

ration of the molecules as the difference in position of the first and the second molecule

∆~x = ~x1 − ~x2 = (x1 − x2, y1 − y2, z1 − z2). (iv) A move is the change in position and/or

orientation of the molecules. (v) The initial separation in the z axis of the molecules as ∆z0.

(vi) A pass as the separation of the molecules such that ∆z ≤ −∆z0. (vii) A fail as the sep-

aration of the molecules such that ∆z ≥ 2∆z0. (viii) A trial as a series of valid movements

from a starting position that end in a pass or a fail. (ix) A run as a defined number of trials.

(x) The passing propensity as the number of trials in a run that result in a pass, divided by the

total number of trials (passes + fails).

Using these definitions, the algorithm used follows the steps:

Step 1 Setup the width of the pore so that there is a possibility of molecules passing each other;

if there is not such a pore width, terminate the program. Set the pass and fail counters
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to zero, and the number of maximum trials, Nmax, to some integer number greater than

zero.

Step 2 Setup the molecules with the center of mass in the coordinate (x1, y1, z1) = (0, 0, R1e)

and (x2, y2, z2) = (0, 0,−R2e) , such the body-fixed axes of the molecules are aligned with

the pore-fixed axes.

(a) Setup the molecules in a random and valid and initial orientation, i.e., the molecules

do not intersect the pore walls, and set the initial separation of the molecules in the

z axis as ∆z0 = R1e +R2e .

Step 3 Save the information of the current configuration of the molecules.

Step 4 Make a move for molecule 1 and molecule 2:

(a) Stochastically change the position and orientation of molecule 1 and molecule 2.

(b) If the molecules intersect the wall or each other, reset to the molecules to the config-

uration before making the moves and go to Step 4(a); otherwise, continue to Step

5.

Step 5 Check the separation of the molecules:

(a) If the separation of the molecules in the z axis is less than or equal to −∆z0, add

one to the pass counter and continue to Step 6.

(b) If the separation of the molecules in the z axis is greater than or equal to 2∆z0, add

one to the fail counter and continue to Step 6.

(c) If the separation of the molecules in the z axis is such that −∆z0 < ∆z < 2∆z0, go

to Step 3.
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Step 6 Check if the simulation is done:

(a) If the number of trials is less than Nmax, go to Step 2; otherwise continue to Step

7.

Step 7 Get the passing propensity as P = # of passes/Nmax and finish the program.

Details on the procedure are given next.

7.3.1 Estimating the minimum pore width

To exactly get the minimum pore width for molecules to be able to fit the pore, there is

not a procedure, in general. What can be done to get a good estimate of this minimum pore

width, for each molecule, is to algorithmically get the shortest distance that transverses the

molecules, that will be defined as the shortest axis of the molecule; in an analogous way, the

longest distance that transverses the molecules will be defined as the long axis of the molecule.

To get the shortest molecule axis and length, project each atom position vector onto a

selected unit vector, r̂ = (sin (θ) cos (φ) , sin (θ) sin (φ) , cos (θ)); with θ ∈ [0, π) and φ ∈ [0, π);

and add and subtract the corresponding atom radius from this value, make a set of values out of

the maximum values and a second list out of minimum values. From the set of these maximum

values get the maximum value; for the list of the minimum values, get the minimum value.

Subtract the minimum value from the maximum value and take the absolute value, this will be

the length of the molecule along r̂, given fixed angles θ and φ. Do this for the complete range

of θ and φ and obtain the maximum length lmax and the minimum length lmin. The minimum

width of the pore for the molecule to fit is lmin. In Figure 7.4 the shortest and longest axes of

the molecules are shown; refer to Section 7.4 for a more detailed description of the molecule

models used.

7.3.2 Setting up the initial configuration

The initial configuration of the molecules is important since it influences the passing propen-

sity. The physical condition that we choose for the starting position is when the molecules are

separated by a distance along the z axis of the pore ∆z0 = rc = R1e + R2e , where rc is the
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(a) (b)

Figure 7.4: 3D molecule models, longest and shortest axis of the molecules. The models for the molecules to be

used for (a) 4-nitrobenzaldehyde and (b) 4-(4-nitrophenyl)-2-butanone; refer to Section 7.4 for a more detailed

description of the molecule models used. The shortest axis of the molecule is represented by the shortest arrow

(blue) and the longest by the longest (magenta) arrow. For the shortest axis for (a) is lmin = 3.40 units and for

(b) lmin = 5.92 units.

sum of the radius of the surrounding spheres of the molecules, see Figure 7.5. The surrounding

sphere of a molecule is defined as the minimum sphere with radius Rie from the center of mass

of the molecule that encloses all the spheres in the molecule. Even if the surrounding sphere

gives an idea of the typical molecule size, it often provides no information about the shortest

or longest axis of the molecule.

The fixed choice of the initial separation of the molecules along the z axis leaves several

free parameters, that are the x and y position of the molecules within the pore, and the orien-

tations of the molecules. The initial x and y position of the molecules are randomly determined

from the available phase space for the molecule to move in. The procedure to determine the

initial x and y position of each molecule is to: (i) Set the center of mass of the molecule in the

(x, y) = (0, 0) coordinate. (ii) Randomly choose and fix the orientation of the body-fixed axis

of the molecule, such that the molecule does not intersect the pore walls; the molecules will

not intersect each other because of the initial ∆z0 position. This is to make sure the molecule

can explore all the possible orientations uniformly. (iii) Get the projection of the molecule in
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Figure 7.5: 3D molecule models, definition of the surrounding sphere; example with linear oligomers at a valid

initial configuration. The figure shows a dimer and a trimer in the pore of diameter Dp. The surrounding spheres

are located at the center of mass of the ith oligomer, in this case the geometrical center of the molecules, and

denoted as Rie .

the x and y plane of the molecule. (iv) Uniformly choose a unit vector in the xy-plane such

that r̂ = (cos (θ) , sin (θ)) with θ in the range [0, 2π), so that the phase space available for the

molecule to move in can be calculated and call it Lps, for the selected orientation, see Figure

7.6. (v) Include the physical constraint that the molecules will always have a tendency to be

in an initial orientation such that the phase space for them to move is maximum, i.e., get the

ratio P = Lps/(Dp − lmin) and choose a random number in the range n = (0, 1). If n is less

than or equal to P , accept the orientation of the molecule and choose a random position for

the molecule along the unit vector r̂; that is, the molecule should not intersect the pore walls.

