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ABSTRACT

Transport and reaction in zeolites and other porous materials, such as mesoporous silica
particles, has been a focus of interest in recent years. This is in part due to the possibility
of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield
in catalytic processes. Computational simulations are often used to study these complex non-
equilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are
prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte
Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both
time and resource wise. These coarse-grained systems can be exactly described by a set of cou-
pled stochastic master equations, that describe the reaction-diffusion kinetics of the system.
The equations can be written exactly, however, coupling between the equations and terms
within the equations make it impossible to solve them exactly; approximations must be made.
One of the most common methods to obtain approximate solutions is to use Mean Field (MF)
theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h
of the particles, but fail completely at low k/h due to the over-estimation of fluxes of particles
within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple
one- dimensional reaction-diffusion models at high and low k/h, where the pores are coupled
to an equilibrated three-dimensional fluid. We thus successfully describe analytically these
simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior
with long range steric interactions and wider pores require determination of multiple boundary
conditions. We give a prescription to estimate the required parameters for these simulations.
For one dimensional systems, if single-file diffusion is relaxed, additional parameters to de-
scribe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD)

simulations to assess these parameters.



CHAPTER 1. INTRODUCTION

An excerpt from the paper published in Chemical Reviews: Kinetic Monte Carlo Simulation
of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic

Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems.

Da-Jiang Liu', Andrés Garcia'2, Jing Wang!3, David Ackerman!, Chi-Jen Wang!3",

and James W. Evansh?23

L Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA
2 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3 Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA

(Received 22 August 2014; published 24 April 2015)

Traditionally mean-field rate equations of chemical kinetics for spatially uniform systems [1-3]
and the corresponding reaction-diffusion equations describing spatial heterogeneity [4—6] have
proved immensely useful in elucidating catalytic processes. However, it is well-recognized that
standard mean-field rate expressions neglect spatial correlations in the reactant and/or product
distribution. It is less well appreciated that the standard treatment of diffusion is generally ap-
plicable only at low concentrations and in unrestricted environments [7]. Generically, there are
two sources of spatial correlations associated with either: (i) thermodynamics, where the reac-
tant and product distribution is in some sense locally equilibrated and the distribution reflects
interactions between molecules, (ii) kinetics for unequilibrated distributions, where correlations
are induced by adsorption-desorption- reaction kinetics. For higher reactant concentrations,
correlations of thermodynamic origin should be enhanced due to stronger interactions, and

those of kinetic origin might also be amplified due to inhibited mobility.

*Current address: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.



For catalysis in 1D nanoporous systems, such as zeolites [8-10] and functionalized meso-
porous silica [11,12], severe transport limitations [13,14] (in the extreme case leading to single-
file diffusion [15]) induce strong correlations of kinetic origin that invalidate standard mean-field
treatments [16-19].

Spatial correlations of thermodynamic origin have been extensively characterized. Exact
Ursell-Mayer cluster expansions, Kirkwood and quasimechanical approximations, and concepts
such as Markovian spatial fields (which are often formulated in terms of conditional proba-
bilities) can be utilized [20-22]. Kinetically induced correlations are less well characterized.
Reactive non-equilibrium steady states (NESS) in open systems (reactants in, products out)
are a natural analogue of equilibrium Gibbs states [23,24]. One can make some general ob-
servations about their behavior. Clearly, a bimolecular reaction will deplete the population of
associated nearby reactant pairs relative to a corresponding equilibrium state.

To effectively analyze these non-equilibrium processes, a molecular-level modeling strategy
is required which can track evolution of system configurations on the appropriate time and
length scales appropriately accounting for spatial correlations. To this end, one can imple-
ment spatially discrete stochastic (Markovian) reaction-diffusion models. For reactions in 1D
nanoporous systems, one can divide the pore into cells comparable to reactant size and treat
continuous diffusion by hopping and exchange between adjacent cells [16-19,25-27]. The be-
havior of these models is in principle described exactly by master equations [23,28]. However,
given the difficulty of reliable analysis of the master equations, model behavior is usually in-
stead determined precisely by Kinetic Monte Carlo (KMC) simulation [29-31], as described in
recent reviews [7,32,33].

In these reaction-diffusion systems, nontrivial spatiotemporal behavior generally arises from
the interplay between the typically nonlinear reaction kinetics and diffusive transport. In the
1D nanoporous catalytic systems, especially with inhibited transport within pores, net re-
activity is often localized near pore openings either for catalytic conversion [25-27] or poly-
merization [34, 35] reactions. This feature induces strong concentration variations within the

nanopores typically on a length scale of tens of nanometers.



For both more efficient modeling and a deeper understanding to spatiotemporal behavior
in these systems, it is natural to coarse-grain the spatially discrete molecular-level models to
obtain a spatially continuous reaction- diffusion equation (RDE) formulation. Typically, this
type of analysis is generally associated with the deterministic “hydrodynamic regime” for large
mobility and low concentration gradients, and the associated continuum RDE is often referred
to as the hydrodynamic RDE [36,37]. For these 1D nanoporous catalytic systems, there are
particular challenges. Since the concentration gradients are large, significant net reactivity is
restricted to near the pore openings, and it can be argued that the behavior is controlled by
fluctuations in adsorption-desorption processes at the pore openings. This prompts considera-
tion of a “generalized hydrodynamic” approach [38], and recently, such an approach has been
successfully implemented for a simple conversion reaction [19].

For accurate description of basic behavior in 1D nanoporous system, an appropriate descrip-
tion of chemical diffusion in mixed multi-component system is key. This should be based on
an appropriate Onsager formulation of transport theory that recognizes the coupling between
concentration gradients and diffusion fluxes of different species and thus involves a diffusion
tensor [37,39]. Apart from fundamental statistical mechanical studies of diffusion in multi-
component lattice-gas models [37,40-42], there is a general appreciation of the complexity
of diffusion for 1D nanoporous systems where additional anomalies appear in the single-file

diffusion (SFD) regime [14,43-45].

1.1 Thesis organization

This dissertation is based on three published papers, an excerpt of a published review and
two additional parts.

Chapter 2 uses a modified excerpt from the published review “Kinetic Monte Carlo Simula-
tion of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic
Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems” whose authors are
Da-Jiang Liu, Andres Garcia, Jing Wang, David M. Ackerman, Chi-Jen Wang, and James
W. Evans in the Chemical Reviews journal (Chem. Rev. 2015, 115, 5979-6050). In this ar-

ticle, I performed the simulations and numerical analysis for the presented information. The



chapter describes the basic model, and defines the basic conventions and notation to be used
throughout the document.

Chapter 3 is paper published in Physical Review E, in which I am the main author. A sta-
tistical mechanical model is presented for a coarse-grained lattice-gas reaction-diffusion system,
where an isomeric stereoselective reaction is analyzed. The analysis is performed using KMC
simulations and an analytic method is developed to treat correlations in the reaction terms.

Chapter 4 is a paper published in Journal of Chemical Physics, in which I am the main
author. A statistical mechanical model is presented for a coarse-grained lattice-gas reaction-
diffusion system, where a fluid-pore system in which there is nearest-neighbor exclusion is
analyzed. The system is analyzed in two levels of coarse-graining, and an analytical theory is
developed.

Chapter 5 is a paper published in Journal of Physical Chemistry C, in which I am the main
author. The methodology to determine the KMC simulation parameters for a general family of
coarse grained reaction-diffusion system is given, with a few applications. An analytic theory
is developed for some of these models and are compared with the KMC simulation results.

Chapter 6 is a chapter that has not been published yet, in which I am the main author. In
the chapter, a 3D reaction-diffusion process for molecules that are made out of spheres, and are
confined to move in an infinitely long cylindrical channel of cross-section D, is mapped onto
a 2D model, where molecules are made of circles and move in an infinitely long rectangular
channel of width W. Using a Langevin MD approach, the results for the passing propensity of
monomer-oligomer systems, where the oligomers are linear, are compared with the results ob-
tained using the corresponding Fokker-Planck equation. The scaling exponent for the behavior
of the passing propensity in small gaps is obtained for most of the systems. The motivation
behind the study is that of polymerization reactions in narrow pores.

Chapter 7 is a chapter that has not been published yet, in which I am the main author.
A real reaction-diffusion process using a coarse-grained model is analyzed. The reactant and
product molecules are modeled using spheres as the building blocks. A Langevin MD technique
is used to assess the diffusion of the molecules within a restricted cylinder. In particular, we

assess the passing propensity of the molecules and map the results and parameters to a KMC



model, where the results are compared to experimental results of the system under considera-
tion.
Chapter 8 gives a brief summary of the thesis, along with the general conclusions.
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CHAPTER 2. THE BASIC MODEL: CONVENTIONS AND NOTATION
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First-order conversion reactions in catalytically functionalized nanoporous materials incorpo-
rating arrays of linear nanopores with diameters of a few nanometers have been widely studied
and modeled [1-4]. The basic ingredients are as follows. Reactant molecules from the medium
surrounding the catalytic particles adsorb at the pore openings and diffuse into the pores. Upon
reaching catalytic sites, they are converted to product that then diffuse out of the pores, pos-
sibly subject to significant interference from the reactant, which also shares the confined space
within the pores. Catalytic reactions using zeolite materials are often performed using gas-
phase flow reactors but where the reactants are with a carrier gas, which will also populate the
pores within the zeolite. Catalysis using functionalized mesoporous silica nanoparticles (MSN)
is usually performed in solution-phase batch reactors, so in this case often solvent molecules
coexist with reactant and product species inside the pores. Thus, in either case, one might

anticipate a stochastic description of reactant and product species dynamics within the pore

*Current address: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
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implicitly accounting for the interaction with the carrier gas or solvent. For this reason, the
discussion in Section 2.1 will start with the use of Langevin dynamics to describe reactant and
product motion but then immediately transition to spatially discrete coarse-grained modeling,
which allows more efficient simulation of the entire reaction-diffusion process.

We have already mentioned that typical catalytic nanoporous materials include zeolites and
MSN, which can both consist of arrays parallel pores containing catalytic sites (although more
complex pore morphologies are also possible). The reader is referred to extensive reviews of ze-
olite materials and their applications to catalysis [5-7]. Here, we just note that pore diameters
(dp) are typically in the range d, = 0.5—2nm. In contrast, for mesoporous silicas in the form of
mesoporous silica nanoparticles (MSN), such as MCM-41 [8,9], and SBA-15 [10], nominal pore
diameters are typically in the range d, = 2 — 10nm. However, it should be emphasized that
effective pore diameters can be reduced below 2 nm by functionalization and also attachment of
reactant species at the pore walls [11]. While mesoporous materials offer the advantage of large
surface areas, restricted transport within the pores is potentially both a disadvantage (reducing
reactivity or turnover frequencies), and an additional advantage (product selectivity) [12].

Given the importance of transport in these materials for application to catalysis, separa-
tions, and sequestration, there is naturally extensive experimental and theoretical literature on
this topic. We refer reader to reviews [5,6,13,14] and selected recent papers [15,16]. There are
extensive studies for species like CH4, CFy4, and CCly, with diameters of ~ 0.4nm and above
which are often described by a spherical united atom model [17]. Species such as ethane are
described by the union of two spherical united atoms [18]. It is clear that these species should
undergo SFD for narrower zeolite pores. Here, however, we emphasize that a relatively poor
characterized aspect of transport is inhibited, passing of reactant and product molecules. This
naturally has a strong impact on reactivity, as it limits extrusion of the product. Some MD stud-
ies have tagged molecules, from which changes in order (or otherwise) can be tracked [17,19].
One particularly instructive study focused on an effective two-molecule passing problem in an
effort to more efficiently characterize passing propensity in narrow pores [18]. The strategy was
to assess the free energy profile as a function of center-of-mass separation in the pore direction

and to utilize a transition state theory (TST) formulation to assess passing. Most recently,
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the passing propensity in an effective two-particle problem with strongly damped Langevin
dynamics was assessed, revealing deviations from TST predictions for this type of dissipative
dynamics [20]. We discuss this analysis further in Chapter 6.

Our focus is not just on transport, but rather on diffusion-mediated catalytic conversion
reactions in 1D nanoporous materials with strongly inhibited passing of reactant and product
species within the pores. It is thus instructive to provide specific examples. The first example
motivating earlier modeling studies [21] is the conversion of neopentane to isobutane catalyzed

by Pd in L zeolites according to the mechanism [22]
(CH3)3 — C — CH3 (neopentane) + HY —Pd  —  CHy (methane) + CHs — C* — Pd

and

CHy+CH3 —CT" —Pd+Hy — CHj— CH (isobutane) + H" — Pd.

The diameter of neopentane is about 0.62nm and that of isobutane is similar (vs methane at
~ 0.4nm). All these species might be effectively described by spherical united atom models.
Experimental studies of reaction kinetics indicate SFD in zeolite L, a feature which should be
expected since this material is composed of linear nanopores with small diameter d, ~ 0.73 nm
and no cross-connections [21,22] (see Figure 2.1). In contrast, reactivity is significantly higher in
zeolite Y, which also has disconnected linear pores with similar narrow diameter, d,, ~ 0.74 nm.
However, this difference in reactivity is explained by the feature that the zeolite Y pores include
near-spherical supercages, which can act as mixing chambers. In contrast, the pores in zeolite
L only have dislike bulges, which apparently cannot facilitate passing of reactant and product
species [22].

The second example involves aldol condensation in MSN. Specifically, this reaction involves
the conversion of p—nitrobenzaldehyde (PNB) to an aldol product by reaction with acetone in
amine-functionalized MSN [11] (see Figure 2.2 and [23,24] for related studies). Significantly,
a range of pore-expanded, functionalized MSN were prepared to by including a pore-expander
agent during synthesis [25], and reactivity was determined from a range of pore diameters. This
potentially allows assessment of the transition to the SFD regime. To provide a more detailed

description of this system, pore diameters after aminopropyl or methyl(aminopropyl) function-
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Figure 2.1: Neopentane (A) conversion to isobutane (B) in zeolite-supported Pd catal-

ysis.  (a) Image of zeolite structure adapted from http://www.personal.utulsa.edu/
~geoffrey-price/zeolite/ (Beta-A Jpeg Image). (b) Schematic of reactant and product
species. (c) Schematic of expected concentration profiles along the pore from the work of
Rodenbeck et al. [21]

alization ranged from d, = 2.6nm to 3.6nm. (Nominal diameters before functionalization,
dy(pre), were larger as the amine groups with linear size ~ 0.5nm attached to the pore walls
reduce the effective diameter by ~ 1nm.) Reactivity measured from reaction yield was high for
the largest pore diameters, but dropped dramatically for smaller diameters of d, = 2.6 —2.8 nm.
However, the longest dimensions of the reactant and product species are 0.65 nm for PNB and
1.0nm for the aldol product (and 0.4nm for acetone). Thus, might one anticipate that, even

in the narrowest pores, there is plenty of room for passing?

Figure 2.2: (a) Schematic of the conversion of PNB (A) to an aldol compound (B) by reaction
with acetone in amine functionalized MSN. The attachment of PNB to the amine group to
form a Schiff base, reducing the effective pore diameter. (b) Pore cross-sectional schematic. (c)
TEM image of mesoporous silica nanoparticle (MSN) with visible pores oriented from left to
right.

However, experimental analysis indicates that the diameter of the pore is significantly fur-

ther reduced as a result of reaction. It was proposed, and confirmed by NMR studies, that
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the reactant PNB attaches to the functionalized pore walls in the sense that a Schiff base is
formed between PNB and the aminopropyl group at the walls [11] (see Figure 2.2). One might
anticipate that this would further reduce the pore diameter by twice the PNB size to a smaller
effective value, d,(eff). However, the size of the Schiff base of ds, ~ 1 nm is somewhat smaller
than the sum of the above listed PNB and amine dimensions. Thus, for d,(pre) ~ 3.8nm
one estimates that d,(eff)~ dj,(pre)—2dsen =~ 1.8nm. With this reduced effective diameter, it
is reasonable to expect that effects of inhibited passing of reactant and product species could
significantly reduce reactivity. One caution is that formation of the Schiff base also inhibits
access of PNB to amine catalytic sites, so this effect can also reduce reactivity.

In other type of reactions, such as bimolecular esterification (acid + alcohol <> ester + wa-
ter), there has been considerable interest in exploiting multifunctionalization of MSN to tune
“reaction product-pore interior interactions” to enhance yield [26-28]. Specifically, multifunc-
tionalizing the pore interior with hydrophobic groups can minimize interaction of the product
water with the intrinsically hydrophilic MSN surface groups. potentially shifting the reac-
tion equilibrium toward complete conversion. Multifunctionalization can also impact transport
within the pores [29] (see Chapters 3 - 5). Finally, polymerization reactions in nanoporous
materials will also naturally be impacted by the ability of monomers to pass oligomers that
form in catalytically functionalized pores. One example is the oxidatively catalyzed formation
of poly(phenylene butadinylene) polymer (PPB) in a Cu?*-functionalized MCM-41 silica [30].
Modeling reveals unusual spatial kinetic features of polymerization in 1D nanoporous materials

subject to SFD [31,32].

2.1 From Spatially Continuous to Discrete Stochastic Models for

Reactions in 1D Nanoporous Materials

Here, the focus will be on the case of catalytic conversion reactions for solution-phase
batch reactors where the catalytic nano-particles are immersed in a well-stirred fluid initially
containing the reactant species. As previously indicated, a comprehensive modeling description

of these many-particle reaction-diffusion processes must include diffusion of reactant species
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into the nanopores from surrounding well-stirred fluid, reaction in the vicinity of catalytic sites
on the interior pore surface, diffusion of both reactant and product species out of the pore,
and product reentry when a significant fraction (F') of reactant is converted to product in
the surrounding fluid. One might naturally start by considering comprehensive continuous-
space description where the motion of reactant, product, and solvent molecules is described
by classical molecular dynamics (MD) simulations [17,18]. Alternatively and more efficiently,
just the motion of reactants and products might be described by Langevin dynamics, implicitly
accounting for the solvent [20] (see Figure 2.3). However, even the latter treatment is not
computationally viable to describe either the entire reaction or even the attainment of a reactive
quasi-steady state for a specific F.