As it is important to keep track of the position of the spheres in the molecules, it is

important to keep track of the position of the center of mass, the hydrodynamic center and the

orientation of the axis of the molecules, since the moves will always be performed with respect

to this body-fixed frame. An example of a valid initial configuration of the molecules is shown

in Figure 7.7.
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Figure 7.6: Setting up the initial orientation of the molecules in 3D. The phase space, for the molecules to move

in a randomly chosen direction in the xy-plane, for the ith molecule, is given by the sum of the lengths of the

arrows, Lpsi = Lti + Lbi . The arrows start on the surface of the closest atom to the wall and end on the wall,

in the previously chosen direction.

7.3.3 Moving the Molecules: Translation and Rotation

There are several methods to choose the rotation of the molecules, these include the use

of quaternions and different schemes of Euler angles [17]. An important quantity that has

not been introduced is the hydrodynamic center, that is the location where the overall force

is imprinted on the molecule [9]. The hydrodynamic center is also the point about which

the molecule rotates. For a free rotating particle the hydrodynamic center coincides with the

center of mass, however this is not always the case. In Section 7.9, a procedure to calculate the

position of the hydrodynamic center of a molecule made of spheres is given.

To get the translational and rotational quantities, it is convenient to refer to Equation 7.20,

that clearly gives an algorithm to choose the displacements. Since we are working in a body-

fixed frame and the fluid in which the molecules are moving in is isotropic and homogeneous,

the diffusion tensors will remain constant. To get the displacements, the procedure is to: (i)

Get a 6×1 vector made of normal distributed random numbers. (ii) With the diffusion tensor,

calculate the displacement following Equation 7.20

di =
√

2∆tµijWj , (7.21)
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(a) (b) (c)

Figure 7.7: 3D valid initial configuration for the molecules, using the molecules for the simulation. View from

the top of the (a) z−axis, (b) x−axis and (c) y−axis. The initial separation of the molecules in the z−axis is

always the same, ∆z = ∆z0 = R1e + R2e . The body-fixed axis of the molecules are represented by the arrows

attached to the molecules; see Section 7.4 for details.

where Einstein summation convention over repeated indices is used and i, j ∈ {1, 2, 3, 4, 5, 6}.

(iii) The translational quantities are associated with the first three indices, i ∈ {1, 2, 3}, and

the rotational with the last three, i ∈ {4, 5, 6}. To implement the translational algorithm, a

transformation to the pore-fixed frame is needed. If the body-fixed frame vector basis of the

ith molecule is defined by {êi1 , êi2 , êi3}, where the vectors are written in the pore-fixed frame,

the displacement vector of the molecules in the pore-fixed frame is

∆~xi = d1êi1 + d2êi2 + d3êi3 . (7.22)

(iv) Translate the hydrodynamic center, center of mass, and all the spheres in the molecule by

∆~xi.

For the rotational part, several methods to rotate the molecules exist [17]. We choose an

Euler-xyz rotation scheme, that is also known as the Tait-Bryan angles rotation scheme. The

Tait-Bryan angle scheme consists on a sequence of rotations about the 3 different angles of

rotation. In particular, we are interested in the scheme where the molecule is first rotated

about the body-fixed frame along the x axis, then in the body-fixed frame about the y axis

and then about the z axis. To rotate the molecule: (i) Translate the molecule such that the

hydrodynamic center of the molecule lies at the (x, y, z) = (0, 0, 0) coordinate. (ii) Rotate the
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spheres of the molecule, along with êi2 , êi3 and the center of mass vector, about the êi1 axis.

(iii) Rotate the spheres of the molecule, along with êi1 , êi3 and the center of mass vector, about

the êi2 axis. (iv) Rotate the spheres of the molecule, along with êi1 , êi2 and the center of mass

vector, about the êi3 axis. (v) Move the spheres and the center of mass such that the position

of the hydrodynamic center of matches with the original position of where it was.

The rotations are made using quaternions. The rotation of vector ~x about the unit vector

ŷ by an angle θ is given by ~x ′, using the formula

~x ′ = cos (θ) ~x+ (~x · ŷ) (1− cos (θ)) ŷ + cos (θ) ~x× ŷ. (7.23)

It is worth mentioning that it is tempting to try to find a three dimensional orthonormal set

of axis where both the translational and rotational parts of the diffusion tensors are diagonal,

with no coupling. This is, most of the time, not possible.

Once the molecules are moved, it has to be checked whether the molecules obey the steric

constraints, i.e., the molecules do not intersect each other or the pore walls; the two cases are

evaluated separately. To check if the molecules intersect the pore walls, it is useful to first check

if the surrounding spheres (defined in Section 7.3.2) intersect the pore wall. If the surrounding

spheres do not intersect the pore walls, the molecules do not intersect the pore walls. Otherwise,

intersection of every sphere in the molecule with the pore walls has to be checked. To check

the intersection of the molecules, it suffices to check if the surrounding spheres do not intersect

each other. If this does not happen the molecules cannot intersect. Otherwise, the intersection

of the molecules has to be checked for each of the spheres the molecules are made of.

To evaluate the intersection of the molecules with the pore and between each other, define

three logical variables Acw1 , Acw2 and Ac12; where Acw1 and Acw2 are the binary logical

variables (true/ false) that denote the intersection of the molecules with the wall and Ac12 the

binary logical variable that denotes if the molecules intersect each other. To accept a move of

the molecules Am (Acw1 , Acw2 , Ac12) must be true, where

Am (U1, U2, . . . , UN ) = U1 ∧ U2 ∧ . . . ∧ UN ; (7.24)

the “∧” operator makes reference to the logical “and” operator and “∨” to the logical “or”

operator.
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To evaluate Acwi , the intersection of the molecules’ spheres with the pore walls have to

be tested. If there are two circles, such that R1 > r2, and if the bigger circle is centered at

(x1, y1) = (0, 0) and the smaller one at (x2, y2), then circle 2 is inside circle 1, without any

intersection, if
(√

x2
2 + y2

2 + r2

)
≤ R1; that is equivalent to

(
x2

2 + y2
2

)
≤ (R1 − r2)2. Define

Rp = Dp/2 as the pore radius, rij as the radius of the jth sphere of the ith molecule, and xij

and yij as the x and y coordinates. For the molecule not to intersect the pore walls, then either

two of the conditions have to be met: (i) That the surrounding sphere, Risurr , does not intersect

the pore walls; a condition that is enough for the molecule to not intersect the pore walls; or

(ii) the individual spheres, of which the molecule is composed of, should not intersect the pore

walls. Thus,

Acwi =
[(
x2
icm + y2

icm

)
≤ (Rp −Risurr)

2
]
∨

Ni∧
j=1

[(
x2
ij + y2

ij

)
≤
(
Rp − rij

)2]
(7.25)

must be true.