As alluded to by the above reference to quasi-steady-state behavior, one significant aspect
of these batch reactor processes is a time scale separation. The overall conversion of reactant
to product occurs on the time scale of hours. Initially, there is typically only reactant in the
surrounding fluid (F' = 0), and one anticipates that, on the time scale of a few minutes, quasi-
steady-state concentration profiles are established in the pore reflecting this F' = 0 state of
the fluid. As the reaction proceeds, an increasing fraction, F', of reactant outside the pores is
converted to product. For each new F', quasi-steady-state concentration profiles are quickly re-
stablished. Thus, by separately analyzing these quasi-steady states for a sequence of increasing
F values, one can piece together the kinetics of the overall conversion reaction [29].

Since many-particle MD or Langevin simulations are prohibitive or impossible on the re-
quired time and length scales, there is motivation to apply “local coarse-graining” to map the
above continuous-space picture onto a spatially discrete stochastic model. In the simplest sce-
nario, one thus divides the linear pores into cells whose width, a, matches the typical reactant
or product size of a ~ 1nm [1-4,33,34]. Sometimes, it is also convenient to extend this 1D
array of cells to a 3D array outside the pores in the surrounding fluid [4] (see Figure 2.3). Thus,
each cell can contain at most one reactant or product molecule. Diffusion within the pores is
now described by hopping to adjacent empty cells and also by exchange of (distinct) species
between adjacent cells. Adsorption-desorption processes at the pore openings correspond to

hopping (or exchange) between the end cell of the linear array within the pore and the adjacent
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Figure 2.3: (a) Continuous-space Langevin representation of the many-particle reactant and
product diffusive transport processes in a 1D linear nanopore. (b) Corresponding spatially
discrete model formulation. (c) Treatment of unimolecular and bimolecular conversion reaction
processes for the spatially discrete model.

cell in the surrounding fluid. Unimolecular reactions occur at cells within the pore designated
as catalytic (c) and convert a reactant species to the appropriate product species within that
cell. Bimolecular reactions might involve, for example, distinct reactant species in adjacent
cells (see Figure 2.3). These stochastic models are described exactly by hierarchical master
equations (see Section 2.2), although for precise analysis of behavior, it is typically most conve-
nient to employ KMC simulations. Here, various processes are implemented stochastically with
probabilities proportional to the physical rates. However, a non-trivial challenge is to obtain
the basic rate parameters for this locally coarse-grained model that are consistent with the full
continuous dynamics.

A few relevant observations on connecting spatially continuous to discrete descriptions of
the reaction-diffusion process are as follows: (i) The rate, h, for hopping to adjacent cells would
be chosen to match the prescribed continuous diffusion coefficient, Dy, in the regime of low
reactant and product concentrations, so that Dy = a®h [35]. (ii) Clearly, exchange is absent for
SFD. However, in general, it is not trivial to appropriately map the extent of inhibited passing,
as assessed by MD or Langevin simulations in a narrow pore, onto a numerical value of the

exchange probability (pex) in the spatially discrete model [20] (see Figure 2.3). Despite its
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significance in controlling reactivity, targeted quantitative analyses of the passing propensity
of reactant and product species are rare [18,20]. Even here, many-particle MD or Langevin dy-
namics is not efficient, so an effective two-particle analysis is preferred [18,20] (see Chapter 3).
(iii) Adsorption-desorption rates, and specifically their ratio, should reflect the possible differ-
ent chemical potentials for various species in the surrounding fluid versus within the pore. This
issue is particularly relevant in discussion of multifunctionalization to tune the pore interior to
enhance reactivity (see Chapters 3 - 5). (iv) With regard to interactions between reactant and
product species themselves and with the pore walls, the simplest treatment considers just steric
(or geometric non-overlap) constraints. These constraints are incorporated into the feature that
a cell can only be occupied by a single species. In the case of longer range interactions [36], the
additional requirement that the neighboring cells to a non-empty cell, within the interaction
range, are empty. However, a more sophisticated treatment would account for solvent-mediated
interactions between reactants, products, and the pore walls [1,2,33], where these interactions
would be suitably coarse- grained to fit our spatially discrete model. While significant recent
developments exist in related coarse-graining approaches [37], these have not yet been applied
to systems of interest here. (v) The microscopic reaction rate in the coarse-grained model
would reflect not just the activation barrier but also local entropic factors and diffusion pro-
cesses within the cell (or within adjacent cells for bimolecular reactions) related to achieving
the necessary reaction configuration.

The above level coarse-grained modeling with one reactant or product species per cell has
the simplifying feature that chemical diffusion in a system involving a single species is in-
dependent of concentration in the absence of interactions beyond steric blocking [38]. This
feature, and its extension to multi-species models where distinct species have the same mo-
bilities, is particularly useful in analysis of the more complex reaction-diffusion process [1-4].
However, a more realistic treatment bringing the above “very coarse” spatially discrete model
and continuous-space Langevin descriptions would be to choose a finer discrete spatial grid
within (and outside) the pores. Now particle centers reside at grid points, but the grid spac-
ing is finer than the particle linear dimensions, so particles can only approach within a finite

threshold distance (of multiple grid spacings) to avoid overlap (see Figure 2.4). In this case, the
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description of chemical diffusion is non-trivial even for a single-species problem (see Chapters

3 - 5).

linear nanopore in a zeolite or MSN

i

Figure 2.4: Finer-scale spatially discrete model that coarse-grains the continuous-space
Langevin model for transport and reaction in a narrow nanopore.

2.2 Discrete Hierarchical Reaction-Diffusion Equations

For the above discrete reaction-diffusion models, the labeling of discrete cells or sites which
form periodic arrays will be labeled by n, and the concentrations at those sites for species A, B,
...by (Ay), (By), .... Again, at most one species can occupy a site or cell. Correspondingly,
these concentrations are normalized so that their maximum value is unity, and they correspond
to probabilities that a site is occupied by A, etc. Here, we leave implicit dependence on time (),
but explicitly account for possible spatial heterogeneity by allowing concentrations to depend
on n (see Figure 2.5). In the following sections, it will be primarily described the case of
systems with a single site type for each species. However, much of the formalism applies to
the situation where there are distinct site types for each within the unit cell of the periodic
system species, and brief comments are made in the text on this more general case. The site

concentrations satisfy evolution equations of the form [39-45]

d (An)
dt

— Ra(n)— V- Ja(n), d<£“> —Rpm)—V-Jym), ... (21

where the rate terms R, (n) include gain and loss terms for species C' associated with reaction,
and also with adsorption and desorption if operative. Also V - Jo (n) is a suggestive nota-

tion representing discrete analogue of the divergence of the C' diffusion flux. Specifically, if
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Jo (n — n + d) denotes the net diffusive flux of C' from n to n + d, then
V-Jom)=)Y [Je(n—>n+d)—Jo(n—d—n), (2.2)
deQ
where €2 denotes a half-space of d values [39]. For 1D systems and hopping between nearest
neighbor sites (NN), n — n, V- Jo(n) = V - Jo (n), where Jo (n) = Jo(n —n+1) and

VK, = K, — K,_1 is the discrete gradient or divergence.
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Figure 2.5: Schematic of concentration profile in a discrete reaction-diffusion A — B system in
a 1D linear nanopore where (A,) decreases and (B,) increases into the pore.

For spatially uniform states with a single site type, (A,) = (A) , etc., are independent
of n and the diffusion terms vanish in equation (2.1) for these single site concentrations. For
multiple site types, diffusive hopping flux terms remain as these describe mass transfer between
sites of different types. If this mass transfer is rapid, then one expects local equilibration of
concentrations for distinct sites.

The above apparently simple form of the discrete reaction-diffusion equations (RDE) hides
much complexity, even for the spatially uniform case. Typically, neither the rate terms nor the
diffusion terms are determined solely by single-site concentrations. Rather, they are generally
dependent on the probabilities of multisite configurations, which cannot be simply expressed in
terms of site concentrations due to the presence of spatial correlations. Thus, the above discrete
RDE might be regarded as the lowest-order equations in an infinite coupled hierarchy [39,46-48].
Higher order equations describe the evolution of probabilities or correlations associated with
configurations involving multiple sites. While diffusion terms are absent in the lowest-order

equations for spatially uniform states in the case of a single site type, they persist in equations
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for probabilities of multisite configurations, thereby impacting the extent and nature of spatial
correlations.

To illustrate the appearance of multisite probabilities, in the discrete RDE, consider a
bimolecular reaction of A on site n with species B on a nearby site m. In the simplest case
of an environment-dependent reaction rate k, the associated contribution to the reactive loss

term in K™ (n) has the form
K" (njm) = k (A, B,), (A, By,) = probability of A, By, pairs. (2.3)

This pair correlation can only be replaced by the product of site concentrations, (A,) (Bm),
in the complete absence of correlations. In the simplest low-concentration quasi-equilibrated

regime, one can write
(AnBm) ~ (An) (Bm) exp (—Bdnm) (2.4)

for inverse temperature 8 = 1/ (kpT) with interaction ¢, between A and B, i.e., the first
term in an Ursell-Mayer cluster expansion [49,50]. This expression immediately show that the
effective barrier for reaction will be impacted by ¢..,,. However, this is a crude approximation
for higher concentrations or strong ordering, and a Kirkwood or quasi-chemical approximation
might provide a more accurate expression [49,50]. There is no analogous simple formulation to
account for correlations of kinetic origin.

In contrast to the above example with a single rate k, in general, rates and associated
barriers are impacted by the local environment. The exact expression for the reactive loss
contribution K3 (n/m) to R4 (n) generally involves a sum over various possible influencing
environments of the reacting pair times the appropriate rates (as well as a sum over m).

Similar complications arise in treating the net diffusive flux, J4 (n — n+d), of A, say,
from n to d. For diffusive hopping, one requires site n to be populated by A and site n+d to
be empty (E). In addition, the hop rate generally depends on the local environment of this pair
of sites, with J4 involving a sum over associated configurations times the corresponding rates.
It is instructive to consider the simplest case with an environment-independent hop rate, h, in

both directions between pairs of sites where [39,51-53]

Jam—n+d) =h[(AnFnrd) — (EaAnia)l. (2.5)
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Here (AnFniq) is the probability that n is occupied by A and n + d is empty, etc. Neglecting

spatial correlations and factorizing these pair probabilities, one obtains

Jam—n+d) = —h(1— (B — (Cu) —...) (Ansa) — (An)) -

h{An) [((Ba+a) = (Bn)) + (Cntd) = (Cn) +- -] (2.6)
For 1D systems and hopping between NN sites, this reduces to [51-53]
Ja(n—=>n+1)=—=DyaV{(Ant1) — DapV (Bny1) — DacV {(Cpy1) — .. (2.7)

where Dag = h(1 —(By) — (Cn) —...) and Dap = Dac = ... = h(4,), and again VK,, =
K, — K,,_1. Coarse-graining to continuum formulation adds an extra factor of a? in these D’s
(see Chapter 6 and Chapter 7). The form of equation (2.7) is qualitatively correct, i.e., consis-
tent with Onsager transport theory. However, it does not provide the basis for a quantitative
description of transport even for simple models without interactions [39]. This type of analysis
can be extended to the case of multiple site types for each species, as indicated above, but the

analysis of the diffusion coefficients is more complex.

2.2.1 Hierarchical truncation at the mean-field level

A fundamental observation from equation (2.1), or the simplified form for spatially uniform
systems, do not constitute a closed set of equations in the presence of correlations but rather are
just the lowest-order equations in an infinite coupled hierarchy. Higher-order equations in the
hierarchy describe the evolution of various two-site, three-site, etc. configuration probabilities
or correlations. Truncation of this hierarchy to obtain closed equations for a finite set of one-site,
two-site, etc. probabilities generally implements a factorization approximation. The simplest
mean-field (MF) site approximation neglects all spatial correlations [49,50]. Extending this

approach to a spatially heterogeneous state, one factorizes multisite probabilities as [39]

(AnBm) ~ (An) (Bm) , (AnEn+a) =~ (An) (En+td) (2.8)

and similarly for probabilities of configurations for larger number of sites. For homogeneous

states, this yields the traditional mean-field rate equations of chemical kinetics.
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For spatially heterogeneous states, this factorization yields a closed set of discrete RDE’s for

d(c.

site concentrations. Spatial coupling in these T”) equations comes not just from the diffusion
terms, since adsorption, and reaction rates, equations (2.6) and (2.7), but also from the rate
terms, since adsorption, desorption, and reaction rates generally depend on concentrations at

sites nearby n. This contrasts the simpler coupling in the most commonly analyzed traditional

discrete Nagumo-type RDE’s [54,55], which comes only through the diffusion terms, i.e.,

: <£n> = Ra({(An),(Bn),--.) + DaA (Ax), (2.92)
d<£n> = Rp ((An) ; (Bn),--.) + DBA(Ay) , ... (2.9b)

where A denotes a discrete Laplacian and D4, Dp, etc. are constants. Indeed, even from the
simple mean-field analysis of diffusion fluxes in multicomponent systems, it is clear that the
diffusion flux of any species is more complicated than in the above Nagumo equations, as there
is coupling to concentration gradients of other species, and also diffusion coefficients depend
on concentrations. This complexity is consistent with Onsager's general theory of transport, a

feature typically neglected in modeling.

2.2.2 Higher-order hierarchical truncation and conditional probabilities

Higher-order truncation approximations to the discrete hierarchical RDEs that retain some
information on spatial correlations are generally needed to more accurately capture model
behavior. However, the accuracy of these approaches is not guaranteed, even in simple reaction
models, and they may be difficult to implement for complex realistic models. Examples of

higher-order factorization schemes for 1D systems are

<Aan+1> <Bn+1 Cn+2>

<Aan+1Cn+2> =~ <B +1> s (210)
(pair approximation)
<Aan+1Cn+2Dn+3> ~ < +1C +2> < +1C +2 +3> ) (211)

<Bn+1 Cn+2>

(triplet approximation)
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Implementing the pair approximation, one factorizes the rate terms and diffusion terms in
equation (2.1) in terms of single site and pair quantities. To obtain a closed set of equations,
one must also add evolution equations for these pair quantities and suitably factorize the rate
and diffusion terms. Similarly, implementing the triplet approximation, one must add evolution
equations for both pair and triplet quantities. There are several examples where such higher-
order truncation approximations have been implemented for simple spatially inhomogeneous
models of reactions in 1D nanoporous systems [2—4, 33].

A useful observation is that another systematic way to formulate higher-order factoriza-
tions, and also a valuable tool to understand and quantify spatial correlations, is to introduce
conditional probabilities [56,57]. Recall the generic notation for the conditional probability of
X given Y is P(X|Y) =P (X UY)/P(Y). Similarly, here we let the probability of A on site
n given B on site m as (An|Bm) = (AnBm)/ (Bm), or given B on site m and given C on
site k as (An|BmCk) = (AnBmCk) / (BmCk), etc. Then, the above examples of higher-order

factorization in 1D systems can be concisely recast as

(An|Bry1Cny2) = (An|Bpy1) (pair); (2.12a)

<An’Bn+1Cn+2Dn+3> = <An|Bn+1Cn+2> (triplet), etc. (2'12b)

Pair or higher-order truncation can sometimes significantly improve accuracy over mean-field
treatment of reaction kinetics, at least for simpler models [43-45]. However, in general these
types of approximations fundamentally fail to describe diffusion fluxes. This is naturally a

greater challenge since one must capture the small difference between similar quantities.
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Abstract

Statistical mechanical modeling is developed to describe a catalytic conversion reaction
A — B, or B; with concentration-dependent selectivity of the products, B. or Bj;, where
reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated
restricted diffusive transport, which in the extreme case is described by single-file diffusion,
naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte
Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong
spatial correlations induced by restricted diffusivity in the presence of reaction and also by a

subtle clustering of reactants, A. DOI: 10.1103/PhysRevE.93.052137
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3.1 Introduction

Molecular-level non-equilibrium statistical mechanical modeling has the potential to provide
a reliable description of cooperative catalytic reaction-diffusion phenomena where traditional
mean-field (MF) treatments of chemical kinetics are inadequate [1,2]. The focus of this paper
is on providing such a treatment of catalytic systems with two distinctive features. The first
involves solution-phase first-order A — B conversion reactions occurring in catalytically func-
tionalized particles traversed by narrow linear nanopores which result in restricted diffusive
transport [3—11]. The extreme case of restricted transport, on which we place some emphasis
here, is single-file diffusion (SFD) [12-14] wherein reactant and product species cannot pass
each other within the linear nanopores. Then the interplay between reaction and SFD produces
rapidly varying concentration profiles near the pore openings (where the reactant is supplied
from the surrounding fluid), and strong spatial correlations in reactant locations. The latter are
neglected in MF' treatments. The second phenomenon involves reactions with concentration-
dependent selectivity, and specifically stereoselectivity where the product B can have distinct
cis (B€) and trans (B!) forms [15]. Here, the selection of the B¢ or B! product is controlled
by the concentration of the reactant, A. More precisely, in a molecular-level picture, the rate
for conversion of A to B¢ or B! depends on the number and local arrangement of other nearby
A species. This, in turn, means that the selectivity, i.e., the relative yield of each of these
products, depends on spatial correlations in the reactant distribution.

Characteristic indicators of SFD in catalytic mesoporous systems were observed long ago
for certain classes of zeolites with uncoupled narrow linear pores [16,17]. It should, however,
also be noted that in samples with linear dimensions of tens of microns, these uncoupled pores
may not traverse the entire sample [18]. A primary motivation for our study is a catalytic
processes in functionalized mesoporous silica nanoparticles (MSNs) with diameters of around
100 — 200 nm where hexagonal arrays of parallel uncoupled linear nanopores do traverse the
entire nanoparticle [19]. While synthesis with a range of pore diameters is possible, the broad-
est of which certainly allows uninhibited transport, recent studies for narrow pores did reveal

behavior indicative of SFD [2,20].
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There has been extensive characterization of spatial correlations of thermodynamic origin
associated with intermolecular interactions in equilibrium systems. However, understanding of
spatial correlations of kinetic origin in the non-equilibrium steady states of reaction-diffusion
systems is limited [1,2]. Nonetheless, it is precisely the characterization of such non-equilibrium
correlations which is required for reliable prediction of selectivity and other features of con-
centration dependent stereoselective reactions in nanoporous systems. Given the fundamental
nature of this challenge, it is addressed here with somewhat simplified statistical mechanical
models, as described in detail below. We note that over the last two decades a substan-
tial body of analysis based on such models has been performed for conversion reactions in
nanoporous systems (usually zeolites) with simple concentration-independent first-order kinet-
ics [3-11]. One can straightforwardly extend this type of modeling to incorporate cooperative
concentration-dependent kinetics, but it will prove a significant challenge to provide a reliable
analytic treatment.