To determine if the molecules do not intersect each other, Ac12, then either two of the

conditions have to be met: (i) That the surrounding spheres of the molecules do not intersect

each other; a condition that is enough for the molecules to not intersect each other; or (ii)

the individual spheres of both molecules, of which the molecules are composed of, should not

intersect each other. Thus,

Ac12 =
{[

(x1cm − x2cm)2 + (y1cm − y2cm)2 + (z1cm − z2cm)2
]
≥ (R1surr +R2surr)

2
}
∨

N1∧
i=1

N2∧
j=1

{[(
x1i − x2j

)2
+
(
y1i − y2j

)2
+
(
z1i − z2j

)2] ≥ (r1i + r2j

)2}
(7.26)

must be true. For a graphical representation, refer to Figure 7.8.

It is important to notice that if the problem is to be solved computationally, for relatively

narrow pores and when molecules are in the passing positions, the number of conditions to be

evaluated are N1 · N2, a quantity that must be evaluated at least once for each move. The

evaluation of these conditions, rotating and translating the molecules, and the generation of

the normal distributed random numbers are the main sources to determine the speed at which

the program runs. Thus, it is convenient to model the system such that the molecules have the

least number of spheres possible, as described in Section 7.4. It is also critical to determine an
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(a) (b) (c)

Figure 7.8: 3D molecule intersection validation conditions. If (a) one of the molecules, or both, intersect the pore

wall, it is a forbidden configuration. (b) If the molecules intersect each other, it is a forbidden configuration. (c)

The molecules do not intersect the pore walls or each other, thus, it is a valid configuration.

appropriate time step ∆t, so that the molecules appropriately explore the possible phase space

and not make unphysical moves (e.g., pass through each other), but is fast enough to provide

results in an acceptable amount of time.

7.4 Coarse Graining the Molecules

As was mentioned in Section 7.2, the molecules to be used in the Langevin simulations are

4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone. Since the length of the major axis of

the molecules are comparable to that of the pore diameter, the shape of the molecules play a

crucial role in determining the passing propensity, P , described in Section 7.1. The molecules

are modeled using solid spherical atoms, where the radius of the spheres are determined to be

the van der Waals radius of the atoms.

When modeling this system, the choice on the number of spheres with which to represent

the molecules is of critical importance. As the number of spheres of which the molecule is

composed of increases, the number of operations to move a molecule increases, thus, the required

computational time to move a molecule increases. The molecules have to be chosen so that

number of spheres is small, while retaining the essential geometrical features that will determine

the allowed configurations of these inside the pore.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7.9: 3D 4-nitrobenzaldehyde molecule models. (a-c) The steric model used, different points of view, see

Table 7.1; (d-f) The model used to calculate the hydrodynamic parameters, i.e., the diffusion tensor, see Table

7.3. (g) Comparing the two models.
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Table 7.1: 4-nitrobenzaldehyde steric model, atoms and properties list with respect to the center of mass. All

the length units are in angstroms (Å) and mass units in atomic mass units (u).

4-nitrobenzaldehyde steric model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass

Number Type x y z Radius

1 O 3.2112 0.9307 −0.0019 1.52 15.9994

2 O 3.0311 −1.2571 −0.0002 1.52 15.9994

3 O −3.8866 −0.6218 −0.0016 1.52 15.9994

4 CH 0.7978 1.722 0.0008 1.7 12.0107

5 CH 0.6277 −1.8921 0.0007 1.7 12.0107

6 CH −1.1109 1.8741 0.0008 1.7 12.0107

7 CH −1.3843 −1.4818 0.0005 1.7 12.0107

8 CH −3.3357 0.8647 −0.0012 1.7 12.0107

Although the exact shape of the molecules can be obtained (see Section 7.9), the molecules

will be represented by an alternative set of spheres, that are given in Table 7.1 and Table 7.2

(see Figure 7.9(a-c) and Figure 7.10(a-c)).

The models for the molecule were chosen such that the most important geometrical details

were retained. To determine the hydrodynamic properties of the molecules, i.e., the diffusion

tensor, more constraints are set (see Section 7.10). Thus, a different model for the molecules

has to be used. The models are chosen so that the constraints in Section 7.10 are met, and

at the same time retaining the overall shape of the molecules in Table 7.1 and Table 7.2. The

models of the molecules to be used to determine the hydrodynamic properties for the molecules

are given in Table 7.3 and 7.4; in Figure 7.10 the molecules are shown. From the values in

Table 7.3 and 7.4, and the axis shown in Figure 7.10, the diffusion tensor and its square root

for the molecules in the hydrodynamic center are given by

D̃ =

 Dtt DT
tr

Dtr Drr

 , µ̃ =

 µtt µTtr

µtr µrr

 ; (7.27)
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7.10: 3D 4-(4-nitrophenyl)-2-butanone molecule models. (a-c) The steric model used, different points of

view, see Table 7.2; (d-e) The model used to calculate the hydrodynamic parameters, i.e., the diffusion tensor,

different points of view, see Table 7.4. (f) Comparing the two models.
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Table 7.2: 4-(4-nitrophenyl)-2-butanone steric model, atoms and properties list with respect to the center of

mass. All the length units are in angstroms (Å) and mass units in atomic mass units (u).

4-(4-nitrophenyl)-2-butanone steric model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass

Number Type x y z Radius

1 O 4.6229 0.6048 −0.6887 1.52 15.9994

2 O 4.3809 −1.3303 0.3192 1.52 15.9994

3 C 0.3655 1.8117 −0.6657 1.7 12.0107

4 C −0.0008 −1.1512 0.8858 1.7 12.0107

5 C 2.2539 1.5148 −0.7967 1.7 12.0107

6 C 1.8818 −1.4603 0.7553 1.7 12.0107

7 C −4.4445 −0.8195 −0.6628 2.7 12.0107

8 C −1.7139 0.6337 0.2351 2.9 12.0107

with specific components for the 4-nitrobenzaldehyde molecule (A)

DAtt =


1.7690× 10−2 5.7222× 10−5 −1.1217× 10−7

5.7222× 10−5 1.5937× 10−2 −5.4258× 10−8

−1.1217× 10−7 −5.4258× 10−8 1.4704× 10−2

 , (7.28a)

DT
Atr =


1.3156× 10−8 9.4785× 10−8 −9.9911× 10−6

−9.2178× 10−8 −1.2536× 10−8 −2.7047× 10−6

−1.0049× 10−5 2.4085× 10−6 −1.2819× 10−8

 , (7.28b)

DArr =


6.4684× 10−4 −1.1358× 10−6 −9.9009× 10−9

−1.1358× 10−6 4.7063× 10−4 1.0423× 10−8

−9.9009× 10−9 1.0423× 10−8 4.2623× 10−4

 ; (7.28c)
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Table 7.3: 4-nitrobenzaldehyde model for hydrodynamic quantity calculations, atoms and properties list with

respect to the center of mass. All the length units are in angstroms (Å) and mass units in atomic mass units

(u).