Our focus is on such simplified and generic modeling. However, here we first provide some
brief comments for broader background and motivation regarding the type of systems falling
into the above class and also on theoretical methodologies with the potential to provide a first
principles characterization of reaction kinetics. With regard to concentration-dependent selec-
tivity, homogeneous catalytic desymmetrization of diallylamines to give diastereomers (using
a Zr-centered catalyst) exhibits a quite strong variation with reactant concentration of cis to
trans selectivity [15]. Specifically, the yield of trans relative to cis product increases with re-
actant concentration. These studies are part of a broader analysis of stereoselectivity in Zr
catalyzed reactions [15,21]. To develop a heterogeneous version of this process, one might
anticipate functionalizing the interior pore surfaces of MSN with an appropriate Zr-centered
catalytic group. The effective diameter of the pores after functionalization can be reduced to
the range of d ~ 1 — 2nm where passing of molecular species within the pore can be strongly
inhibited. While such functionalization remains a significant challenge, substantial progress
has been made recently [22].

Next, we remark that electronic structure analysis could provide a detailed theoretical as-

sessment of the origin and nature of concentration-dependent selectivity. More specifically, such
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analysis should ideally elucidate variations in reaction barriers and possibly also pathways with
the local environment of the reacting “substrate” molecule A. This is a significant challenge
even for homogeneous catalytic systems, but one might anticipate that the basic features are
preserved for heterogeneous catalytic analogues. Given the typical complexity and size of the
catalytic group, and the requirement to incorporate multiple reactant molecules, it is natural
to utilize computationally less expensive density functional theory (DFT) to facilitate such an
analysis rather than higher-level quantum chemistry approaches. Indeed, this type of analysis
has been performed for systems similar to that described above and has demonstrated that
certain barriers can indeed be lowered by increasing the number of reactant molecules [23].
Current analysis has not included solvent effects, but this could be done explicitly or using im-
plicit solvent approaches such as COSMO [24] or PCM [25]. Tt is also appropriate to note that
once geometries along the reaction path have been determined by DFT, higher-level analyses
such as MP2 and CCSD can be implemented utilizing those geometries to assess corrections
to the energetics. In one case, the MP2 calculations yielded similar energetics to the DFT
analysis [23].

Returning to statistical mechanical modeling, we briefly review an effective strategy uti-
lized in previous studies to describe solution-phase catalytic conversion reactions with restricted
transport within catalytically functionalized linear nanopores. Direct molecular or Langevin
dynamics simulation [26-28] is not viable to describe the overall reaction-diffusion process on
the appropriate time scale (i.e., reactants entering, diffusing within, reacting, and products
diffusing within and being extruded from the pore, with dynamics generally mediated by the
presence of a solvent). Thus, instead spatially discrete coarse-grained stochastic modeling is
typically implemented [3-11]. In this approach, each pore is divided into a linear array of
cells each with width a ~ 1 nm comparable to that of the reactant and product species. Then
solvent-mediated diffusion is described by hopping to adjacent empty cells. Refinements can
be made to relax the SFD constraint. Adsorption and desorption from the pore are reflected in
appropriate boundary conditions at the pore openings. A conversion reaction will be analyzed
here with rates which reflect the local environment of the cell where reaction is occurring. The

behavior of the stochastic one-dimensional lattice-gas model is precisely assessed by kinetic
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Monte Carlo (KMC) simulation [2]. However, for a deeper understanding, one can develop
exact master equations for the model. Although these cannot be solved exactly, and standard
mean- field type treatments are inadequate, effective analytic treatments such as a generalized
hydrodynamic (GH) approximation [10] might be developed to elucidate behavior.

In Section 3.2 we develop a spatially discrete stochastic model for catalytic conversion
A — B¢ or B! in nanopores with restricted transport, present the exact evolution equations,
and comment on an effective analytic treatment of diffusion. Section 3.3 provides a characteri-
zation of the key spatial correlations in the steady state of the non-equilibrium reaction-diffusion
system, focusing on the reactant distribution and elucidating the strong correlations which im-
pact the diffusion fluxes. In Section 3.4, we present an analysis of model behavior, specifically
describing nontrivial concentration profiles in the steady state and elucidating the key features

impacting the selectivity. Conclusions are provided in Section 3.5.

3.2 Model Specification and Evolution Equations

3.2.1 Specification of the spatially discrete stochastic model

Spatially discrete modeling describes catalytically functionalized nanoporous particles, such
as MSN, by an ensemble of linear pores each consisting of a 1D array of L cells, labeled n = 1—L,
each of width @ ~ 1nm [3—-11]. In our treatment, all cells are regarded as catalytically active.
It is convenient to consider these 1D arrays as being extended to a 3D array of cells in the
exterior fluid surrounding the catalytic particles as this facilitates specification of adsorption
and desorption processes at the pore ends. The exterior fluid supplies reactant, A, to the
pores, and we consider here only the initial stage of the reaction where a negligible fraction of
the reactant in the external fluid has been converted to product. We consider the conversion
reaction A — B¢ or B! occurring exclusively inside the pores, as indicated above, and let E
denote empty cells. It will also be useful to let B = B¢+ B! denote either product, X = A+ B
denote any type of species, and Z = B + E denote cells not populated by A. Also if C' = A,

B¢, or B! | then we will let C’ denote other molecular species, e.g., if C = A then C' = B.
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Figure 3.1: Schematic of spatially discrete stochastic reaction model for concentration-dependent conversion

reaction A — B¢ or B' in catalytically functionalized linear nanopores described by a 1D array of cells.

The probability that site n is occupied by some species C', corresponding to a concentration
at site n, is denoted by (C)), where 0 < (C},) < 1. Similarly, the pair probability that site
n is occupied by C' and n + 1 by D is denoted by (C,,Dy+1), etc. The “well-stirred” exterior
fluid has a large volume compared to the intrapore region. For the initial stages of the reaction
under consideration, we specify that a fixed fraction, (Ag) = (Xo) of cells in the exterior fluid
are randomly populated by reactant A. Thus, the fraction of exterior empty cells is given
by (Ep) = 1 — (Xp). As an aside, one can regard efficient stirring of the exterior fluid as
corresponding to very rapid hopping of A between adjacent exterior cells.

The key ingredients of our stochastic model for the catalytic reaction-diffusion process,

shown schematically in Figure 3.1, are as follows:

(i) Reactants A “adsorb” at rate h from the fluid cell just outside the pore to empty end
cells n =1 and n = L. Thus, the overall rate to adsorb, e.g., at the left end of the pore
is h (Ao) (E1) accounting for the feature there is no correlation between the occupancy of

the exterior and interior cells.
(ii) Reactants A hop at rate h to nearest-neighbor (NN) empty cells within the pore.

(iii) Reactants A convert to products B¢ or B! with rates depending on the local environment,

specifically the state of the neighboring cells, as prescribed below.
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(iv) Both types of product also hop at rate h to NN empty sites within the pore.

(v) Reactants and products “desorb” by hopping from end cells at rate h to NN empty cells
in the surrounding fluid. Thus, e.g., the overall rate for A to desorb from the left end of

the pore is h (A1) (Ep).

(vi) One can relax the SFD constraint implicit in the above prescription of hopping by simply
allowing exchange of adjacent (NN) species within the pore with rate Pech. Of key impact
is exchange of reactants and products. Selecting Pex = 0 recovers SFD (for narrow pores),

and setting Py = 1 corresponds to uninhibited passing (for wide pores).

It is appropriate to note that since we focus on the initial stage of the reaction, the extruded
product is extremely diluted in the well-stirred fluid and does not readsorb. Also, we remark
that the assignment of equal hop rates is natural for cis and trans products, and this is also
reasonable for reactants for the type of reaction mentioned in Section 3.1 which motivates this
study.

Our primary aim of incorporating concentration-dependent selectivity, or more precisely
environment-dependent selectivity, is achieved by specifying that the rate for conversion of A

at cell n depends on the state of neighboring cells as follows:

Ay 1ApAps — Ay 1B A, at rate k, (3.1a)

Ap 1A Zn1 — Ay 1BSZy 1 or A, 1BlZ,.1 each at rate k/2, (3.1b)
Zn 1AnAni1 — Zy 1BSA, 1 or  Z, 1BLA,;1  each at rate k/2, (3.1¢)
and Z,,_1AnZn+1 — Zn-1B, Z, 41 at rate k, (3.1d)

where again Z means not A. Using exact “conservation of probability” relations, the above
prescription implies that the rate of loss by reaction of A at site n equals R, (4) = —k (A4,).

Likewise, the rates of gain by reaction of specific products at site n are given by:
1 1
Ry (Bt) = §k ((AnAnt1) + (An-14n)) and R, (B°) = §k ((AnZnt1) + (Zn-144)), (3.2)

where R,, (B¢) can be rewritten using (4,Z,4+1) = (An) — (ApAn+1), ete. Clearly, the overall

gain products satisfies Ry, (B) = Ry, (B°) + Ry, (B") = =R, (A).
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This model has the following special features. Ignoring the distinction between B¢ and B,
the model reduces exactly to a simple concentration-independent conversion model A — B with
rate k for all cells. Thus, the concentration profile for A (which decays quickly into the pore),
and all spatial correlations in the location of A species in the full A — B¢ or B! model, are
determined by this simpler A — B model. If one does not distinguish A and B, then the model
reduces to a simple nonreactive diffusion model for a single species X. Thus, the steady state
corresponds to a random distribution of X in cells within the pore with uniform concentration,
(Xn) = (Xo). A corollary of this observation is that empty cells are also distributed randomly
in the steady state with uniform concentration (E,) =1 — (Xo) = (Ep).

Finally, we note that the above modeling can be refined or extended in various ways.
For example, the SFD constraint could instead be relaxed by modeling pores as consisting of
multiple parallel rows of cells [2] (rather than by including place exchange for pores with a
single row of cells). Also, rather than just considering the initial stages of reaction where a
negligible fraction of reactant in the fluid is converted to product, one can also assess reactivity
for various degrees, f, of conversion of reactant to products. Here one exploits an assumed
separation-of-time-scales feature that a quasi-steady state within pores will be quickly achieved
for each f relative to the time scale for conversion of most reactant to product in the fluid.
Thus, from an analysis of reactivity for a series of f values, one can piece together overall

reaction kinetics [11].

3.2.2 KMC simulation and master equation analysis

Precise analysis of model behavior will be achieved by kinetic Monte Carlo (KMC) simula-
tions, some details of which are described in Section 3.7. However, potentially deeper insight
comes from an analytic treatment based on exact evolution equations for the A — B¢ or B!

model, which can be written in compact form:

d/dt (C,) = R, (C) = VaJoc(n>n+1), forl<n< L withC=A,B or B". (3.3)
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Here V,, K, = K,,— K,,_1 denotes a discrete gradient, and the net diffusion flux, Jo (n > n + 1),

of C from cell n to cell n + 1 satisfies [10]
Jo(n>n+1)=h(CpEpt1) — (BEnCni1)) + Pexh ((CnChy1) — (C,Cria)) - (3.4)

Separate equations are needed for end cells which reflect the feature that the cell just outside
the pore is randomly populated by A with probability (Xy). Thus, pair probabilities involving
the end cell and the adjacent exterior cell factorize as a product of single-cell probabilities, e.g.,
d/dt (A1) = Ry (A) = Ja (1> 2) + h ({Ao) (Er) — (Bo) (A1)).

All these equations couple single-cell probabilities to pair probabilities. One can develop

separate equations for pair probabilities [2], e.g.,

d/dt <AnAn+1> =—2k <AnAn+1> —h (<AnAn+1En+2> - <AnEn+1An+2>)
+h (<An71EnAn+1> - <En71AnAn+1>)
 Poch ((ApAn i1 Alysy) — (Ap Al Ay o))

+ Poxh (<An_1A%An+1> - <A;171AnAn+1>) , (35)

for 1 < n < L — 1 which couple to triplet probabilities. Continuing to develop equations for
triplets, etc., generates a hierarchy of evolution equations.

The simplest mean-field (MF) treatment completely neglects spatial correlations by factor-
izing all multicell probabilities as products of single-cell quantities. However, for the A — B
conversion reaction, this MF treatment has been shown to greatly overestimate the magnitude
of the diffusion flux terms, Jo (n > n+ 1), for SFD, and thus overestimates reactant pene-
tration into the pore and reactivity in the steady state for & << h [9,10]. This is perhaps
not surprising as it is well recognized that there are strong back correlations in hop sequences
associated with SFD [14]. Of course, the MF treatment also neglects correlations determining
(ApAp41) pair probabilities which will be important for accurate description of reaction kinet-
ics. The pair approximation sets (Cy, D41 Fpi2) = (CrDpt1) (Dpt1Fnt2) / (Dnt1) attempting
to account for spatial correlations, and requires simultaneous analysis of equations for both
single-cell and pair probabilities. This yields somewhat improved results, but still significantly

overestimates fluxes for k << h, as do higher-order triplet, etc., approximations [10].
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The deficiency of MF-type approximations in describing diffusion fluxes has been remedied
by implementing a generalized hydrodynamic (GH) treatment [10] of diffusion for the relevant
counter-diffusion modes [29] where the total concentration (X,) = (Xp) is constant. Here we
start with a hydrodynamic expression for diffusion fluxes Jo(n >n+1) = —Dy,.V,, (Cpi1)
which is applicable for counter diffusion and involves a tracer diffusion coefficient, Dy, [2,10,
29-31]. Then, we replace the hydrodynamic Dy, which equals zero for SFD in an infinite pore,
by a GH form Dy, (n,n+ 1) = h Fy (n,n + 1). This GH form has a finite value O (1/L) in the
pore center and is enhanced near the pore openings [10]. Then the diffusion flux is given in

this GH formulation by

Jo(n>n+1)~ —hFy (n,n+ 1)V, (Chi1). (3.6)

As described in detail elsewhere [2,10,29], F, (n,n+ 1) are determined either from the
form of concentration profiles for a counter-permeation setup, or by suitable analysis of tagged
particle diffusion with various starting locations. Illustrative values for Fi, (n,n + 1) will be
given below. This analysis produces a diffusion flux which is far smaller in magnitude than
the MF prediction for SFD. Additional perspective on this feature comes from the observation

that the MF value of F},. is given by

Fy (MF) = (Eo) + Pex (Xo) - (3.7)

See Section 3.8. For SFD with Py = 0, we will find that Fy, (n,n + 1) is well below Fj,. (MF) =
(Ep). We discuss further the implications of the success of the GH treatment in Section 3.3.
The regime where spatial correlations are strongest and where analytic treatment most
challenging is for Poxy = 0 (SFD) with higher values of (Xy) and k& << h. Higher (X() amplifies
the constraints of SFD, and k << h produces substantial reactant penetration to the pore
so the form of the concentration profile impacted strongly by SFD. Thus, our discussion will
particularly emphasize the case Pex = 0, (Xp) = 0.8, and k/h = 0.001, choosing a pore length
L = 100. Spatial correlations are reduced upon allowing exchange or reducing (Xy), so any
treatment which is effective for Poy = 0 and high (Xy) will be even more accurate for Pex > 0

and lower (X(). We will also consider behavior for (Xo) = 0.2 and P.x = 0.25 confirming this
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Table 3.1: Fyr (n,n + 1) versus n near the end of a pore with L = 100 for different values of total concentration
(Xo) and for SFD (P.x = 0) as well as with exchange (Pex = 0.25). Decay into the pore (increasing n) is strong
for SFD and weak with exchange. MF values, Fi, (MF) = 1 — (1 — Pex) (Xo) are shown in the bottom row.
Fyr (n,n 4+ 1) is closest to Fi,. (MF) for low (Xo) and Pex > 0, and furthest below Fy,. (MF) for high (Xo) and
P =0.

Fur(n,n+1)  (Xo) = 0.20, Pox = 0.00 (Xo) = 0.20, Py = 0.25  (X) = 0.80, Pox = 0.00  (Xo) = 0.80, Poy = 0.25

n=1 0.59353 0.76127 0.05463 0.32147
n=2 0.43812 0.71861 0.02302 0.31004
n=3 0.35470 0.69915 0.01295 0.30757
n=4 0.27708 0.68507 0.00865 0.30522
n=>5 0.23021 0.69082 0.00627 0.30112
n==6 0.19527 0.66456 0.00494 0.30126
n="7 0.16801 0.66701 0.00411 0.29957
n=28 0.15003 0.66144 0.00358 0.29984
n=9 0.13627 0.66434 0.00327 0.29802
n =10 0.12136 0.65699 0.00304 0.29793
n=11 0.10895 0.65478 0.00286 0.29734
n=12 0.09805 0.64189 0.00274 0.29869
n=13 0.09060 0.64692 0.00265 0.29780
n=14 0.08285 0.64900 0.00260 0.29823
n=15 0.07682 0.64390 0.00255 0.29618
Fyr (MF) 0.80 0.85 0.20 0.40

feature. Likewise, for larger k, significant reactant concentration is limited to near pore open-
ings where correlations are weaker, and thus lower-level approximations are more effective [2].

Our most successful analytic treatment, described as an “extended GH” or eGH approach,
will incorporate a GH treatment of diffusion fluxes with a tailored treatment of spatial correla-
tions in the pair quantities (A, A,+1), which control the reaction kinetics R,, (C'). See Section

3.3 for details of the latter.