4-nitrobenzaldehyde hydrodynamic model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass

Number Type x y z Radius

1 O 3.2112 0.9307 −0.0019 1.52 15.9994

2 O 3.0311 −1.2571 −0.0002 1.52 15.9994

3 O −3.8866 −0.6218 −0.0016 1.52 15.9994

4 C 0.7978 1.722 0.0008 1.7 12.0107

5 C 0.6277 −1.8921 0.0007 1.7 12.0107

6 C −1.1109 1.8741 0.0008 1.7 12.0107

7 C −1.3843 −1.4818 0.0005 1.7 12.0107

8 C −3.3357 0.8647 −0.0012 1.7 12.0107

and the 4-(4-nitrophenyl)-2-butanone molecule (B)

DBtt =


1.3946× 10−2 −5.7788× 10−6 2.4703× 10−6

−5.7788× 10−6 1.2242× 10−2 −1.0212× 10−4

2.4703× 10−6 −1.0212× 10−4 1.1874× 10−2

 , (7.29a)

DT
Btr =


−1.4641× 10−7 3.3012× 10−6 1.1200× 10−5

−1.0059× 10−5 −1.2793× 10−5 6.7952× 10−6

−6.3523× 10−6 9.0551× 10−6 1.0817× 10−5

 , (7.29b)

DBrr =


3.5629× 10−4 −3.2336× 10−6 2.0460× 10−6

−3.2336× 10−6 2.2778× 10−4 5.2070× 10−6

2.0460× 10−6 5.2070× 10−6 2.1898× 10−4

 . (7.29c)
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Table 7.4: 4-(4-nitrophenyl)-2-butanone model for hydrodynamic quantity calculations, atoms and properties

list with respect to the center of mass. All the length units are in angstroms (Å) and mass units in atomic mass

units (u).

4-(4-nitrophenyl)-2-butanone hydrodynamic model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass

Number Type x y z Radius

1 O 4.6229 0.6048 −0.6887 1.52 15.9994

2 O 4.3809 −1.3303 0.3192 1.52 15.9994

3 C 0.3655 1.8117 −0.6657 1.7 12.0107

4 C −0.0008 −1.1512 0.8858 1.7 12.0107

5 C 2.2539 1.5148 −0.7967 1.7 12.0107

6 C 1.8818 −1.4603 0.7553 1.7 12.0107

7 C −4.4445 −0.8195 −0.6628 2.7 12.0107

8 C −1.7139 0.6337 0.2351 2.9 12.0107

As the D̃ tensor, the µ̃ tensor is also calculated for the 4-nitrobenzaldehyde molecule (A)

µAtt =


1.3300× 10−1 2.2072× 10−4 −4.4100× 10−7

2.2072× 10−4 1.2624× 10−1 −2.1900× 10−7

−4.4100× 10−7 −2.1900× 10−7 1.2126× 10−1

 , (7.30a)

µTAtr =


8.3700× 10−8 6.1300× 10−7 −6.4999× 10−5

−6.0800× 10−7 −8.5700× 10−8 −1.8316× 10−5

−6.8497× 10−5 1.6836× 10−5 −9.0700× 10−8

 , (7.30b)

µArr =


2.5433× 10−2 −2.4075× 10−5 −2.1500× 10−7

−2.4075× 10−5 2.1694× 10−2 2.4700× 10−7

−2.1500× 10−7 2.4700× 10−7 2.0645× 10−2

 ; (7.30c)
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and the 4-(4-nitrophenyl)-2-butanone molecule (B)

µBtt =


1.1809× 10−1 −2.5251× 10−5 1.0787× 10−5

−2.5251× 10−5 1.1064× 10−1 −4.6501× 10−4

1.0787× 10−5 −4.6501× 10−4 1.0897× 10−1

 , (7.31a)

µTBtr =


−1.1000× 10−6 2.4650× 10−5 8.4253× 10−5

−7.7946× 10−5 −1.0161× 10−4 5.4692× 10−5

−4.9960× 10−5 7.2447× 10−5 8.7521× 10−5

 , (7.31b)

µBrr =


1.8875× 10−2 −9.5644× 10−5 6.1519× 10−5

−9.5644× 10−5 1.5091× 10−2 1.7432× 10−4

6.1519× 10−5 1.7432× 10−4 1.4796× 10−2

 . (7.31c)

For more details on the molecules, refer to Section 7.9.

7.5 Langevin Results

To implement the Langevin simulation we use the molecule models described in Section

7.4. The components of the diffusion tensor used for the 4-nitrobenzaldehyde molecule are the

ones obtained in Equations 7.28(a)-(c), with the components of the square root given by the

quantities in Equations 7.30(a)-(c), and in a similar way for the 4-(4-nitrophenyl)-2-butanone

molecule, the components of the diffusion tensor used are given by 7.29(a)-(c) and the com-

ponents of its square root by 7.31(a)-(c); all calculated in the axis shown in Figure 7.10 and

Figure 7.9. The set of pores diameters used is Dp = {15, 20, 25, 30}. The number of trials to

determine the passing propensity is set to N = 200 000. Examples of the convergence of the

passing propensity with the number of trials is shown in Figure 7.11

Thus, to determine if the time step is adequate, the time steps explored are ∆t =

{1.0, 0.1, 0.01}, as initial guesses; the results are given in Figure 7.12. It can be seen that the

results start converging when a time step as big as ∆t = 0.1 is considered; thus, it is deter-

mined that reasonable results can be obtained by using a time step of ∆t = 0.1, making it the

optimum time step to determine the passing propensity. The values for the passing propensity

as a function of pore width are given in Table 7.5.
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(a)

Figure 7.11: Passing propensity of molecules as a function of number of trials. A time step of ∆t = 1.0 is

implement, for pore diameters Dp = {15, 20, 25, 30}.

Table 7.5: Passing propensity as a function of pore width and time step. The passing propensity is determined

using N = 200 000 trials. Time steps of ∆t = {1.0, 0.1, 0.01} are examined. The results converge for times of

the order ∆t = 0.1. See Figure 7.12.

Time Step
Pore Diameter (Å)

15 20 25 30

1.0 0.02272 0.1336 0.2046 0.2392

0.1 0.02679 0.1362 0.2087 0.2409

0.01 0.02830 0.1377 0.2091 0.2421

It is worth mentioning that it can be inferred, by the magnitude of the probability, that

the small gap regime has almost been reached. This, by noticing that the available passing

space can be estimated using the shortest axes of the molecules. The shortest axes of the

molecules are given by lmin = 3.40 units for the 4-nitrobenzaldehyde molecule and lmin = 5.92

units for the 4-(4-nitrophenyl)-2-butanone molecule, see Figure 7.4, so that the critical pore

width for the system to undergo single-file diffusion is Dpc ≈ lmin1 + lmin2 = 9.32 units. Thus,

the pore widths examined leave “gaps” of significant size, g ≥ 5.68, for the molecules to pass

each other; where the gap is defined as g = Dp − lmin1 − lmin2 . Figure 7.8 gives an idea of the

scale, since the diagrams were made from data taken from the actual simulations.
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(a)

Figure 7.12: Passing propensity of molecules as a function of pore diameter. A time steps of ∆t = {1.0, 0.1, 0.01}
are implemented, for pore diameters Dp = {15, 20, 25, 30}. The optimum time step is determined to be ∆t = 0.1.