3.3 Spatial Correlations in the Reactive Steady State

3.3.1 Correlations related to diffusion fluxes

The dramatic failure of the MF treatment of diffusion fluxes for SFD, which is reflected in
the inequality Fi, (n,n+1) << F}, (MF) = (Ep), implies strong spatial correlations between

the location of cells which are empty and those which are populated by reactants, A, within
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Figure 3.2: KMC results for behavior of (A, E,41) and (E,, An41) (solid curves) relative to their MF approxima-
tions (dashed curves) versus n near the left end of a pore with L = 100, (Xo) = 0.8 (so (Eo) = 0.2), k/h = 0.001,
and Pex = 0 (SFD). Since (E,) = (Ey), both MF approximations are determined solely by the variation of (A4,)

with n (as reflected in the “staircase” construction connecting dashed curves).

the pore. This behavior is quantified by the GH formulation (3.6) which shows that

(AnEni1) — (BpAng1) = Fy (nyn+ 1) ((An) — (Ang1) << (Eo) ((An) — (Any1)), (3.8)

where these quantities are positive near the left end of the pore, and where illustrative val-
ues for Fy (n,n + 1) are given in Table 3.1. Thus, as is shown in Figure 3.2 for SFD with
(Xo) = 0.8 and k/h = 0.001, (A, Ey,+1) and (E,A,+1) are much closer to each other than the
MF predictions. (The large difference between the MF estimates reflects a strong variation in
(A,) near the pore opening, noting that (E,) = Ej is constant.) The similarity of (A, E, 1)
and (E,Ap+1) is readily understood as a consequence of the restricted dynamics associated
with SFD. Consider the pair probability (A4, F,+1). Since cell n + 1 is empty, A on cell n
can readily hop to cell n + 1 and will then quite likely hop back to cell n (which is guaran-
teed to be empty immediately after A hopping). This results in a “near-equalization” of the
probabilities (A, E,+1) and (E,A,+1). This idea naturally extends to triplets (A, Ey 1 En12),
(EnApt1Eny2) and (E,Ey 1A, 92) which are much closer to each other than the MF values,

and also extends to associated quartets, quintets, etc.
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The GH formulation only quantifies the difference between the pair probabilities as indicated
in (3.8). However, it will be useful to also have reliable estimates of the individual probabilities
(ApEn41) and (E,A,4+1). To this end, we introduce an extended GH or eGH approximation

as follows. First, we note the anticipated inequality

<An> <E0> = <An> (En+1> > <AnEn+1> > <EnAn+1> > <En> <An+1> = <EO> <An+1>7 (3'9)

for the left end of the pore (smaller n) which is confirmed by the results in Figure 3.2. One
approach to assess (4, E,11) and (E, A, 1) accounts for a “strong asymmetry” in the behavior
of these quantities relative to MF predictions in that both are much closer to (E,) (4,+1) than
to (A,) (Ent1) for SFD with high (Xo) (or low (Ep)) [32]. In the notation of the inset to
Figure 3.2, this suggests setting A,+1 = 0 which immediately yields a fully asymmetric eGH

formulation eGH(f):

(AnEuir)eging) = (Bo) (Anir) + For (non 4 1) ((An) — (Aui1))  and (3.100)

(EnAni1)ean(r) = (Eo) (Ant1) (3.10b)

A less extreme but still asymmetric eGH formulation, eGH(a), anticipates weaker asym-
metry upon relaxing the SFD constraint or for lower (Xp). We have confirmed this trend
(not shown). In this case, we assume that deviations of pair probabilities from the MF re-
sults are proportional to the relevant A concentration, i.e., one assumes that A, o (4,) and
Apt1 x (Apt1) Figure 3.2, This formulation yields

2(An) (Any1) (Bo) | Fir (0,0 + 1) (An) ({(An) = (Ant1))

Vabraon = (0,15 (An) (Aa) + (A1) w1
2(A,) (A, E Fy (n,n+1) (A4, A — (A,
(Bnnen) e = ST o~ A ey A1)

We note that for our application, results using (3.10) or (3.11), or even an alternative
symmetric eGH formulation, eGH(s), where A,, = A,41 [33], are all much closer to precise

model behavior determined by KMC simulation than the MF approximation.

3.3.2 Correlations impacting reaction kinetics

Next, we discuss analysis of the pair probabilities, (A, A,+1), which is necessary to describe

the reaction kinetics, R, (C), in the evolution equations (3.3). The simplest treatment of
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Figure 3.3: KMC results for f,, = (AnAnt1) / ((An) (Ant1)), 8, = (AnBnt1) / ({An) (Bn41)), versus n near the
left end of a pore with L = 100, (Xo) = 0.8, k/h = 0.001, and Pex = 0 (SFD). Deviations from unity reflect the

strength of the associated NN spatial correlations.

reaction kinetics would simply apply a MF approximation (A, An+1) = (An) (An+1). A simple
hybrid approach might combine this MF treatment of reaction kinetics with a GH treatment
of diffusion fluxes. A more refined approach would involve analysis of the evolution Egs.
(3.5) for (A,An+1). This, in turn, requires analysis of the associated pair diffusion terms
which involve quantities like (A, Ant1En+2), (AnFEni1Anye) and (EpA,11An42). The same
argument as used above for pair probabilities and, as quantified in (3.8), suggests that these
quantities will be much closer to each other than their MF estimates. Not only is this correct,
but more sophisticated factorization approximations also fail to capture the key differences in
these quantities. The reason for failure of such higher-order approximations is briefly discussed
in Section 3.9. Another relevant observation is that unlike the conventional diffusion flux
terms appearing in the evolution equation for (A, ), one cannot readily adapt a hydrodynamic
transport theory to reliably treat the unconventional pair diffusion flux terms appearing in the
evolution equation for (A, A,11). We will find that various treatments of the reaction kinetics
of the above type produce qualitatively reasonable, but not quantitatively predictive results.
Thus, we are motivated find an alternative strategy to assess (4, A4,+1).

In fact, we resort to direct estimation of correlations associated with (A, A, 1) allowing
treatment of reaction kinetics without analysis of the additional evolution equations for this

quantity. To motivate our treatment, first we show KMC simulation results in Fig 3.3 for SFD
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with L = 100, (Xo) = 0.8 and k/h = 0.001 for f, = (A, An+1)/ ((An) (Ant1)), and also for
g, = (ApBni1) / ((An) (Bp+1)), versus n, where deviations from unity reflect the strength of
the spatial correlations. It is clear that values of f,, > 1 reflect clustering of A’s which becomes
particularly strong for increasing n. We emphasize that this clustering feature will significantly
impact selectivity in reaction kinetics. In contrast, g, < 1 values reflect anti-clustering which
is rather weak for intermediate n and becomes negligible for both large and small n [34].

The origin of the strong clustering of the A’s deeper in the pore is somewhat subtle, so
further discussion of this feature is appropriate (as well as of the weaker correlations between
A’s and B’s). The rare event where A penetrates deep into the pore without reaction might
be associated with density fluctuations near the pore openings, lower densities facilitating such
transport. Clearly, if such a fluctuation facilitates transport of one A deep into the pore, it also
facilitates transport of nearby pairs or larger groups of A. This feature explains the observed
clustering of A’s. However, this clustering is even more subtle in the sense the probability for
a site n to be populated by A is enhanced not just by knowledge that site n + 1 is populated
by A (and more so if both n + 1 and n + 2 are populated by A), but it is also enhanced if it is
known that site n 42 is populated by A and n+1 by B. For further discussion, see Section 3.9.
With regard to A — B correlations, most A deep in the pore will be isolated from each other
and surrounded by a significant population of B’s. There is no mechanism to induce significant
positional correlations between these A and B species.

The above observations suggest the possibility of estimation of (A, A,1) in the left half
of the pore by using the exact relation (4,) = (A, Ap+1) + (AnBn+1) + (ApEn+1), and then
neglecting correlations in (A, By+1), and also using (3.10a) or (3.11a) or alternatively eGH

expressions for (4, F,+1). Specifically, we set:

(AnAni1) = (An) = (An) (Bns1) — (AnEnsi1)ocn - (3.12)

Then (A,A,+1) in the right half of the pore is determined from the above results us-
ing symmetry about the pore center. In Table 3.2, we show corresponding results for f, =
(AnAnt1) / ((Ap) (Any1)) for high concentration (Xo) = 0.8 obtained from various eGH for-

mulations. For SFD (Ps = 0), all eGH formulations capture the strong increase in f, with
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increasing n, as determined precisely from KMC simulation. The fully asymmetric eGH for-
mulation eGH(f), is most successful in capturing behavior up to n = 10. All formulations
eventually increase more quickly than precise behavior, actually with eGH(f) deviating most.
However, we find that it is primarily behavior for n < 10 which controls the reactive steady
state, i.e., behavior deeper in the pore is not so relevant. From this perspective, eGH(f) is the
most successful formulation as anticipated for SFD with high (Xy). For Pox = 0.25, correlations
are far weaker, so any formulation gives reasonable results. As anticipated, eGH(a) performs
slightly better than eGH(f). In Section 3.4, we shall see that (3.12) allows successful analytic
treatment of behavior in the reactive steady state.

Finally, we have also analyzed behavior of f,, for (Xy) = 0.2 (not shown). For SED (P = 0),
again f, increases smoothly now from f; = 1.003 for n = 1 to fi5 = 1.421 for n = 15 as de-
termined from KMC simulation (a much slower increase than for (Xy) = 0.8). In this case the
eGH(a) predictions varying from fy = 1.012 to fi5 = 1.498 match better precise KMC results
than eGH(f) predictions varying from fy = 1.024 to fi5 = 1.948. For P,y = 0.25, spatial

correlations are very weak and again eGH(a) is very effective.

3.4 Results for Concentration-Dependent Selectivity: A — B¢ or B!

First, we present results for the steady-state concentration profiles for single-file diffusion
(SFD with Py = 0) where spatial correlations are strongest, and effective analytic treatment is
most difficult. Precise KMC simulation results in Figure 3.4 for L = 100 and (X() = 0.8 show
that (A,) ~ 0 in the center of the pore, and that the (BS) and (B) profiles exhibit plateaus
with nontrivial values subject to the constraint (BS) + (BY) ~ (Xo). This plateau behavior is
somewhat less clear for L = 100 with significantly lower (Xy) = 0.2, but would become quite
clear for this (Xp) in longer pores.

Since B! is is preferentially created in regions with higher A concentration, one might have
expected a bimodal profile for <B,t1> (rather than a plateau) with peaks near the pore open-
ings. Correspondingly, the profile for (BS) would then be peaked in the pore center (since
(Bg) + (BL) ~ (Xo)). While such transient behavior is found if starting with an initially

empty pore (see Section 3.11), it cannot be sustained in the steady state. The reason is
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Table 3.2: f, values for (Xo) = 0.8 for three different eGH formulations: fully asymmetric choice (f) expected
to be most appropriate for SFD and high (Xo), asymmetric choice (a), and simple symmetric choice (s). Results
are shown for SFD (Pex = 0) and Pex = 0.25.

Pox =0.00 Pex =0.00 Pex =0.00 PFPox =000 PFPox =025 PFPox =025 PFPox =025 PFex=0.25

fn values eGH(s) eGH(a) eGH(f) KMC eGH(s) eGH(a) eGH(f) KMC

n=1 1.00693 1.00717 1.01385 1.01081 0.99563 0.99551 0.99125 1.00029
n=2 1.01870 1.02004 1.03741 1.04782 0.99568 0.99556 0.99135 1.00037
n=3 1.03618 1.04011 1.07235 1.12252 0.99551 0.99538 0.99101 1.00031
n=4 1.06268 1.07160 1.12535 1.24534 0.99533 0.99520 0.99065 1.00015
n=>5 1.10838 1.12740 1.21676 1.42971 0.99519 0.99506 0.99039 1.00029
n==~6 1.18651 1.22442 1.37301 1.69431 0.99492 0.99478 0.98984 1.00010
n="7 1.32613 1.40026 1.65225 2.06707 0.99469 0.99454 0.98939 0.99976
n=3~8 1.57841 1.72113 2.15682 2.59594 0.99439 0.99423 0.98877 1.00000
n=29 2.02822 2.29550 3.05643 3.34233 0.99414 0.99398 0.98829 0.99964
n =10 2.84333 3.34063 4.68666 4.39688 0.99382 0.99364 0.98764 0.99930
n=11 4.36949 5.31141 7.73897 5.89006 0.99350 0.99332 0.98700 0.99925
n =12 7.18499 8.95460 13.36998 8.04207 0.99308 0.99288 0.98616 0.99892
n=13 12.46148 15.80610 23.92296 11.10158 0.99275 0.99254 0.98549 0.99885
n=14 22.13462 28.34838 43.26924 15.62479 0.99233 0.99212 0.98467 0.99938
n =195 40.48814 52.25351 79.97628 22.42215 0.99204 0.99181 0.98407 0.99845

simply that in the pore interior with no significant A population, concentration gradients in
B¢ and B! are eventually eliminated by small but nonzero diffusion fluxes, Jo (n >n+1) ~
—hFy (n,n+ 1)V, (Cpy1) with C = B! and BC.

We also show the predictions of the standard MF approximation and of our eGH formu-
lations [using the GH approximation for diffusion fluxes, and (3.10a) or (3.11a) for (A, Ap+1)].
The standard MF approximation fails completely to capture concentration profile behavior.
In contrast, the eGH formulations are particularly effective in capturing behavior even includ-
ing the heights of the plateaus for individual B¢ and B! concentrations. More specifically,
the eGH(f) formulation works especially well for higher (X) and the eGH(a) formulation for
lower (Xp), as anticipated previously. To highlight the success of the eGH formulations, we
emphasize that prediction of the values of the individual plateau concentrations is particularly
delicate. We have explored various other “hybrid” treatments which use the GH approximation
for diffusion fluxes, but either a MF treatment of reaction kinetics, or using other factorization

approximations to treat pair diffusion fluxes. These produce qualitatively reasonable forms for
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Figure 3.4: Steady-state concentration profiles for SFD with L = 100 and k/h = 0.001: (a) (Xo) = 0.2; (b)
(Xo) = 0.8. Comparison of precise behavior obtained from KMC simulation (solid curves) with poor MF

predictions (dotted curves) and two successful eGH formulations (dashed curves).

concentration profiles, but do not have the quantitative predictivity of our eGH formulations.
See Section 3.10.

Next, we more briefly describe behavior when the SFD constraint is relaxed by selecting
P.x = 0.25. Here enhanced diffusion means greater reactant penetration into the pore, so longer
pore lengths than L = 100 are needed to display a clear plateau in the pore center. Results for
concentrations when L = 100 shown in Figure 3.5 reveal that MF predictions (dotted curves)
are significantly closer to precise behavior determined from KMC simulations (solid curves)
than for SFD, although still not quantitatively precise. In contrast, predictions of our eGH

formulations are effectively indistinguishable on these plots from the precise behavior.
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Figure 3.5: Steady-state concentration profiles with exchange, Pex = 0.25, for L = 100 and k/h = 0.001: (a)
(Xo) = 0.2; (b)(Xo) = 0.8. Comparison of precise behavior obtained from KMC simulation (solid curves) with

poor MF predictions (dotted curves). eGH formulations are effectively indistinguishable from precise behavior.

Perhaps more significant than prediction of concentration profiles is the assessment of se-
lectivity, i.e., determination of the relative yields of products B¢ versus Bt. KMC simulation
allows precise determination of the entire conversion rate profiles, R,, (B¢) and R, (Bt), Versus
n. See Figure 3.6 for results for SFD with L = 100, k/h = 0.001, and (Xy) = 0.8. Also shown
are the results from a MF treatment, and from our analytic eGH(a) and eGH(f) treatments.
The total conversion rates, Riot (Bc’t) =Y. Ry (Bc’t), determine the selectivity through the
ratio ® = Riot (Bt) /Riot (B€). Analysis of behavior in Figure 3.6 for SFD reveals that for
(Xo) = 0.8, one has R = 1.56 from precise KMC analysis versus our best analytic eGH(f)
estimate of 8 = 1.40, and the poor MF estimate of ® = 0.64. For SFD with (Xy) = 0.2, one
has ® = 0.171 from KMC analysis versus our best eGH(a) estimate of 8 = 0.181, and the
poorer MF estimate of & = 0.135. A more comprehensive comparison of KMC results with
various analytic treatments are provided in Table 3.3. As might be anticipated, eGH formula-
tions reasonably recover precise behavior, but the MF treatment is inadequate particularly for
higher (Xj) . Results are also given in Table 3.3 including exchange (P.x = 0.25), where even
the MF estimate is reasonable.

It is appropriate to provide further insight into the influence on selectivity of restricted
diffusion (and particularly SFD), which impacts reactant concentration profiles, and of spatial

correlations in the form of reactant clustering which impacts reaction kinetics. To this end, it is
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Figure 3.6: Steady-state concentration profiles with exchange, Pex = 0.25, for L = 100 and k/h = 0.001: (a)
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Table 3.3: f, values for (Xo) = 0.8 for three different eGH formulations: fully asymmetric choice (f) expected

to be most appropriate for SFD and high (Xo), asymmetric choice (a), and simple symmetric choice (s). Results
are shown for SFD (Pex = 0) and Pex = 0.25.

Analysis of R (Xo) = 0.2, Py = 0.00 (Xo) = 0.8, Py = 0.00 (Xo) =0.2, Py =0.25 (Xo) = 0.8, Py = 0.25

n=1 1.00693 1.00717 1.01385 1.01081
n=2 1.01870 1.02004 1.03741 1.04782
n=3 1.03618 1.04011 1.07235 1.12252
n=4 1.06268 1.07160 1.12535 1.24534
n=>5 1.10838 1.12740 1.21676 1.42971

instructive to examine the value of & determined by other simple treatments. In an alternative
spatially coarse-grained description, one regards position in the pore as described by a contin-
uous variable £ = na and the reactant concentration profile as a function of this continuous

variable (A (z)) = (4,). In a MF treatment of reaction kinetics [factorizing expressions (3.2)

for rates and coarse-graining], one has that

Riot (B) & k/dx (A(z))?, and Ry (B") ~ k/dac (A(x))[1 = (A(x))]. (3.13)

One can further show that for a MF treatment of diffusion, concentration profiles have
exponential variation near the ends of a long pore so that (A (z)) ~ (Xo)exp [— (z/Lp)] near

the left end of the pore where L, denotes a penetration depth [7-9]. Then evaluation of the
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integrals in (3.13) yields
R (MF) = (Xo) / (2 — (X)), (3.14)

so the maximum R (MF) ~ 1 occurs for (Xo) = 1. For SFD with high (Xo) = 0.8, this
yields ® (MF) = 2/3 ~ 0.67, far below the value above precise value of 1.56. (For SFD with
(Xo) = 0.2, one finds R (MF) = 1/9 ~ 0.11 also well below the precise value of 0.17.)

Next, we consider a hybrid treatment retaining MF reaction kinetics, but utilizing a GH
formulation to account for the effect of SFD on the reactant concentration profile. If the GH
tracer diffusion coefficient decays like Fi. ~ 7P into the pore, then it has been shown that
(A(x)) =~ (Xo)exp[— (z/Lp)?] where ¢ = (2+ p) /2 where we discuss the appropriate values
of p > 0 and g > 1 below [2,10]. Note that MF behavior corresponds to p = 0 and ¢ = 1.

Evaluation of integrals in (3.13) now yields
R (hybrid MF) = (Xo) /(2"/9 — (Xo)). (3.15)

For SFD with high (Xy) = 0.8, behavior is well described by the choice p = 2 and thus
g = 2 [2,10], which yields ® (hybrid MF) ~ 1.30 much closer to the precise value of 1.56 than
the pure MF estimate for ¢ = 1. However, a more appropriate hybrid MF treatment (see
Section 3.10), based on discrete evolution equations using a GH formulation for diffusion fluxes
and MF treatment of reaction kinetics, obtains f & 1.19 not so close to the precise value. [For
SFD with (X() = 0.2, one finds an effective p ~ 1 corresponding to g ~ 3/2 [2,10]. This yields
R (hybrid MF) ~ 0.14 improving over the simple MF estimate, but still below the precise value
of 0.17.]

We conclude that deviations from a MF exponential reactant concentration profile are
important in determining selectivity, but also clustering of reactants has a significant impact,

particularly in producing higher values for SED with high (Xj).

3.5 Conclusions

There is extensive interest within the statistical physics community in cooperative reaction-

diffusion phenomena where traditional MF treatments of chemical kinetics and transport are
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inadequate [1,2]. Catalytic reactions in nanoporous materials with restrictive diffusive trans-
port provide such an example where spatial correlations of kinetic origin invalidate MF as-
sumptions. The additional feature of cooperative reaction kinetics, such as concentration- or
environment-dependent selectivity considered here, constitutes an additional complication in
the understanding and prediction of behavior. While KMC simulation of such reaction-diffusion
models can reliably characterize such behavior, we show that for the system of interest here,
an analytic formulation can be developed which provides deeper insight into the nature and

role of subtle non-equilibrium spatial correlations in determining reaction behavior.
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3.7 Appendix A: KMC Simulation Algorithms

The basic principle of KMC simulation is to implement various processes (adsorption, des-
orption, diffusion, reaction) in the stochastic reaction-diffusion model with probabilities pro-
portional to their physical rates.We first describe a rejection (rej) algorithm which is simpler to
implement, but includes a fraction of failed attempts thus its reducing efficiency. One assigns
a total rate r, = k+ 6h for all types of processes at each cell in the pore (reaction plus hopping
left or right of each of three types of species). The total rate, Ry (rej), for the system is r; times
the number of sites (taken as L + 2 since we must consider sites just outside the pore to treat
adsorption). At each KMC step, simulation randomly picks sites and processes and attempts
to implement (reaction is only implemented with probability &/r; if the selected cell has an A;

hopping right of B¢ is only implemented with probability i /7 if the selected cell has a B¢ and
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the cell to the right is empty; etc.). The simulation is run for ~ 10*! KMC steps to be certain
the steady state is reached, and then simulation data are collected for an additional ~ 2 x 10!
KMC steps.

A Bortz-type rejection-free (rf) algorithm maintains lists of the sets of particles which can
be involved in each type of process (all n4 A’s in the pore can react; the set of ny, A’s with
empty right NN cells which can hop right; etc.) The list must be updated after each simulation
step, which requires extensive bookkeeping. Then the total rate of processes for the system is
Ry (rf) = nak+narh+.... Now one picks a type of process with probability proportional to its
rate, i.e., nak/R; (rf) for reaction of A, picks a particle from the relevant list and implements
the process for that particle. (For reaction, one would also have to select the product based on
the local environment.) The simulation is run for ~ 109 KMC steps to equilibrate, and then
data are collected for an additional ~ 10 KMC steps.

For our primarily focus on steady-state behavior, tracking of physical time in the simula-
tion is not relevant. However, for studies of transient behavior, see D, time is incremented by
At = —In (w) /R; at each Monte Carlo step where w is a random number uniformly distributed

on [0,1].

3.8 Appendix B: MF Analysis of Tracer Diffusivity

It is possible to somewhat unconventionally assess tracer diffusivity, either at the MF-level or
for higher-level approximations, from behavior of the concentration profiles in the steady state
of our reaction-diffusion model [2,9]. This strategy exploits the feature noted in Section 3.2 that
the steady state corresponds to a counter diffusion mode where diffusion fluxes are proportional
to the tracer diffusion coefficient in a hydrodynamic formulation. Here it suffices to take Eqgs.
(3.3) and (3.4) for C = A and apply MF factorization. After substantial simplification, this

equation reduces to
0=d/dt (An) = —k (An) + ((Eo) + Pex (X0)) hV? (4,) (3.16)

where V2 (A,,) = (An11) —2 (A,) + (A1) represents a discrete Laplacian. Since the coefficient

in front of V2 (A,,) corresponds to Dy, we obtain Fy,. (MF) = (Ep) + Pex (Xo).
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Figure 3.7: Comparison of (A, Ant1En+t2), (AnEnt1Ant2), and (EnAnt1Ant2) versus n determined precisely
from KMC simulation and MF approximations near the left end of a pore for L = 100, (Xo) = 0.8, k/h = 0.001,
and Py = 0 (SFD).

3.9 Appendix C: Analysis of Multisite Configurational Probabilities

The form of the “pair diffusion terms” in (3.5) motivates consideration and comparison
of (A Ani1En+2) , (ApEpi1Any2), and (EpA,11Ap+2). The same argument as used for
(ApEny1) and (EpA,+1) in Section 3.3 suggests that these triplet probabilities will be much
closer than their MF values for SFD especially with high (X). This feature, which is confirmed
in Figure 3.7 for SFD with (X() = 0.8 and k/h = 0.001, complicates the requirement of accu-
rately describing differences in these quantities which constitute pair diffusion terms. Setting
(AnAnt1Ent2) — (ApEni1Anye) = (An) ((Ans1Ent2) — (Ent1) (Ant2)) would enable use of
the GH approximation for the difference of pair probabilities. However, this crude factoriza-
tion, denoted by (c) below, is not reliable. Also, as shown in the inset to Fig 3.7, a standard
pair approximation, denoted (pa) below, reliably describes (A, Ap+1En+2) and (E, Ay, 11 An+2)
in terms of pair quantities, but not (A, Fy1+145,42). Thus, the pair approximation will fail to
describe key differences in these quantities. The failure of the pair approximation for the quan-
tity (AnFnt+14n+2), and the failure of higher-order approximations for analogous probabilities
involving four or more cells, is further elucidated by the conditional concentration analysis

below.
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Figure 3.8: Comparison of various conditional reactant concentrations versus n determined precisely from KMC
simulation for L = 100, (Xo) = 0.8, k/h = 0.001, and Pex = 0 (SFD).

Spatial correlations in the reactant distribution can be further elucidated by considering con-
ditional reactant probabilities or concentrations (A, |Cy41Dn+2 .. .) = (AnCrny1Dnyo...) / (Cns1Dnga .. .)
describing the probability that site n is occupied by A given that site n + 1 is occupied by
C, site n + 2 is occupied by D, etc. In the absence of spatial correlations, one has that
(An|Crt1Dpta...) = (Ay). Results are shown in Figure 3.8 for SFD with (Xp) = 0.8 and
k/h = 0.001 for a substantial set of conditional reactant concentrations with one or two condi-
tioning sites. These fall into distinct groups with values either above or below (A,,).

All of (An|An+t1), (AnlAnt1Ant2), (AnlAnt1Eni2), (An|Ent14ny2), (An|An+1Bnie) and
(Ap|Bnt1An+2) exceed (A,), i.e., conditional reactant concentrations given one or more nearby
A exceed (A,). We also expect this feature to apply for conditional concentrations with more
than two specified cells. This feature indicates a subtle type of clustering corresponding to
enhanced probabilities (relative to MF values) for configurations with an A on site n and one
or more other A’s on sites n+ 1 and n + 2. The explanation of this behavior extends that used
to rationalize the inequality (An|An+1) > (Ap) in Section 3.3. A density fluctuation near the
pore opening reducing the density could facilitate diffusion of A and of clusters of A deeper
into the pore. Then it follows that (A, |A,+1), (An|Ant1Bni2), (An|Ent1A4n+2), ete., exceed
(Ap). It is perhaps less clear why (A, |By+1An+2) > (Ay), but consider a triple of A’s diffusing

deep into the pore (aided by a density fluctuation) where the central A reacts to convert to B.
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Figure 3.9: Comparison of various hybrid approximations, including MF(H) and a crude factorization of pair
diffusion terms (c) and a pair factorization (pa) with precise behavior (KMC) and our eGH(f) treatment for
L =100, (Xo) = 0.8, k/h = 0.001, and Pay = 0 (SFD).

This scenario can lead to formation of A, By+1A,12 configurations.

Next, we note that both (A, |En+1) and (A, |Ent1Eny2) are below (A,,). These results are
equivalent to the inequalities (A, Ep+1) < (Ay) (Ent1) and (ApEpi1Eny0) < (Ap) (Ent1Ent2) =
(An) (Epy1) (Epto) (the latter equality following since empty cells are randomly distributed).
These inequalities have been explained at the beginning of Section 3.3, where we note that
values of (A, E,+1) and (E,A,+1) are close, as are those of (A, E,+1E,+2), (EnAni1Eni2),
and (E,En+1An4+2) (due to the facile diffusion of A between the indicated pair or triple of
sites). Our resulting understanding of the contrasting behavior of (A,|E,+1) < (4,) and
of (Ap|En41An+2) > (Ay) explains the failure of the standard pair approximation to treat
(AnEnt1An+2) and thus to treat pair diffusion fluxes in the evolution equation for (A4, A,+1),
see Section 3.3.

Finally, we note that all of (4, |Bn+1), (An|Bn+1Bn+2)s (An|Bnt1Ent2), and (A, |Eyi1Bpia)
are also below (A,) , but also that these quantities approach (A,) for large n where the asso-

ciated correlations are diminished deeper in the pore.
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3.10 Appendix D: Hybrid Approximations

We have seen that a standard MF approximation applied to treat both diffusion fluxes and
reaction kinetics fails dramatically to describe reactant penetration into the pore for small Puy
and small k [10]. However, a GH formulation of diffusion fluxes yields reliable description of the
reactant concentration profile. Thus, it remains only to treat the reaction kinetics in order to
describe behavior of the A — B¢ or B! conversion reaction. Here we first consider the simplest
hybrid formulation, MF(H), using a GH treatment of diffusion fluxes and a MF treatment of
of reaction kinetics (i.e. ignoring spatial correlations in the reactant distribution). MF(H)
results for steady-state concentration profiles shown in Figure 3.9 for SDF with (Xy) = 0.8
qualitatively reproduce KMC simulation behavior. However, predictions for plateau concentra-
tions of B¢ and B! differ significantly from the precise values, in contrast our eGH formulation
accounting for reactant clustering. As noted in Table 3.3, one obtains ® = 1.19 for MF(H)
versus f = 1.40 for eGH(f) versus the precise value of ® = 1.56 from KMC simulation.

We have implemented other hybrid formulations which retain the GH treatment of diffusion
flux in the equations for single-cell concentrations, but apply various factorization approxima-
tions to the pair diffusion fluxes in the evolution equations for (A, A,+1). We have applied a
crude factorization (c), e.g., (ApAnt1Enyo)—(ApEni1Anyo) = (An) ((Apnt1Eny2) — (Eny1) (Ant2)),
and then used the GH treatment of the second factor. Figure 3.9 also reveals that for SFD with
(Xo) = 0.8, predictions of this approach (c) while qualitatively reasonable actually give a poorer
estimate of plateau concentrations even than the hybrid MF approach. As another alternative
denoted (pa), we have implemented a standard pair factorization for the pair diffusion terms
and then used the eGH approximation to describe (A4, E,+1) and (E,+1A4,,) terms. Recall that
we know from Section 3.8 that the pair approximation is inadequate for (A, E,+1A,+2). This
approach predicts concentration profiles very similar to the MF(H) prediction for SFD with
(Xo) = 0.8, and thus again deviating significantly from precise results in contrast to our eGH

approach. See Figure 3.9.
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3.11 Appendix E: Transient Behavior With an Initially Empty Pore

We have performed simulations to characterize evolution of concentration profiles starting
with an initially empty pore for L = 100, (Xy) = 0.8, and k/h = 0.001. See Figure 3.10.
The key features are as follows. The quasi-steady-state reactant profile develops relatively
quickly on the times scale of pore filling, where the filling process takes a time ¢y ~ 2000
(in units of 1/h) to achieve a roughly constant total concentration of (X,) ~ 0.8. This time
scale follows from Einstein’s relation (L/2)* ~ ht # since particles must diffuse a length ~ L/2
to fill the pore. At the end of this filling stage, B! has a bimodal profile peaked towards
the pore openings, and the B¢ profile is peaked in the pore center. The second stage of
evolution to achieve the true steady state, where both B¢ and B! profiles exhibit plateaus
in the pore center, takes much longer around tss ~ 10°. This much slower time scale is
understood since such evolution is controlled by the magnitude of the tracer diffusion coeflicient
Fyr (non+1) = (1 — (X)) ((Xo)) ™' /L ~ 0.0025 in the pore center [35]. Diffusion over a length

scale of ~ 20 cells would only occur on a time scale of ~ t44 given such a low diffusion coefficient.
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Abstract

We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-
counter-diffusion mode with the reactant (product) concentration strongly decaying (growing)
into the pore, but also with oscillations in the total concentration. These oscillations reflect
the response of the fluid to the transition from an extended to a confined environment near
the pore opening. We focus on the regime of strongly inhibited transport in narrow pores
corresponding to single-file-diffusion. Here, limited penetration of the reactant into the pores
and the associated low reaction yield is impacted by strong spatial correlations induced by
both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermo-
dynamic correlations). We develop a generalized hydrodynamic formulation to effectively de-

scribe inhibited transport accounting for the effect of these correlations, and incorporate this
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description of transport into appropriate reaction-diffusion equations. These equations accu-
rately describe both shorter-range concentration oscillations near the pore opening and the
longer-range mesoscale variation of concentration profiles in the pore (and thus also describe
reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic
Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model.
This work elucidates unconventional chemical kinetics in interacting confined systems. Pub-

lished by AIP Publishing. [http://dx.doi.org/10.1063/1.4966543]

4.1 Introduction

Traditional mean-field (MF) rate and reaction-diffusion equations of chemical kinetics ap-
ply in weakly interacting systems with locally well-stirred and randomized distributions of
reactants and products. These formulations do not account for spatial correlations or the
impact of such correlations on particle-number fluctuations [1,2]. In fact, intermolecular inter-
actions generally induce non-trivial short-range ordering in fluids. However, extensive analysis
of equilibrium systems has provided substantial insight into the associated thermodynamic pair
correlations which aids assessment of their effect on reaction kinetics. Coincidentally, this type
of short-range ordering is also reflected in the presence of concentration oscillations for fluids
near walls and in confined environments [3]. There is less appreciation of the feature that for
systems with limited mobility, such as occurs in crowded reaction environments, distinct and
sometimes strong non-equilibrium correlations can be induced by the presence of reaction [1,2].
Examples include catalytic surface reactions under high-pressure conditions [4,5], and catalytic
conversion in nanoporous materials with inhibited transport due to narrow pores [2,6]. The
most extreme case for the latter where such non-equilibrium correlations should be strongest is
where narrow pores impose a single-file diffusion (SFD) constraint, i.e., no passing of reactant
and product molecules [2,6]. The lack of a general theoretical framework to precisely determine
non- equilibrium correlations and their effect on reaction kinetics poses a major challenge for

reliable beyond-MF assessment of the reaction yield.
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In this contribution, we develop stochastic models for first-order catalytic conversion reac-
tions A — B, where reactants A in a well-stirred external fluid diffuse into a decoupled array
of narrow linear pores in a nanoporous material [2,7-13]. Conversion of A to product B can
occur anywhere inside the pores, but significant yield relies on efficient removal of product
from the pores to facilitate further entry of the reactant. We focus on the SFD regime where
product removal is most inhibited. However, we emphasize that our model and theoretical
formulation, as well as our basic observations, extend to the regime where passing within the
pore is possible [2].

Investigation of such reaction systems from the early 1990s was initially motivated by ex-
tensive studies of catalysis in zeolites, noting that a large subset of these materials do indeed
consist of very narrow (~ 1nm) decoupled linear pores [6]. Furthermore, experimental analysis
for selected zeolite systems revealed clear indication of the presence of SFD and its influence on
the reaction kinetics [8,14,15]. Subsequent studies have exploited new experimental techniques
to characterize SFD in these systems [16]. Additional interest in reaction systems subject to
SEFD was motivated by more recent studies of liquid-phase reactions utilizing catalytically func-
tionalized mesoporous silica nanoparticles (MSN) [2,17,18]. In general MSN particles can have
coupling between pores. However, our particular interest relates to studies for MSN synthesized
with hexagonal arrays of decoupled parallel linear pores with length ~ 100 nm which traverse
the entire nanoparticle, and where pores are not connected and are narrow [17]. We should
further emphasize that this synthesis procedure readily produces pores with nominal diameters
of ~ 2nm, and adsorption of species on the pore walls under reaction conditions can lead to
even narrower effective pore diameters. Significantly, such MSN systems have been shown to
induce SFD [18].