The specific values are given in Table 7.5.

Having all the parameters from the Langevin simulations, these can be mapped onto pa-

rameters for a more coarse grained KMC model for validation with experimental data.

7.6 Kinetic Monte Carlo Results: Validation with Experimental Results

Using Langevin molecular dynamics simulations to model the system is prohibitive in this

case, since the required time scales are not reachable, even for today’s super-computers. Thus,

we coarse-grain the continuous model to a 1 dimensional lattice-gas model, that has the char-

acteristics: (i) The continuous pore of length L is tessellated into a linear array of L cells,

where the width of each cell, a, matches the longest effective particle diameter. (ii) Instead of

particles diffusing, the particles hop between adjacent neighboring cells. The hop rate of the

4-nitrobenzaldehyde particles and the 4-(4-nitrophenyl)-2-butanone molecules, that we shall

call A and B respectively, can be different. (iii) The cells can have 3 states, with a particle

A or B, or empty; with at most one particle per cell, that reflects the non-overlapping steric
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constraint. (iv) The particles can only hop to next neighbor cells. If the cell to which the

particle is hopping is empty, the particles jump with hop rate hA for A particles, or hB for B

particles. If the cell to which the particle is hopping is not empty and the particles are of differ-

ent species, the particles can exchange with probability Pex at a rate hex = (hA + hB) /2 [18].

(v) We shall be concerned with the initial phase of the reaction where there is only reactant in

the well stirred fluid, and when the inside of the pore has reached a steady-state.

To determine the parameters for the KMC simulation from the Langevin MD simulation

Figure 7.13: Coarse graining the continuum model to a discrete model. The continuous model is tessellated

into an array of cells, where only one particle is allowed per cell, reflecting the steric interaction condition. The

ith particle specie hops to nearest neighbor empty cells with rate hi, and if the particle hops to an adjacent

occupied cell, it can exchange sites with a different species at a rate hex. Particles can adsorb/desorb from the

pore, from both pore ends, from/into a well-stirred and equilibrated fluid. Irreversible conversion of A particles

to B particles, at rate k, is only allowed within the pore.

parameters, the following relations are used [9, 18]

h = DMDa−2, (7.32a)

Pex =
2P

1− P
; (7.32b)

where DMD is the average translational diffusion tensor in the hydrodynamic center and is

easily calculated as 1/3 of the trace of the translational diffusion 3× 3 matrix

DMD =
1

3
tr (Dtt) ; (7.33)
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Table 7.6: Passing probability as a function of pore width. The passing probability, Pex, is obtained from the

passing passing propensity, P , using the Langevin results with a time step of ∆t = 0.01.

Pore Diameter (Å)

15 20 25 30

P 0.02830 0.1377 0.2091 0.2421

Pex = 2P/(1− P ) 0.05825 0.3195 0.5287 0.6395

and a is related to the typical particle size, see Figure 7.13. The passing probability between

A and B particles for the KMC model, Pex, is calculated from the passing propensity of the

molecules, P defined in Section 7.1, for a specific pore width; that is determined from Langevin

MD simulations.

The passing propensity for the molecules in Table 7.5, for a time step of ∆t = 0.1, is mapped

onto the KMC model, see Table 7.6. The average diffusion coefficients for each specie are given

by one third of the trace of the matrices of Equation 7.28a and Equation 7.29a; thus, the values

for the coefficients are DA = 1.6110× 10−2 and DB = 1.2687× 10−2. The hop rates are given

by hA = 1.6110 × 10−2a−2 and hB = 1.2687 × 10−2a−2, where a2 is a free parameter. Now

that the parameters have been set, it remains to choose the reaction rate, that is not a trivial

parameter to choose. Since there is no a priori knowledge of the reaction rate, the goal will be

to get a family of curves and determine how the reactivity behaves as function of reaction rate

divided by hA; that will be related to the initial product yield for the results presented in [19].

To eliminate some of the system’s parameters, it is instructive to write the master

equations for the discrete system. The master equations are first order differential equations

that determine the evolution of the system with time, so that, in this discrete model, the

evolution equations will relate the concentration of reactant A and product B at time t, at

each cell. To do this, relate the concentration of specie C = {A,B} at site n at time t,
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〈Cn〉 (t) = 〈Cn〉, with the coupled differential equations:

d 〈An〉
dt

=− k 〈An〉+ hA (〈An−1En〉 − 〈En−1An〉+ 〈EnAn+1〉 − 〈AnEn+1〉) +

Pexhex (〈An−1Bn〉 − 〈Bn−1An〉+ 〈BnAn+1〉 − 〈AnBn+1〉) , (7.34a)

d 〈Bn〉
dt

= + k 〈An〉+ hB (〈Bn−1En〉 − 〈En−1Bn〉+ 〈EnBn+1〉 − 〈BnEn+1〉) +

Pexhex (〈Bn−1An〉 − 〈An−1Bn〉+ 〈AnBn+1〉 − 〈BnAn+1〉) . (7.34b)

such that the terms on the righthand side represent the gain/loss by reaction, diffusion to empty

sites and exchange with different species. These equations are the lowest order differential

equations in a hierarchy of coupled differential equations. We are interested in the steady state,

so that d 〈An〉 /dt = d 〈Bn〉 /dt = 0, that makes it possible to re-write the master equations for

the system in the form

0 =− k

hA
〈An〉+ (〈An−1En〉 − 〈En−1An〉+ 〈EnAn+1〉 − 〈AnEn+1〉) +

Pex
hex

hA
(〈An−1Bn〉 − 〈Bn−1An〉+ 〈BnAn+1〉 − 〈AnBn+1〉) , (7.35a)

0 = +
k

hA
〈An〉+

hB
hA

(〈Bn−1En〉 − 〈En−1Bn〉+ 〈EnBn+1〉 − 〈BnEn+1〉) +

Pex
hex

hA
(〈Bn−1An〉 − 〈An−1Bn〉+ 〈AnBn+1〉 − 〈BnAn+1〉) . (7.35b)

meaning that the only free parameter is k/hA. With these considerations, the simulations are

run and the initial reactivity of the system is determined for a family of values of kef = k/hA;

where the reactivity η is defined as

η = kef

L∑
i=1

〈An〉 . (7.36)