Coarse-grained spatially discrete stochastic modeling (described in more detail below) of
catalytic conversion subject to SFD has typically been applied in order to efficiently treat the
entire reaction-diffusion process [2,7-13]. Behavior of such models was precisely character-
ized by kinetic Monte Carlo (KMC) simulation. For previous simpler models, which did not
incorporate non-trivial intermolecular interactions, it was recognized that a steady-state re-

action occurs with reactant (product) concentration strongly decreasing (increasing) into the
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pore [7-13]. Furthermore, the total concentration was constant for these simple models, and
thus the reaction-diffusion system was characterized by exactly counter- balancing gradients.
This corresponds to a classic counter-diffusion mode [2,13,19].

With regard to analytic approaches to complement and provide further insight beyond
KMC analysis, the limitations of MF-type treatments for even these simple systems have been
recognized. In particular, such treatments were found to greatly overestimate diffusion fluxes
in the presence of inhibited diffusion [2,12,13]. Such treatments do account for the non-trivial
collective many-particle aspects of inhibited transport and its interplay with reaction. On the
other hand, the so-called hydrodynamic treatments also fail in that they underestimate dif-
fusion fluxes near pore openings [12]. Such treatments apply strictly only in the regime of
small concentration gradients. As an aside, here the term “hydrodynamic” is used in a broad
context of interacting particle systems [20,21], and in particular diffusive systems, rather than
just for convective fluid flow. Recent work on analytic treatments has shown the effectiveness
of generalized hydrodynamic (GH) treatments of transport in the presence of strong mesoscale
concentration gradients [13]. This GH terminology is borrowed from early studies of convective
fluid dynamics going beyond hydrodynamic treatments to describe transport on shorter time-
and length-scales [22]. Again our use is in a broader sense considering diffusive interacting
particle systems.

Our goal here is to extend previous simple reaction models to include steric intermolecular
interactions which are present in real systems. These interactions induce concentration oscil-
lations in an external fluid approaching the catalytic nanoparticle, and would induce radial
concentration oscillations in wider pores (although this feature is not included in or relevant
for our modeling of narrow pores). Perhaps unexpectedly, we show that these interactions do
induce oscillations along the pore axes near the pore openings, a key feature which must be
incorporated in our modeling. This feature implies that it is necessary to extend the standard
concept of counter-diffusion modes (applying just for constant total concentration), and also to
adapt the previous GH formulation to this more complex scenario. In Section 4.2, we present
our model for catalytic conversion in nanopores with SFD which incorporates intermolecular

interactions. Of particular significance is development of a strategy enabling explicit simula-
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tion of processes just inside the pore, avoiding computationally expensive simulation of the
surrounding well-stirred equilibrated fluid. Section 4.2 also presents basic KMC simulation
results for concentration profiles inside the pore. In Section 4.3, we develop our analytic GH
formulation, and demonstrate that it can accurately capture behavior seen in KMC simula-
tion analysis. Thus, the GH formulations provide insight into the failure of simple MF-type

formulations. Conclusions are provided in Section 4.4.

4.2 Model Specification and KMC Simulation Analysis

4.2.1 Specification of the stochastic reaction model

We first provide a detailed description of our model which is illustrated schematically in
Figure 4.1. In the spirit of classic lattice-gas descriptions of liquids [23], each pore is divided into
a linear array of cells labeled n = 1— L whose centers correspond to discrete molecular positions.
For prescription of adsorption and desorption at pore openings, it is actually convenient to
extend this linear array within the pore to a three-dimensional simple-cubic array of cells in
the surrounding fluid. The cell spacing, a ~ 1nm, is regarded as being slightly smaller than
molecular dimensions, so that nearest-neighbor (NN) cells cannot be occupied. For convenience,
we often set a = 1 below. This steric exclusion constraint suffices to induce all of the features
(equilibrium spatial correlations, concentration oscillations, etc.) associated with more general

molecular interactions [23]. The key ingredients of our model are as follows:

(i) Reactants A adsorb into the pore from the surrounding external fluid. This process is
described by hopping at rate h from cells just outside the pore to an end cell n =1 or L,

provided the end cell and its NN cell within the pore are empty.

(ii) Reactants A diffuse within the pore by hopping to NN empty cells at rate h (in either

direction) provided that this creates no NN pairs of species.
(iii) Reactants A convert to products B at rate k at any cell inside the pore.

(iv) Products B diffuse within the pore by the same mechanism as for A. This prescription

automatically imposes SFD, i.e., no passing of A and B in the pore.
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(v) Reactants A and products B desorb from the pore to the surrounding external fluid, a
process which is described by hopping from end sites of the pore at rate h to cells just
outside the pore provided that such cells are empty, and also that all of the five NN cells

of that target cell are also empty.

flhid(? A - Brxn nanoporous material I —r
of A ) K B diffusion A diffusion B desoyptiqr B
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Figure 4.1: The spatially discrete stochastic model for catalytic conversion in linear nanopores. Reactant (A)
and product (B) cannot occupy adjacent cells which constrains diffusive hops. ¢ denotes catalytic sites. For
desorption, in addition to the target site just outside the pore, multiple additional cells (*) must be empty. A
desorption (not shown) at rate h as well as B desorption is active. The exterior fluid is represented by a 3D

array of cells (appearing as 2D in the schematic).

Thus, local diffusion within the pore in the direction along the pore axis is described by a
single hop rate, h (and a corresponding low-concentration diffusion coefficient of Dy = a?h). A
central component of the analysis in Section 4.3 is to appropriately describe the corresponding
chemical diffusion for finite concentrations in this multi-component system. Diffusion in the
radial direction within pores is not relevant for the model. The exterior fluid is regarded as
being in a well-stirred equilibrated state (corresponding to a lattice-gas with NN exclusion).
We emphasize that this equilibrium assumption means that the associated diffusive or convec-
tive dynamics in the external fluid is not relevant for modeling. (As an aside, we note that one
could regard this equilibrium state as being achieved by rapid effective hopping between neigh-
boring cells subject to NN exclusion.) Another key feature of our model is that the exterior
fluid has a large volume compared with the pores, so the desorbing product is quickly diluted
and does not re-enter the pore. Thus, the external bulk reactant concentration, (A;), matches

the total external concentration, (X3), and is a fixed constant. Finally, we emphasize that the
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equilibrium state of the external fluid is non-trivial with long-range ordering or crystallinity
developing above a critical concentration (X.) ~ 0.209 [23]. Consequently, we consider only
the regime with short-range order for bulk concentrations (Ap) = (X3) below (X,).

Since in this model, reactants and products are “identical” in terms of interactions and dif-
fusional dynamics, evolution of the total concentration corresponds to a pure diffusion problem
for a single-component lattice-gas model with NN exclusion. The current study just focuses
on steady-state behavior, so such evolution is not directly relevant. Nonetheless, we note that
evolution is non-trivial even in the hydrodynamic regime of small concentration gradients given
a non-trivial concentration-dependence of chemical diffusion in this model [24]. In the reactive
steady-state of interest here, the total concentration matches that of an equilibrium model with
NN exclusion. However, even this concentration distribution is non-trivial. The fluid + pore
geometry induces concentration oscillations in the external fluid approaching the interface with
the nanoporous material, and also a particularly complicated three-dimensional variation of the
concentration near the pore opening. Furthermore, we shall see that there are also concentra-
tion oscillations within the pore along its axis within, but restricted to near the pore openings.
All of these complex concentration variations will impact key adsorption and desorption rates

at the pore openings, as discussed below.

4.2.2 Optimal KMC simulation procedure treating explicitly just the pore

Behavior of the above stochastic model can be assessed precisely by KMC simulation. The
default treatment would simultaneously simulate behavior in both the pore interior and the
external fluid. However, this approach is inefficient due to the large external fluid volume. Fur-
thermore, it is unnecessary due to the assumed rapid equilibration of the external fluid. Thus,
we are motivated to develop a strategy to enable explicit simulation of just the pore region
while exactly accounting for the non-trivial coupling to the equilibrated external fluid. To this
end, we first perform tailored simulations of the exterior fluid region to extract key adsorption
and desorption parameters which will constitute the appropriate boundary conditions at pore

openings for these stand-alone simulations of the pore region.
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For adsorption, we first note that the concentration, (Ap), at cells just outside the pore,
given that the end pore cell is empty, corresponds to the concentration of a fluid against the
wall in a semi-infinite fluid system. Thus, we perform a simulation analysis of our lattice-gas
model of the fluid with NN exclusion for a semi-infinite system, where the concentration only
depends on the distance from the wall and exhibits strongly decaying oscillations away from
the wall. Of most relevance, we find that the concentration, (Ap), is enhanced relative to the
bulk concentration, (A). This enhancement is a natural consequence of the lower coordination
of cells against the wall (with 5 neighbors which could possibly be occupied) relative to the
coordination of cells in the bulk of the fluid (with 6 neighbors). See Section 4.7 for further dis-
cussion and results for these concentration oscillations and enhancement at the wall, including
a simple analytic estimate. This enhancement is quantified in Table 4.1 for a range of (A).
Finally, we note that the adsorption rate at empty end cells of the pore (which also have empty
NN cells within the pore) is given by R.qs = h (Ap) , and thus is not determined simply by the
bulk concentration (Ay), but rather by (Ap).

For desorption, the presence of a particle at the end cell within the pore implies that

Table 4.1: Adsorption and desorption parameters as a function of bulk fluid concentration. Note that Q5 values
differ from the simple MF estimate, Qs =~ (1 — (Ab>)5, or from MF-type refinements accounting for concentration

variations.

Fluid conc. (4;) (Ao) (adsorption) Qs (desorption)

0.20 0.211 0.279
0.15 0.158 0.385
0.10 0.106 0.546
0.05 0.052 0.758

the cell just outside the pore is empty. However, desorption requires that in addition all five
cells adjacent to this cell are also empty. (The 2D analogue of these sites is denoted by *
in Figure 4.1.) Based on these observations, we perform additional tailored simulations of a
semi-infinite fluid with one cell against a wall specified empty. These reveal a complicated
three-dimensional variation of the concentration near the cell specified empty (in addition to
the type of concentration oscillations approaching the wall away from this cell described above).

See Section 4.8 for further discussion. These tailored simulations allow determination of the
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conditional probability, )5, that these five additional cells are empty. Results for Q)5 are given
in Table 4.1. Then, it follows that the desorption rate from the filled end cell of the pore equals
Ries = hQs.

As an aside, above we have described above the nontrivial and distinct concentration varia-
tions in the external fluid associated with both of our tailored simulations to extract adsorption
and desorption parameters. Neither of these corresponds to the concentration variation in the
external fluid under steady-state reaction conditions (which is just the equilibrium concen-
tration of a lattice-gas with NN exclusion in a geometry corresponding to the fluid + pore
system). However, we describe in Section 4.8 how this latter concentration distribution can be

reconstructed from the two distinct distributions extracted from our tailored simulations.

4.2.3 KMUC results for basic steady-state behavior

Below, we present KMC results of basic steady-state behavior. These and subsequent results
are obtained from simulations just of the pore region with the appropriate nontrivial adsorption-
desorption boundary conditions described in Section 4.2.2. However, we have confirmed in
selected cases that results are consistent with large-scale simulations of the entire fluid + pore
system. Figure 4.2 shows typical steady-state concentration profiles in the pore for L = 30 with
k/h = 0.001 and (A4;) = 0.2. Oscillations are apparent in both the total concentration and the
reactant concentration near the pore openings. Thus, the steady-state does not correspond to
a conventional counter-diffusion mode with constant total concentration and exactly counter-
opposing gradients of A and B [19]. However, we describe it as a quasi-counter diffusion mode
since these conditions still apply away from the pore openings. See the supplementary material
FigureS1 for behavior with larger L where (A,) ~ 0 in the pore center.

With regard to total concentrations within the pore for L = 30 with k/h = 0.001 and
(Ap) = 0.2 we specifically find that (X;) = 0.321, (X3) = 0.254, (X3) = 0.279, (X4) = 0.270,
(X5) = 0.273, etc., and a total concentration near the pore center of around (Xin;) = 0.272.
Clearly all of these values are substantially higher than in the bulk of the external fluid at
(Xp) = 0.200, and also higher than the enhanced value of (Xy) ~ 0.211 just outside the pore

opening. This strong enhancement of concentration within the pore reflects the much lower
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Figure 4.2: Steady-state concentration profiles for L = 30 with k/h = 0.001 and (A4;) = 0.2.

coordination of cells within the pore (with 2 neighbors which could possibly be occupied)
relative to the coordination of cells in the bulk of the fluid (with 6 neighbors which could be
occupied). See Section 4.9 for further discussion including a simple analytic estimate of this
strong enhancement. The sudden transition from high-coordinated sites just outside the pore
to lower coordinated sites within produces the concentration oscillations near pore openings as
is evident in Figure 4.1. We show in Section 4.3 that an accurate analytic description of this

complicated behavior is possible within our GH formulation.

4.3 Development of Analytic Theory and Comparison With KMC

4.3.1 Development of analytic GH theory

Deeper insight into reaction model behavior comes from an analytic formulation based on
exact master equations for the stochastic process. Let (C),) denote the probability that cell n
in the pore is occupied by species C' = A, B, or is empty E. It is also convenient to introduce
the notation X = A or B for either type of species, so that (X,,) = (4,) + (B,) denotes the
total concentration at cell n. Let (A, E, 11 FE,2) denote the probability that cell n is occupied
by A and cells n + 1 and n + 2 are empty, etc. The NN exclusion constraint and conservation
of probability impose various relations on these multisite probabilities [2]. The lowest-order

evolution equations have the form

d/dt (A,) = —k (A,) — V7"t
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and

d/dt (Bp) = +k (A,) — VIR for3<n <L -2, (4.1)

where

JE7 T = W [(CrEng1Ent2) — (En1EnCpia)] (4.2)

is the net diffusion flux of C = A or B from cell n to cell n+1. Also VK,, = K,,— K,,_1 denotes
a discrete derivative. Separate equations apply for the end cells, n = 1,2 and L—1, L, reflecting
the non-trivial adsorption-desorption boundary conditions described above. See Section 4.10.
The overall conversion rate of A to B is given by Rt = k), (A,) simply reflecting the total
amount of reactant inside the pore. Equation (4.1) is not closed due to the appearance of

Jg>"+1, but equations can be developed for such multisite probabilities

triplet probabilities in
generating a coupled hierarchy. See again Section 4.10.

Adding (4.1) for (A,) and (4.1) for (B,) leads to the pure diffusion equations
d/dt (X,) = —=VJE" T for3<n<L -2, (4.3)

for the total concentration (X,,) = (A,)+(B,) , for diffusion flux J%&"* = h (X, Ep 41 Eni2) —
(En—1E,Xn+1)]. Again, separate equations are needed for end cells, n = 1,2 and L — 1, L.
In the steady-state, the spatial Markov property of 1D lattice models with NN interactions

ensures the pair approximation factorization becomes exact, e.g.,

<XnEn+1En+2> = <XnEn+1> (En+1En+2> / <En+1>

= (Xn) (1 = (Xn) = (Xny1)) / (1 = (X0)) . (4.4)

In obtaining the reduced expression after the last equality, we have also exploited NN exclusion.
Using a similar relation for (F,,_1E,X,,+1) together with the adsorption-desorption boundary
conditions, one can solve exactly a coupled set of equations for (X,,) to recover the oscilla-
tions in the total concentration shown in Figure 4.2. See Section 4.11. Such exact solution for
steady-state (X,) does not extend to the transient regime of pore filling, or to the individual
reactant and product concentrations.

The fundamental challenge in solving the reaction-diffusion Equation (4.1) is to develop ap-

n>n+1
JC

propriate expressions for the diffusion fluxes, . MF-type factorization approximations
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for probabilities of multi- cell configurations can fail dramatically. The site approximation ne-
glects all spatial correlations and thus fails even to account for NN exclusion. Furthermore,
it greatly overestimates diffusion fluxes for SFD, reactant penetration in the pore, and thus
reactivity. The refined pair approximation accounts for NN correlations and thus excludes NN
occupancy, but it still significantly overestimates diffusion fluxes and related quantities. See
Section 4.10. Substantial additional insights into these shortcomings are provided below. An
alternative hydrodynamic treatment applies for slowly varying concentration gradients, as men-
tioned previously. Thus, it is not geared to describe concentration oscillations occurring on the
nanoscale near pore openings, but it is potentially relevant for description of longer mesoscale
concentration variations deeper in the pore which do correspond to a classic counter-diffusion
mode. The hydrodynamic diffusion fluxes satisfy Jg>"+1 = —Dy'V (Cri1), where Dy, is the
tracer diffusion coefficient for particles X [2,12,19]. However, for SFD, such Dy, are negligible,
specifically decreasing to zero inversely with the pore length [25-28]. Consequently, this for-
mulation greatly underestimates diffusion fluxes, reactant penetration, and thus reactivity for
typical length pores.

Thus, another strategy is required to treat diffusive transport on the mesoscale, also ac-
counting for concentration oscillations. A key ingredient which is motivated by generalized
hydrodynamic (GH) treatments of fluids [22] is to replace hydrodynamic transport coefficients
with ones appropriate for a shorter mesoscale. In our case, these reflect distinct behavior near
the pore openings where fluctuations in adsorption-desorption processes are prominent. Specif-
ically, we replace Dy, with a spatially varying Dy, (n,n + 1) for each NN pair of cells which
is enhanced near the pore openings (see below) [13]. In addition, to ensure the diffusion flux
vanishes in the steady-state, we define fractional coverages (c,) = (Cp) / (Xp) for C = A or B

(and ¢ = a or b) and adopt a specific GH form
n>n+1 1
Jom" = =5 D (n,n 4+ 1) ((Xn) + (Xt 1) V {ent) - (4.5)

Note that Equation (4.5) automatically recovers the standard choice for conventional hydrody-

namic counter-diffusion where Jo = —Dy,V (C) in a continuum setting [2,12,19].
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Figure 4.3: TCP concentration profiles for L = 30 and (X,) = 0.20; (b) GH Dy, (n,n + 1) versus n for L = 30
for various external fluid concentrations (X3); (c) variation Dy, (plateau) ~ ~h/L with increasing L, where
v =2.07,3.23,5.99,15.3 for (Xp) = 0.2,0.15,0.1,0.05, respectively.

Next, we outline the determination of the GH Dy, (n,n + 1) from analysis of the so-called
tracer counter- permeation (TCP) [19]. Here, a species labeled 1 enters a pore only from the
left, and differently labeled species 2 (which is identical in terms of interactions and diffusional
dynamics) enters only from the right. Otherwise adsorption and desorption are treated as
for the above simulations incorporating non-trivial boundary conditions at the pore opening.
The TCP simulations reach a steady-state with equal and opposite fluxes of magnitude Jpcp
of 1 from left to right, and 2 in the opposite direction through the pore. See Figure 4.3 (a).

Measuring the concentrations at different sites and equating the total flux with an expression
of the type (4.5) allows extraction of the generalized tracer diffusion coefficients. Results are
shown in Figure 4.3(b) for L = 30 (and for larger L in the supplementary material Figure S2).
As expected, Dy, is naturally strongly reduced for higher total concentrations. Also, the GH
Dy (n,n+ 1) decays to a non-zero plateau value, Dy, (plateau), in the pore center for suffi-
ciently large L. Adapting previous studies which considered the overall tracer diffusivity for

SFD in finite systems without NN exclusion [13,19,27,28] to account for NN exclusion in our
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model, we anticipate that
Dy, (plateau) ~ (Xine) " (1 — 2 (Xine)) h/L, for large L. (4.6)

Here, (Xiynt) is the plateau value of the total concentration (X,,) in the pore center. For L = 30,
we find that (Xjn) = 0.272,0.210,0.134, and 0.059 for longer pores exceeds the external bulk
fluid concentration (X;) = 0.20,0.15,0.10,0.05, respectively. This relation for D, (plateau)
reasonably estimates precise KMC values reported in Figure 4.3(c).

Finally, we remark that the above-mentioned overestimation of the diffusion fluxes by the
site and pair approximations can be understood from the corresponding results for tracer
diffusivity,

Dy, (site) = h (1 — (Xint))

and
Dy, (pair) = A (1 — 2(Xint)) / (1 — (Xint)) , (4.7)

which far exceed Dy, (plateau) for typical L. Derivation of these results is indicated in Section

4.10.

4.3.2 Predictions of analytic theory

Numerical solution of the GH reaction-diffusion Equation (4.1) is implemented incorporat-
ing the expression (4.2) for J~"*! and our exact analytic solution for (X,,). The results almost
exactly recover the individual reactant and product concentration profiles (including the con-
centration oscillations) obtained from KMC simulations shown in Figure 4.2 for k/h = 0.001,
L = 30, and (Ap) = 0.2. The degree of success of the GH theory for a range of k/h retaining
(Ap) = 0.2 is shown in Figure 4.4 focusing on the reactant profiles. Since (X,,) is recovered
exactly, slight discrepancy in predicting reactant profiles is counterbalanced by a discrepancy
of the same magnitude in prediction product profiles. To contrast the success of the GH theory,
Figure 4.4 also shows shortcomings of the pair approximation which predicts far too great a
reactant penetration into the pore due to overestimation of the diffusion flux in the presence of
SFD. See the supplementary material Figure S3 for additional results. Since the total reaction

rate, Ryiot, for conversion of A to B simply reflects the total amount of reactant in the pore,
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Figure 4.4: (a) Comparison of GH solutions (long dashed curves) and pair approximation PA (short-dashed
curves) predictions with precise KMC results (solid curves) for reactant concentration (A,) for a pore of length
L = 30 for (Ap) = 0.20 and varying k/h. (b). Expanded view of behavior near the left end of the pore. GH and
KMC results are indistinguishable for k/h = 0.0001, and very close for k/h = 0.001.

success in predicting the reactant concentration profile automatically translates into success in
predicting Ryot.

The above results indicate that our GH theory is well-suited to describe the regime of
small k/h < 0.001 where the reactant concentration exhibits slower mesoscale decay into the
pore. For larger k/h where the reactant concentration decays more quickly on the nanoscale,
the mesoscale GH treatment becomes somewhat less precise (although still reasonably accurate
and certainly qualitatively correct). Actually for k/h ~ 0.1, higher-order MF type approxi-

mations achieve comparable accuracy to the GH formulation. See the supplementary material

Figure S4.
KMC, {Ap) = 0.20
035 (o)
GH, (Ap) = 0.20
0.30 PA, {Ay) = 0.20
2025 — KMC, {Ap)=0.15
~ — - GH, (A =0.15
1]
SO N e e PA, {As) =045
%
2015 KMC, {Ap) = 0.10
e GH, (Ay) =0.10
Q
o010 PA, {As)=0.10
005 KMC, (As) = 0.05
GH, (A;) = 0.05
0.00
2 4 6 8 10 12 14 PA, (Ay) = 0.05

Cell Index (n)

Figure 4.5: Reactant concentration (A, ) near the left end of a pore of length L = 30 with k/h = 0.001 and varying
(Ap). Comparison of accurate GH solutions (long dashed curves), and pair approximation (PA) predictions, with

KMC simulation results (solid curves).
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To further illustrate the effectiveness of our GH formulation, one can also consider behavior
for fixed k/h = 0.001, say, but varying the external fluid concentration (Ap). Naturally, this
analysis necessarily incorporates the appropriate generalized tracer diffusion coefficients which
depend strongly on (A;), as shown in Figure 4.3. Comparison of successful GH predictions
with precise KMC results (and also generally inadequate pair approximation predictions) is
shown in Figure 4.5. Naturally, for lower concentrations, oscillations become significantly less
prominent. Even the pair approximation becomes reliable for low enough concentrations where

SEFD constraints become less significant.

4.3.3 Characterization of strong non-equilibrium spatial correlations

We have already provided one perspective on why MF-type approximations overestimate
reactant penetration into the pore (and thus reactivity), specifically tying this feature to their
overestimation of tracer diffusivity. Next, we provide an alternative perspective, and also a
deeper understanding of the failure of the conventional MF type approximations. We emphasize
that SFD in the presence of a reaction and also NN exclusion generates strong non-equilibrium
spatial correlations. A direct consequence of these strong spatial correlations is the feature that

the exact diffusion flux,
JZ>"“ =h [<AnEn+1En+2> - <En—1EnAn+l>] ) (4'8)

from 4.2 is far smaller than site or pair approximation predictions, and similarly for Jg?”“.
To restate this observation, these strong correlations imply that the triplet probabilities,
(AnEni1En12) and (E,_1E,A,+1) are far closer to each other than the site or pair approxi-
mation predictions.

In the site and pair approximations, neglecting oscillations in the total concentration, one

has that

(AnEni1Bny2) = G ({(Xint)) (An)

and

(En1EnAny1) = G ((Xing)) (Ans1) (4.9)
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where G (z) = (1 —z)? in the site approximation and G (z) = (1 —2z) /(1 — ) in the pair
approximation. Thus, the large values of Jﬁ>”+1 derive from the significant difference in the
estimates of these triplet probabilities. This difference in turn derives from the significant dif-
ference between (A,) and (A4,11) near the pore openings given strong concentration variations
in that region.

On the other hand, to understand exact behavior, it is useful to first note the exact identities

<AnEn+1 En+2> - <En—1AnEn+1 En+2>

and

<En—1EnAn+1> = <En—1EnAn+1En+2> . (410)

Here, we have used the feature that the site to the left (right) of A in the configuration
ApEni1Eny9 (En—1E,A,+1) must be empty due to NN exclusion. Next, considering the central
pair of cells n and n+1 in the quartet configurations E,,_1 A, FEp11Fpio and By 1 EpAni1Enqo,
we recognize that A is likely to hop back and forth between these two cells. This follows as the
cells on each end of the quartet are specified empty ensuring that such motion is compatible with
NN exclusion. This facile motion naturally tends to equalize these two probabilities. Precise
results from KMC simulation analysis shown in Figure 4.6 confirm this picture choosing a

longer pore with L = 100 to clearly show behavior.
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Figure 4.6: Comparison of KMC estimates of key triplet probabilities controlling the diffusion flux of A with
site (SA) and pair (PA) approximation estimates for L = 100, k/h = 0.001, and (A4y) = 0.2. In 4.9, one has
that the prefactor G = 0.530(0.626) in the site (pair) approximation, explaining why the latter predictions are
slightly larger in magnitude.
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4.4 Summary

In summary, catalytic conversion subject to SFD produces strong non-equilibrium spatial
correlations which occur in addition to correlations of thermodynamic origin due to intermolec-
ular interactions (NN exclusion in our model). After accounting for equilibrium correlations and
concentration oscillations in the total concentration, we show that a suitably refined GH treat-
ment can capture both non-equilibrium and thermodynamic correlations. As a consequence,
this formulation can reliably predict the mesoscale variation of the reactant concentration pro-
file (as well as the concentration oscillations), and thus also predict the reaction yield. Our
analytic formulation also provides deeper insight into the origin and nature of these correlations
than is provided just from KMC simulation studies.

It should also be emphasized that our model is readily amenable to refinement and exten-
sion. Omne can relax the SFD constraint by allowing the exchange of A and B on second NN
sites in the pore with rate pexh, where pey reflects the passing propensity (and pex = 0 for
SFD) [2]. Passing reduces the strength on the non-equilibrium correlations that develop during
reaction, so the GH formulation becomes even more accurate. Also, beyond treatment of just
the initial stages of reaction, one can analyze the reaction yield for various specified fractions,
f, of reactant converted to product in the external fluid, so now product can renter the pore.
(Note that we assume a separation of time scales where the steady-state for a specific f is
achieved on a short time scale compared to the overall reaction.) The overall reaction kinetics

can be pieced together from a sequence of such simulations for increasing f [2].

4.5 Supplementary Material

See the supplementary material for a more comprehensive set of simulation results for both
generalized tracer diffusivity and steady-state concentration profiles. Figure S1: Steady state
concentration profiles for increasing pore lengths. Figure S2: Generalized tracer diffusion coef-

ficients, Dy, (n,n + 1), versus n for various pore lengths. Table SI gives values for Dy, (plateau).
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Figure S3. Comparison of KMC, GH, and PA predictions for reactant profiles for various pore
lengths. Figure S4. Comparison of predictions from MF-type site, pair, and triplet approxima-

tions.
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4.7 Appendix A: Concentration Oscillations in a Semi-Infinite Fluid

Determination of the adsorption rate for reactants into the pore in our model with NN
exclusion requires analysis of the concentration variation approaching a planar wall in a semi-
infinite lattice-gas model on a simple-cubic lattice with NN exclusion. Consistent with the
notation of Section 4.2, we let (Xy) denote the concentration in cells in the layer adjacent to
the wall, (X_1) the concentration in cells in the next layer away from the wall, (X_3) the
concentration in the next layer further away, etc., and (Xj) denotes the bulk concentration far
from the wall.

Simple analytic estimation of this variation, and specifically of the (weakly) enhanced con-
centration adjacent to the wall, is possible utilizing a pair approximation. To this end, it is
convenient to consider the semi-infinite equilibrated fluid as having arbitrary-range exchange
dynamics described by a rate r, where exchange events are consistent with NN exclusion. In
equilibrium, the corresponding flux of atoms from a cell adjacent to the wall to the bulk, J,, .,
and the reverse flux from the bulk to the wall, J,_,,,, must balance. If P; is the probability of

an empty cell in the bulk with all six NN cells also empty, then one has that

Jw—b = 1(X0) Pr,
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where

Pr~(1-2(X))° /(1= (X)) (4.11)

in the pair approximation. Let Ps denote the probability that a cell against the wall, as well

as all 5 of the NN cells, are empty. Then, one has that
Josw = 1 (Xsp) Ps,

where

Py~ (1-2(Xo))* (1 - (Xo) — (X1)) /(1 - (Xo))* (4.12)

in the pair approximation. Let us first assume that (X_;) ~ (X}), i.e., that concentration
oscillations die out quickly away from the wall. Then, from the equality J,_p = Jp_w, One
obtains that (Xp) ~ 0.2189 (versus the Monte Carlo simulation value 0.211) for (X3) = 0.20.
We also obtain (Xy) ~ 0.1071 (versus the simulation value 0.106) for (X;) = 0.10, etc. Thus,
the pair approximation gives a quite reliable estimate of the (weak) concentration enhancement
near the wall.

The above analysis can be refined to provide additional assessment of concentration oscilla-
tions away from the wall. The next level of analysis retains (X_;) as an independent variable,
but assumes that (X_o) ~ (X}). Then, in addition to the equality Jy,_p = Jp—, One also bal-
ances fluxes between the layer of cells with concentration (X_;) and the bulk. Using the pair
approximation, this yields two coupled equations for two unknowns, (Xp) and (X_;) in terms
of (X3). Their solution yields (Xo) ~ 0.2192 and (X_1) ~ 0.1979 for (X;) = 0.20. Thus, one
predicts that (Xo) and (X_1) are 9% above and 1% below (X3), respectively, versus simulation
results which give values 6% above and 0.5% below (X3), respectively. This pair approximation
analysis also yields (Xo) ~ 0.1072 and (X_;) = 0.0995 for (X;) = 0.10, also mimicking the
rapid decay seen in simulation studies. These results support the assumption in the simplest
analysis that concentration oscillations decay quickly away from the wall.

The analytic treatment is readily further refined for an even more complete assessment of
concentration oscillations. We have also performed a more complete Monte Carlo simulation
analysis of the semi-infinite system with NN exclusion. However, (X_9), (X_3), etc., are very

close to (Xj), so the above more limited analysis provides an essentially complete picture.



82

4.8 Appendix B: Concentration Variations in the External Fluid

Our tailored simulations to extract adsorption and desorption parameters (described in Sec-
tion 4.2.2) produce nontrivial and distinct concentration variations in the external fluid which
might be regarded as a semi-infinite system. For the former, the concentration just depends
on distance from the wall. For the latter there is a complicated three-dimensional variation
with the strongest deviation from the bulk fluid concentration occurring around the cell spec-
ified empty just outside the pore. We argue that information from these tailored simulations
provides boundary conditions at pore openings which allow simulation of the reaction model
just in the pore region (which in turn recovers reaction behavior in the entire pore + external
fluid system). From this perspective, one would also expect that information from the tailored
simulations should allow recovery of the equilibrium concentration variations in the external
fluid under steady-state conditions. We note that these equilibrium variations are distinct from
those in tailored simulations for either adsorption or desorption parameters.

The tailored simulations for adsorption correspond to the situation where the end cell of
the pore is empty, which occurs a fraction (E1) = 1— (X7) of the time. Those corresponding to
desorption correspond to the situation where this end cell in the pore is occupied, which occurs
a fraction (X;) of the time. Thus, we claim that the equilibrium distribution for the model is
simply given by a corresponding weighted average of the distributions in the tailored simula-
tions. This feature is illustrated schematically in Figure 4.7 where we just show concentration
variation along a 1D line of cells in the fluid which extend out from the pore opening. The
ability to reconstruct the equilibrium distribution from the tailored simulations also reflects a
spatial Markov field property of lattice-gas models with NN interactions [29] which applies not
just for infinite systems, but also in more complex (e.g., pore + external fluid) geometries. We

will elaborate on this feature in a separate paper dealing with more general models.

4.9 Appendix C: Internal Pore Versus External Fluid Concentrations

It is appropriate to provide further insight into the strong enhancement of total concen-

tration in the center of the pore, (Xijn), relative to that in the external bulk fluid, (Xj). The
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Figure 4.7: Relationship of concentration in external fluid in tailored simulations for adsorption and desorption
parameters to the equilibrium concentration distribution for the model. Shown is a 1D cut of the concentration
for a line of cells extending from the left end of the pore (where n = 0 is just outside the pore, n = —1 is further
out, etc.). Behavior is shown for L = 30 and (X3) = 0.2 where (X;) = 0.321 and (E1) = 0.679.

concentration in the center of long pores can be determined directly in terms of (X3) by con-
sidering an infinite 3D lattice-gas model with NN exclusion suitably coupled to a 1D lattice-gas
model with NN exclusion. Analogous to Section 4.7, this coupling is realized by direct exchange
between the systems described by rate r, where exchange events are consistent with NN exclu-
sion. In equilibrium, the corresponding flux of atoms from the 3D to the 1D system, Jsp_1D,
and the reverse flux from the 1D to the 3D system, Jip_3p, must balance. If P; denotes the
probability of an empty cell in the 3D system with all neighbors empty as in (4.11), then one
has that

Jip—o3p = 1 (Xint) Pr, (4.13)

where a pair approximation estimate of P; is given in (4.11). If P; denotes the probability of

an empty cell in the 1D system with both neighbors empty, then one has that
pry Yy g pty,

J3poip = 1 (Xp) Ps3,

where
Py = (1= (Xu))? / (1 = (Xims)) (4.14)

For this 1D model, a pair approximation factorization is in fact exact, so the only approxima-
tion is in the factorization of P; in (4.13). Then, from the equality Jip_3p = J3p—1D, one
obtains (Xint) &~ 0.3057 (versus the precise KMC value of 0.273) for (X;) = 0.20. One also
obtains (Xint) &~ 0.1374 (versus the precise KMC value of 0.134) for (X;) = 0.10, etc. Not

surprisingly, one finds that the pair approximation is somewhat less accurate in predicting the
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strong enhancement of concentration in the pore interior relative to the bulk (at least for higher
(Xp)) compared to its success in predicting the weak enhancement near infinite walls in Sec-
tion 4.7. There are other analytic strategies which could be employed, e.g., matching chemical
potentials for the 1D and 3D systems, where the latter might be determined, e.g., from virial
expansion. However, the pair approximation clearly captures the key feature of concentration
enhancement inside the pore.

Precise direct assessment of concentration enhancement inside the pore can naturally also be
achieved by Monte Carlo simulation of the coupled 3D and 1D systems. We have implemented
such simulations and recover the previously reported values of (Xj,;) from KMC simulations

of the reaction model.