Since the typical length of the molecules is ∼ 1 nm, see Figure 7.17 and Figure 7.18, and the

typical length of the nanopores pores is ∼ 100 nm units, see Figure 7.2, the number of cells

L that represent the pore is taken as L = 100. To determine the adsorption and desorption

parameters, the details of the reaction are given: The catalytic reaction is performed for 2

hours at 60 ◦C; this, with 3 mol% catalyst, 0.39 mmol 4-nitrobenzaldehyde, 1.5 mL acetone

and 1.5 mL hexane [19]. This means that the percentage concentration of 4-nitrobenzaldehyde,

by mass, is given by

〈X0〉 = 0.39× 10−3 molM4NB/(0.39× 10−3 molM4NB + 1.5 mLρac + 1.5 mLρhex); (7.37)
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with the values M4NB = 151.12g/mol, ρac = 0.786 g/mL and ρhex = 0.655 g/mL, this implies

that the outside reactant concentration must be taken as 〈X0〉 = 0.03. More details on how

to determine the boundary conditions are given in [20]. The results for the simulations are

presented in Figure 7.15.

The experimental results suggest that the percentage yield is not linearly correlated as

(a) (b)

Figure 7.14: (a) KMC results for several η/kef ratios against (b) experimental results for percentage yield in [19].

The parameters for the KMC simulation are taken as hA = 1, hB = 0.788, hex = 0.894 and 〈X0〉 = 0.03. The

catalytic reaction is performed for 2 hours at 60 ◦C; this, with 3 mol% catalyst, 0.39 mmol 4-nitrobenzaldehyde,

1.5 mL acetone and 1.5 mL hexane [19].

the effective pore diameter increases, and could eventually plateau at values lower than 100%,

both in the simulations and experimentally. By using a low concentration of 〈X0〉, the results

do not match. However, we believe that the concentration 〈X0〉 by mass is not an appropriate

measure of the actual concentration, due to the constraints imposed by the model. Thus, we

explore a range of higher concentrations to determine if a higher concentration will yield similar

results; the results are presented in Figure 7.15.

With the KMC results for the higher concentrations, the trend gets closer to that of

the experimental results, in particular for the 〈X0〉 = 0.8 results with effective reaction rate

kef = 0.001.

The KMC results indicate a similar trend for specific concentrations, however the small

conversion; for small pore diameters the scaled reactivity grows at a faster rate than for wider

pores, however, the plateau is reached for pore diameters lower than those for the experimental
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(a)

(b)

(c)

(d)

Figure 7.15: KMC results against experimental results, for outside concentrations of (a) 〈X0〉 = 0.2, (b) 〈X0〉 =

0.4, (c) 〈X0〉 = 0.6, (c) 〈X0〉 = 0.8. The parameters for the KMC simulation are taken as hA = 1, hB = 0.788,

hex = 0.894. The catalytic reaction is performed for 2 hours at 60 ◦C; this, with 3 mol% catalyst, 0.39 mmol

4-nitrobenzaldehyde, 1.5 mL acetone and 1.5 mL hexane [19].
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results. It is worth mentioning that even if a trend exists, it is difficult to elucidate the true

behavior with the limited amount of experimental data available.

7.7 Summary and Conclusion

Using molecular dynamics techniques, and molecular modeling techniques, we have deter-

mined the passing propensity of two molecules, 4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-

butanone, made out of spheres, in an infinitely long cylindrical channel of diameter Dp, by

only including steric constraints. Once the passing propensity of the two molecules was deter-

mined, the parameters were mapped into a further coarse grained KMC model to determine

the reactivity of the system using several reaction rates. The results were then compared to

experimental data.

It was found that the trend in the KMC results had some similarities with the experimental

results. However, due to the lack of experimental results, a more thorough comparison with

extended data sets should be conducted to verify the trend in the KMC results. Also, we

believe that other important interactions between the molecules and the pore walls are missing

from the model and will be the focus of future work.
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7.9 Appendix A: The Shape of the Molecules

The 4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone molecule are modeled using

spheres. The center of the spheres correspond to the location of the atoms of which these
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Table 7.7: 4-nitrobenzaldehyde atom and properties list with respect to the center of mass, using a solid sphere

model. All the length units are in angstroms (Å) and mass units in atomic mass units (u).

4-nitrobenzaldehyde

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass

Number Type x y z Radius

1 O 3.2112 0.9307 −0.0019 1.52 15.9994

2 O 3.0311 −1.2571 −0.0002 1.52 15.9994

3 O −3.8866 −0.6218 −0.0016 1.52 15.9994

4 N 2.5149 −0.1132 −0.0005 1.55 14.0067

5 C 1.1 0.0034 0.001 1.70 12.0107

6 C −1.6803 0.2328 0.0007 1.70 12.0107

7 C 0.5042 1.2646 0.0009 1.70 12.0107

8 C 0.3056 −1.1431 0.0009 1.70 12.0107

9 C −0.886 1.3793 0.0009 1.70 12.0107

10 C −1.0846 −1.0285 0.0007 1.70 12.0107

11 C −3.1296 0.353 −0.0009 1.70 12.0107

12 H 1.0914 2.1794 0.0007 1.20 1.00794

13 H 0.7351 −2.1417 0.0006 1.20 1.00794

14 H −1.3357 2.3689 0.0006 1.20 1.00794

15 H −1.684 −1.9351 0.0003 1.20 1.00794

16 H −3.5417 1.3764 −0.0014 1.20 1.00794
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are composed of. The radii of the spheres are the corresponding van der Waals radius of the

atoms; see Table 7.7 and Table 7.8, along with Figure 7.16.

Comparing the typical dimensions of the molecules give insight on the validity of the

models used. The molecules are compared in Figure 7.17 and Figure 7.18, revealing that the

“real” molecules are similar to those used as the models.

7.10 Appendix B: Calculating the Diffusion Tensor and its Square Root

The procedure to get the diffusion tensor is the one developed in [9]. The general strategy

is to calculate the 6× 6 friction tensor ζ̃ and use the simple relation

D̃ = kBT ζ̃
−1. (7.38)

Where the tensor D̃ is composed of 3 × 3 blocks, that correspond to the translational part

(Dtt), the rotational part (Drr), and the translational-rotational coupling (Dtr), such that

D̃ =

 Dtt DT
tr

Dtr Drr

 . (7.39)

The diffusion tensor is dependent of the reference frame used, and the hydrodynamic center

can be calculated from this diffusion tensor. Once the hydrodynamic center is obtained, the

diffusion tensor is calculated with respect to this point. The relative vector from the initially

chosen reference frame to the hydrodynamic center is calculated as [9]
rDOx

rDOy

rDOz

 =


Dyy
rr + Dzz

rr −Dxy
rr −Dxz

rr

−Dxy
rr Dxx

rr + Dzz
rr −Dyz

rr

−Dxz
rr −Dyz

rr Dxx
rr + Dyy

rr




Dyz
tr −Dzy

tr

Dzx
tr −Dxz

tr

Dxy
tr −Dyx

tr

 . (7.40)

For a molecule made of N particles, the strategy to calculate the 6× 6 friction tensor, ζ̃, is to

get a 3N × 3N matrix, B, composed of N three times three blocks B. Choose Tij as the 3t× 3

tensor with the information of the hydrodynamic friction between the ith and jth sphere in the

molecule. The entries of the matrix B match with the Tij tensors, that is

Bij =

 Tij i 6= j

1
ζi

I i = j
, ζi = 6πη0σi. (7.41)
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(a) (b) (c)

(d) (e) (f)

Figure 7.16: 3D real molecule models for (a-c) 4-nitrobenzaldehyde molecule model, see Table 7.7, and (d-f)

4-(4-nitrophenyl)-2-butanone, see Table 7.8; views from different perspectives.
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Table 7.8: 4-(4-nitrophenyl)-2-butanone atom and properties list with respect to the center of mass. All the

length units are in angstroms (Å) and mass units in atomic mass units (u).

4-(4-nitrophenyl)-2-butanone

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass

Number Type x y z Radius

1 O −2.0576 0.7186 1.6184 1.52 15.9994

2 O −4.5294 0.7087 0.1689 1.52 15.9994

3 O 4.6229 0.6048 −0.6887 1.52 15.9994

4 O 4.3809 −1.3303 0.3192 1.52 15.9994

5 N 3.9027 −0.267 −0.1448 1.55 14.0067

6 C −1.7139 0.6337 0.2351 1.70 12.0107

7 C −0.2243 0.3946 0.1336 1.70 12.0107

8 C −2.5134 −0.4907 −0.4331 1.70 12.0107

9 C 0.5755 1.3524 −0.4662 1.70 12.0107

10 C 0.309 −0.7771 0.6433 1.70 12.0107

11 C −4.0182 −0.2778 −0.3586 1.70 12.0107

12 C 1.9497 1.1319 −0.5593 1.70 12.0107

13 C 1.6833 −0.9977 0.5503 1.70 12.0107

14 C 2.5037 −0.0431 −0.0509 1.70 12.0107

15 C −4.8708 −1.3612 −0.967 1.70 12.0107

16 H −1.9856 1.5935 −0.2207 1.20 1.00794

17 H −2.2347 −0.5788 −1.4895 1.20 1.00794

18 H −2.3256 −1.4512 0.0605 1.20 1.00794

19 H 0.1554 2.271 −0.8652 1.20 1.00794

20 H −0.3106 −1.5252 1.1282 1.20 1.00794

21 H 2.558 1.8976 −1.034 1.20 1.00794

22 H 2.0803 −1.9228 0.9603 1.20 1.00794

23 H −1.4492 1.3476 2.0429 1.20 1.00794

24 H −4.6964 −2.3033 −0.4415 1.20 1.00794

25 H −4.6256 −1.4685 −2.0265 1.20 1.00794

26 H −5.9274 −1.0947 −0.8751 1.20 1.00794
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Figure 7.17: Comparing all the 3D models for the 4-nitrobenzaldehyde molecule from different perspectives. The

left most images corresponds to the “real” molecule, see Table 7.7. The images in the middle correspond to the

steric model, see Table 7.1. The images in the right correspond to the hydrodynamic model, see Table 7.3.

with I the 3× 3 identity matrix. For spheres of different radii, σi and σj , and don’t intersect,

the expression for Tij is given by [9]

Tij = (8πη0Rij)
−1

(
I +

RijRij

R2
ij

+

[
σ2
i + σ2

j

R2
ij

][
1

3
I− RijRij

R2
ij

])
, Rij = ~ri ⊗ ~rj ; (7.42)

where ~ri is the vector of the ith particle with respect to the point where the friction tensor is

being calculated, R2
ij is the distance between the particles squared, and η0 is the viscosity of

the fluid. For particles that intersect and have the same radius σ, the Tij tensor is [9]

Tij = (6πη0σ)−1

([
1− 9

32

Rij
σ

]
I +

3

32

RijRij

Rijσ

)
. (7.43)

Since the results are passing propensities and the particles are immersed in the same fluid, the

viscosity of the fluid can be ignored, along with common factors, such as π.

Once the B tensor is calculated, define C = B−1, such that C has the same dimensions as B

does, i.e., a 3N × 3N matrix. The different parts of the 6 × 6 friction tensor, that is made of

four blocks of 3× 3 tensors. If ζ̃ is given by

ζ̃ =

 ζtt ζTtr

ζtr ζrr

 , (7.44)
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Figure 7.18: Comparing all the 3D models for the 4-(4-nitrophenyl)-2-butanone molecule from different per-

spectives. The left most images corresponds to the “real” molecule, see Table 7.8. The images in the middle

correspond to the steric model, see Table 7.2. The images in the right correspond to the hydrodynamic model,

see Table 7.4.

the 3× 3 blocks ζtt, ζtr and ζrr are given by

ζtt =
N∑
i=1

N∑
i

Cij , (7.45a)

ζtr =
N∑
i=1

N∑
i

UiCij , (7.45b)

ζuc
rr =

N∑
i=1

N∑
i

UiCijUT
j ; (7.45c)

where Cij are the 3 × 3 blocks from C, and Ui is a 3 × 3 matrix related to the coordinates of

the ith particle

Ui =


0 −zi yi

zi 0 −xi

−yi xi 0

 . (7.46)

The rotational part of the tensor ζrr is related to ζuc
rr by [9]

ζrr = ζuc
rr + 6η0V I, V =

4

3
π
∑
i

σ3
i . (7.47)
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Finally, the diffusion tensor D̃ is calculated using Equation 7.38 and is given by [9]

D̃ =

 Dtt DT
tr

Dtr Drr

 = kBT

 ζtt ζTtr

ζtr ζrr


−1

. (7.48)

The diffusion tensor D̃ has to be a 6×6 positive definite and symmetric matrix, i.e., D̃ij = D̃ji,

the matrix is invertible, diagonalizable, and the eigenvalues λ > 0.
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CHAPTER 8. GENERAL CONCLUSIONS

In this work, several reaction-diffusion systems in nanopores were analyzed using lattice-

gas models. Kinetic Monte Carlo simulations were primarily used to determine the detailed

concentration of the particles inside the pore, i.e., the pore’s particle concentration profiles,

when imposing the single-file diffusion (SFD) constraint in the systems. All the particles in the

systems were assumed to have the same hop rates, unless otherwise stated.

The first system considered is an extension of the simple A → B reaction to an isomeric

stereoselective reaction A→ Bc+Bt, where the local environment favors one of the isomers over

the other depending on the local reaction conditions. It was found that this kind of reaction,

at low reaction rates, allows an analytic treatment by making use of an extended generalized

hydrodynamic method, that consists on individually assessing the pair quantities 〈AnEn+1〉

and 〈EnAn+1〉 rather than just the difference; mean-field theories fail completely in describing

these reactions at low reaction rates. Also, it was found that at high reaction rates, where a

mean field theory correctly describes the particle concentration profiles inside the pores, the

extended generalized theory manages to describe it as well.

The next system considered was an extension of the simple A → B with R = 0 model,

where more general steric interactions are used, i.e., a reaction-diffusion system with up to

nearest-neighbor exclusion, R = 1, is considered. It was found that unlike the simple A → B

model, the change from a 3D to a 1D environment induces non-trivial correlations in the ad-

sorption and desorption processes; a feature that complicates the simulation of only the pore,

instead of the fluid+pore, unlike for the simple R = 0 case where the adsorption and desorption

parameters are trivially determined. These correlations in turn predict density oscillations near

the pore walls and adsorption/desorption sites, that matches the prediction of fluid density os-

cillations near the pore walls in real fluids. Also, a methodology was developed to treat the fluid
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and the pore separately, instead of having to simulate the fluid and pore as a single system.

Tailored simulations were implemented to determine adsorption and desorption parameters,

that were used to simulate only the pore system. The single pore system, whose adsorption

and desorption parameters were found by tailored simulations, particle concentration profiles

matched that of the fluid coupled to the pore. An analytic theory to match the results from

the KMC simulations, similar to that for the simple A→ B model with R = 0, was developed

and successfully implemented. This was also compared to mean-field type of equations that

failed to predict the proper trend in the reaction-diffusion case. For the case of only diffusion,

a pair approximation was sufficient to properly describe the concentration profile, confirming

the Markovian property of the system.

Following the analysis of the two systems, we developed a framework that allows the im-

plementation of simplified simulations for more general fluid+pore reaction-diffusion systems.

Instead of a one-dimensional pore, we considered an N ×M cross-sectional pore of length L

coupled to a semi-infinite three-dimensional fluid, with a generalized exclusion range R. Tai-

lored simulations to obtain the proper adsorption/desorption parameters to simulate only the

pore are developed and are implemented for specific values of N , M and R; applications for

these systems are shown and for each system an analytic theory is successfully developed. The

pore concentration profiles are analytically reconstructed using the Markov property of the

systems.

For systems in one-dimension, the SDF constraint is relaxed by including a passing prob-

ability between particles of different species. This passing probability was obtained by im-

plementing Langevin MD simulations. The first case under consideration was motivated by

polymerization reactions in narrow channels. Of particular interest is the simplification of

the problem to two-dimensions. The molecules are initially coarse-grained to models where

molecules made out of a collection of spheres diffusing in an infinitely long cylindrical chan-

nel of cross-section Dp. These molecules are mapped to molecules in two dimensions that are

made of circles that diffuse in an infinitely long rectangular channel of width W ; that is re-

ferred to as “the pore”. It is assumed that the oligomers have the same diffusion coefficients

along their two main symmetry axes, as well as for the rotational diffusion coefficient. The
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interactions considered are steric, such that the molecules cannot intersect the pore walls or

each other, otherwise the interactions are fluid-mediated. In this work, we were focused on

elucidating the passing propensity for linear oligomers in monomer-oligomer systems. The

small and large gap regimes were examined. It was concluded that for small gaps, the pass-

ing propensity of monomer-monomer, monomer-dimer and monomer-trimer systems scale as

P ∼ (g/r)σ; where σ is the scaling exponent. This scaling exponent for different oligomers

was determined to follow σmonomer ≈ σdimer < σtrimer, that basically shows that for longer

oligomers the passing propensity decreases faster with decreasing gap size. For wider gaps, it

was found that the passing propensity for longer oligomers is higher than for shorter oligomers

in a given range, this due to the initial constraint that the shortest axis molecules tend to

be perpendicular to the longest axis of the pore. It can also be seen that as g → ∞, the

expected magnitude of the passing propensity P for different sized oligomers is restored, i.e.,

Pcircle (g) ≥ Pdimer (g) ≥ Ptrimer (g) ≥ Ptetramer (g) ≥ . . ..

For the last part of this work, an application to the catalytic conversion of 4-nitrobenzaldehyde

to 4-(4-nitrophenyl)-2-butanone is examined. The 4-nitrobenzaldehyde is dissolved in an ace-

tone and hexane solution that contains mesoporous silica nanoparticles, that have amine func-

tionalized nanopores. The aldolization reaction takes place in the nanopores. Based on the

properties of the mesoporous silica, we implemented a KMC one-dimensional model with a con-

stant concentration of reactant in the outside fluid with exclusion range R = 0. The particles

do not have the same hop rate, and exchange is possible. To assess the exchange probability, a

realistic model of the molecules was implemented. The exchange probability was determined by

obtaining the passing propensity of the 4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone

molecules, that were coarse-grained as molecules made out of spheres, by Langevin MD sim-

ulations in three dimensions. The hydrodynamic properties such as the diffusion tensor were

obtained by further approximation of the models. Once the passing propensities and diffusion

tensors were obtained, these parameters were converted to the required parameters for the

KMC simulations, where the reactivity for the molecules was obtained and compared with the

experimental data; we believe that the effective fractional volume of the reactant is higher than

the one calculated from the experimental data. We determine that the choice of outside con-
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centration 〈X0〉 for the KMC model has to be higher than that described in the experiment,

along with a low reaction rate. Even if the KMC results follow the experimental trend, we

believe that other interactions and further modeling of the channel have to be included for

effective modeling of the system.

8.1 Future Work

Prospective future work includes numerous possibilities. Currently, the analytic theories

for the reaction-diffusion kinetic Monte Carlo models we have presented limit the hop rates

of the particles to be the same; i.e, the hop rate for the ith species is the same as the hop

rate for the jth species, hi = hj ; and it is limited to the irreversible conversion of a single

particle type. A future perspective would be to develop analytic theories for reaction-diffusion

systems where particles of different species to have with unequal hop rates and/or where there

is a bimolecular reaction A+B ↔ C +D. Further work can expand on obtaining an analytic

theory for reaction-diffusion systems for wider pore lattices with higher exclusion range.

Future work for the Langevin MDs simulations would be directed towards refining the

current model by including interactions that go beyond the steric interactions, or refine the

steric interactions by modeling the interior of the pore in mode detail. Not only the modeling

but the algorithm can be refined to include adaptative time steps and parallel processing

capabilities.
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