4.10 Appendix D: Further Analysis of Reaction-Diffusion Equations

In Section 4.3.1 we have described just the lowest-order equations in the coupled hierarchy

of exact evolution equations for the stochastic reaction model, e.g.,
d/dt (An) = —k (A,) — VI

where

J2>n+1 = h[{(AnEn1Enye) — (En1EpAny1)] (4.15)

for 3 <n < L —2. As indicated in Section 4.3.1, separate equations are needed for cells at the

end of the pore. For example, for n = 1, one has

— h[Ps (A1) — (Ao) (E1E»)] (4.16)
and

d/dt (Ag) = — k (Ag) — h[(AsFE3Ey) — (E1E2A3Ey)]

— h[(Eo) (E1A2) — (A1 B2 E3)], (4.17)

where (Ey) =1 — (Ao), (E1A2E3) = (E1As) = (A2) and appropriate factorizations are imple-

mented for probabilities of hopping involving the state of cells both inside and just outside the
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pore. An example of a next-highest-order equation in the hierarchy is
d/dt (ApEni1En42) = — k{(AnEni1Eny2) — h[{AnEnt1Ent2) — (En—1EnAni1Enta)]
— h[(En—2BEn-14nEni1Eni2) — (An-1En Eng1 Enyo)]
— h[(AnEni1Eni24n13) — (AnEnt1Ani2Eni3Enia)]
— h[(AnEn1En12Bni3) — (AnEni1Bny2Eny3Eni4)] . (4.18)

We have grouped terms for forward and reverse hopping events between pairs of sites corre-
sponding to loss and gain of the configuration of interest. Since cells adjacent to A or B must
be empty, including this feature means that grouped hopping terms include the same set of
cells. For example, (A, E,11E,+2) = (Ep_1AnEny1Eny0) specifies the state of cells n — 1, n,
n+1, and n + 2, as does (En—1EnAnt1FEnt2).

Next, we comment further on MF-type factorization approximations which facilitate trun-
cation of the hierarchy to yield a closed set of evolution equations. The site approrimation

ignoring all correlations sets

(CrDp1Fnt2) = (Cn) (Dnt1) (Fnt2) (4.19)

50, e.8., (ApEni1En410) = (An) (Ent1) (Ent2), leading immediately to a closed set of equations
for (A,) and (B,,). However, as noted previously, this approximation does not impose the basic
constraint for models with NN exclusion that the concentration in any cell should be no higher

than 1/2. The pair approzimation sets
(CnDny1Fni2) = (CpnDny1) (Dny1Fni2) /[ (Dnt1) (4.20)

50, €8, (AnEns1Enta) ~ (AnBns1) (Busr Enya) / (Bar) = (An) (1= (Xn41) — (Xs2)) / (1 = (Xni1)).
This again leads to a closed set of equations for (A,,) and (B,,). Results from numerical analysis
of these equations are shown in Figs 4.4-4.6, and in the supplementary material. The triplet

approximation sets

<CnDn+1Fn+2Gn+3> ~ <CnDn+1Fn+2> <Dn+1Fn+2Gn+3> / <Dn+1Fn+2> y (421)

Thus, this approximation does not directly approximate any quantities (in the flux terms) in
the lowest-order equations. However, in higher-order equations such as (4.18), one must im-

plement factorization, e.g., (An—1E,Eni1Eni2) =~ (An1EnEni1) (EnEni1Eny2) | (EnEnti).
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This expression can be recast noting that (E,E,+1En+2) = (Ept1Ent2) — (AnEny1En42) —
(BpnEnt1Ent2) and (Eny1En42) = 1 — (Xp41) — (Xp42). From numerical analysis of the
equations for the triplet approximation, we find only minor improvement over the pair approx-
imation. See the supplementary material Figure S4. This further demonstrates the challenge of
capturing strong non-equilibrium spatial correlations with MF-type approximations, and also
highlights the success of the GH approach.

Finally, we discuss the evaluation of tracer diffusivity within the site and pair approx-
imations. To this end, consider the generic form of the reaction-diffusion equations, and
specifically the diffusion flux, away from the pore openings where (E,) ~ (Ein) = 1 — (Xint)
is effectively constant. In the site approximation, factorizing (A, E,41E,2) ~ (Eint>2 (An)
and (Ep_1EnAni1) ~ (Ein)? (Apy1) yields Jerntl = —h {Ein)?V (Any1). On the other
hand, first utilizing exact identities and then factorizing corresponding to (A, Fn4+1En42) =

(Ap, — Enyo) = (Ein) (An) and similarly for (E,,_1E,Ay,+1), yields
T2 (site) = —h (Eing) V (Api1) - (4.22)

We adopt the last analysis which to some extent accounts for NN exclusion. Noting that this
analysis applies for a standard counter-diffusion mode, it follows that Dy, (site) = h (Eint) =

h (1 — (Xint)). In the pair approximation, factorizing (A, Ent1FEn+2) = (EnEni1) (An) / (En)

Q

(1 =2 (Xint)) (An) / (1 — (X,,)) and similarly for (E,,_1 E, Ap+1) yields
T3 (pair) = —h (1= 2/(Xine) / (1 = (Xint)) V (Anta) - (4.23)

Noting that this analysis applies for a standard counter-diffusion mode, it follows that Dy, (pair) =

h(1—2(Xint)) /(1 —(X,)). Hence, these analyses provide a derivation of (4.7).

4.11 Appendix E: Further Analysis of Reaction-Diffusion Equations for
(Xn)

The (pure) diffusion equations, d/dt (X,,) = —V.J% ™! for the total concentration profile

(X,,) within the pore are non-trivial due to the NN exclusion constraint. The nontrivial feature

is the appearance of triplet probabilities in the expression for the diffusion flux, J;?"H =
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h[(XnEnt1Eny2) — (En—1EpnX41)], for 3 <n < L — 2. As with reaction-diffusion equations,

some modification is required for the end sites within the pore. For example, one has that
d/dt (X1) = —h[P5 (X1) — (Xo) (E1E2)] — h [(X1E2E3) — (Eo) (E1X2)] (4.24)

and

d/dt (X2) = h[(Eo) (E1X2) — (X1E2E3)] — h [(X2E3Ey) — (E1E2X3)], (4.25)

where (Ep) = 1 — (X), and appropriate factorizations are implemented for probabilities of
hopping involving the state of cells both inside and just outside the pore.

Our interest in these equations is the behavior of the solutions in the equilibrium steady-
state. We have argued in (4.4) that in the equilibrium state (but not for time evolution), the
factorization of the pair approximation, e.g., (X, Ept1En+2) = (XpnEnt1) (Ent1En+2) / (Ent1),
becomes exact. This is a consequence of the Markov random field property of equilibrium
lattice-gas models in any dimension with NN interactions [29]. It is applied here for the special
case of a 1D lattice-gas model with NN exclusion. To clarify this issue, consider the conditional
probabilities,

<Cn|-Dn+an+2 .. > = <CnDn+1Fn+2 .. > / <Dn+1Fn+2 .. > s (426)

for cell n to be in state C given that cell n+1 is in state D, cell n+42 is in state F', etc. Then the
spatial Markov property implies that (Cp|Dpt1Fnt2...) = (Cp|Dpt1), and in particular that
(Cn|Dnt1Fn+2) = (Cp|Dpt1). The latter equality demonstrates that the factorization used in
the pair approximation becomes exact.

Application of this factorization allows exact solution for steady-state (X,,) by solution of
the resulting coupled set of equations given the values of (Xy) and Ps in Section 4.2.2 recover
exactly the oscillations in total concentration within the pore, i.e., the concentration oscillation
which would be seen in the coupled 1D pore + 3D extended fluid system.

As a final aside, we offer a simple test case for the validity of our strategy of capturing
behavior in the pore for a coupled system with analysis just of the pore. Consider a coupled
1D pore + 1D extended fluid again with NN interactions. This just corresponds to an infinite 1D
lattice-gas model with NN exclusion so the concentration should be constant, (X3), everywhere

in equilibrium. Refining the above equations for this 1D case (where (Xj) is replaced by
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(Xp) / (1 — (Xp)) and Ps is replaced by (1 — 2 (X)) /(1 — (X3)), we find that the equations are

consistent with a solution (X,,) = (Xj) for all n.

1]
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CHAPTER 5. BOUNDARY CONDITIONS FOR
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Abstract

We consider a variety of diffusion-mediated processes occurring within linear nanopores,
but which involve coupling to an equilibrated external fluid through adsorption and desorp-
tion. By determining adsorption and desorption rates through a set of tailored simulations, and
by exploiting a spatial Markov property of the models, we develop a formulation for performing
efficient pore-only simulations of these processes. Coupling to the external fluid is described
exactly through appropriate non-trivial boundary conditions at the pore openings. This for-
malism is applied to analyze: (i) tracer counter permeation (TCP) where different labeled
particles adsorb into opposite ends of the pore and establish a non-equilibrium steady state;
(ii) tracer exchange (TE) with exchange of differently labeled particles within and outside the
pore; and (ii7) catalytic conversion reactions where a reactant in the external fluid adsorbs

into the pore and converts to a product which may desorb. The TCP analysis also generates a
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position-dependent generalized tracer diffusion coefficient, the form of which controls behavior
in the TE and catalytic conversion processes. We focus on the regime of single-file diffusion
within the pore which produces the strongest correlations and largest deviations from mean-
field type behavior. Behavior is quantified precisely via kinetic Monte Carlo simulations, but

also captured with appropriate analytic treatments.

5.1 Introduction

There is extensive interest in diffusion-mediated processes within arrays of linear nanopores
as found in microporous and mesoporous materials including zeolites, metal organic frameworks,
and classes of mesoporous carbon and silica nanoparticles [1-4]. Many related studies for
both gas-phase and solution-phase systems are motivated by applications to separations and
catalysis. Behavior of these diffusion-mediated processes is often strongly impacted by inhibited
transport within narrow pores. The extreme case of single-file-diffusion (SFD), where the
pores are so narrow that molecules cannot pass within the pore [5-8], is well-known to exhibit
anomalous tracer diffusion [9].

In gas-phase systems, Knudsen diffusion generally applies within the narrow pores of interest
here. Behavior can be quantified by Molecular Dynamics (MD) simulations, results of which
are sometimes mapped onto one-dimensional (1D) lattice models for diffusion with lattice sites
representing, e.g., distinct cages in zeolitic materials [1,2,4]. In the solution-phase systems
of primary interest here, each pore has open ends and its interior is typically coupled through
adsorption and desorption of particles to a well-stirred equilibrated external fluid. We will focus
on the transport of larger molecular species with linear size comparable to the pore diameter,
and thus which are subject to SFD, in a solvent of smaller molecules which will be treated
implicitly in our modeling. One could thus regard the larger species as following Brownian or
Langevin type dynamics due to random collisions with the solvent species [10,11]. Basic features
of the diffusion coefficient for such species might be suggested by predictions of hydrodynamic
formulations [12], including the effects of confinement [13,14]. However, it is recognized that
related Stokes-Einstein-Debye type formulations can breakdown on the molecular scale [15,16].

Instead, a more precise characterization of diffusion behavior can in principle be provided by
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appropriate classical or Langevin MD simulations incorporating a complete specification of

relevant interactions in the system.

We argue that the detailed form of interactions between diffusing particles (other than

steric blocking which imposes SFD), and of any variation of diffusivity across the pore, will not

impact the basic features of transport subject to SFD which will be characterized in this study.

Indeed, for this reason, the majority of previous studies of SFD have used simplified models to

better elucidate the fundamental origins and nature of transport behavior.

There are in fact a variety of diffusion-mediated processes in finite-length nanopores for

which theoretical analyses, and where possible also experimental investigation, are of particular

interest. These include the following;:

(i)

(iii)

Assessment of the mean-squared displacement (MSD) of a tagged particle within a pore
[17,18]. Recently, the dependence of MSD behavior on initial location of the tagged
particle was used to define a location-dependent generalized tracer diffusion coefficient

[19,20].

Tracer exchange (TE) where tagged particles from the external fluid enter a pore initially
filled with untagged particles [21-23], and tracer zero-length column (TZLC) experiments
which can track the desorption of tagged particles initially within a pore to an external
fluid populated by untagged particles [18]. Behavior in both cases reflects the location-
specific and mean values of the intra-crystalline residence time [14]. These residence times

can also be determined directly by simulation.

Tracer counter permeation (TCP) analysis of transport within finite length nanopores
where different ends of each pore are connected to decoupled reservoirs with differently
labeled but otherwise identical particles [24,25]. Assessment of steady-state fluxes of la-
beled particles through the pore then quantifies the intra-pore diffusivity. Characteriza-
tion of the concentration profiles for labeled particles, together with the above-mentioned
flux, provides another route for determination of a generalized tracer diffusion coeffi-

cient [20,24,25].
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(iv) Catalytic conversion reactions where a reactant diffuses into the pore from the external
fluid, converts to product at interior catalytic sites, and then possibly exits the pore
[19-21,26-29]. Catalytic yield is reduced by inhibited transport within the pore, especially

SFD, which greatly limits efficient removal of product from the pore.

To describe these processes, we will consider spatially-discrete stochastic lattice-gas (LG)
models where both the pore region and external fluid are tessellated into a simple-cubic ar-
ray of cells, and where discrete molecular positions correspond to the centers of the cells [20].
Adsorption to and desorption from a pore, and also diffusion within a pore, involve hopping
between adjacent cells. This modeling framework enables Kinetic Monte Carlo simulation of
the overall diffusion or reaction-diffusion process on the appropriate time- and length-scales.
Furthermore, by considering increasingly finer arrays of cells (relative to molecular sizes and the
pore dimensions), one can approach a more realistic stochastic continuum model. This strat-
egy is familiar for equilibrium studies of fluids [30]. For our application, the discrete models
approach a continuum multi-particle Langevin diffusion-type model (for which direct Langevin
simulation is generally not computationally viable).

However, even simulation of the spatially-discrete models would be prohibitive if it was nec-
essary simulate explicitly diffusive dynamics in the external fluid as well as in the pore interior.
Thus, our goal here is to show that this is not necessary. Specifically, one can perform “stand-
alone” simulations of the pore region provided that one determines appropriate non-trivial
boundary conditions (BC’s) describing the coupling to the external fluid through adsorption-
desorption processes. We will show that determination of these BC’s can be achieved with a
special set of tailored simulations to characterize adsorption and desorption propensities (and
sometimes other features), as will be described in detail in the following Sections. We emphasize
that the possibility of exact pore-only simulations utilizing just a finite number of boundary
conditions derives from the imposed equilibrium condition on the external fluid.

For simplicity, we focus attention on models with a single type of particle with regard to
both inter-particle interactions and pore-particle interactions, and also with regard to particle
hopping dynamics. However, these particles can be colored, labelled, or tagged differently as

is appropriate for various applications or analyses [17-22,24-29], as will be described in Sec-
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tion 5.2.2. For these classes of models, in a “color-blind” characterization of the system which
does not distinguish between differently labeled particles, steady-states correspond to a classic
single-component equilibrium system. We shall see that the complex pore + exterior fluid ge-
ometry of the system induces a non-trivial heterogeneity in the total concentration for models
with non-trivial inter-particle interactions. Nonetheless, despite the complex model geometry,
one can exploit a spatial Markov “shielding” property of such equilibrium lattice-gas mod-
els [31]. This property allows, e.g., exact analytical determination of the behavior of the total
particle concentration within the pore given the above boundary conditions. In contrast, prop-
erties involving labeled particles cannot generally be determined exactly by analytical methods.
However, they can be obtained efficiently from pore-only simulations using appropriate BC’s.

In Section 5.2 we describe in more detail the basic stochastic LG models with just steric in-
teractions and uniform diffusivity on which we focus here, and introduce appropriate notation.
In Section 5.3, we develop an exact formulation and determination of adsorption-desorption
rates and boundary conditions for these models. KMC simulation results for TCP, TE, and
catalytic conversion are presented in Section 5.4. In Section 5.5, additional analytic results are
provided which provide deeper insight into observed behavior. Model refinements including the
introduction of finite strength interactions between particles, and variability in diffusion across

the pore, are described in Section 5.6. Finally, conclusions are presented in Section 5.7.

5.2 Basic Models and Notation

5.2.1 Stochastic LG models

In our LG models, the pore is represented by a cubic array of N x M x L cells, with
cross-section size of n, = N x M and pore length L, and where typically L ~ 25 — 200.
For our applications, the lattice constant, a, is regarded as comparable to or smaller than
the typical molecular size of ~ 1nm, so these pore lengths are of the order of al ~ 100nm.
Below, for convenience we set a = 1. The pore is connected at either end to reservoirs which
are represented by semi-infinite cubic lattices of cells. As noted in Section 5.1, particles have

discrete locations corresponding to cell centers. For the models considered in this study, these
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particles are subject to finite-range R exclusion interactions. R = 0 corresponds to exclusion
of multiple occupancy of cells, but otherwise there are no interactions between particles; R = 1
corresponds to nearest-neighbor (NN) exclusion, so there are no occupied NN pairs of cells; R =
V2 corresponds to NN and second NN exclusion, etc. Regarding particles as non-overlapping
spheres centered on cells, R = 0 corresponds to sphere diameter 0 < d <1, R=1to 1l <
d<V2,R=vV2tov2<d<V3, R=V3toVvV3<d<2 R=2t02<d< 5, etc.
Particles hop at rate h (per direction) between adjacent cells within the pore, and also between
adjacent cells near the pore opening with one cell just inside and one just outside the pore.
In all cases, hopping is subject to the exclusion interactions. Thus, a hop occurs only if the
selected NN cell is empty and also if hopping to that cell creates no pairs of particles within
the exclusion range (e.g., no NN pairs of particles for R = 1). Previous studies have considered
these models extensively for 1 x 1 x L cell pores with R =0 [17,19-22,25-29] and in one case
with R =1 [32].

Particles within semi-infinite reservoirs coupled to each end of the pore are regarded as
equilibrated. In this respect, the hopping or exchange dynamics for such particles between
cells in the external fluid is irrelevant. However, one could regard this equilibration as being
due to very rapid hopping between adjacent cells, again subject to the range R exclusion
interactions.

For applications to TE, TCP, or catalytic conversion, particles will be appropriately assigned
one of two labels, A or B, or colors, blue or red, respectively, as described in detail below.
However, they retain the same hopping dynamics and interactions. Thus, as noted in Section
5.1, if one is color blind and just considers the distribution of particles of either color, X = A+ B,
this distribution in the steady-state corresponds to a classic equilibrium distribution for a single-
component lattice-gas subject to range R exclusion. Even for the complex pore + exterior fluid
geometry, these models satisfy a spatial Markov property [31]. This property implies that a
wall of cells with specified state of suitably defined thickness, R, dividing the system into
two disconnected regions shields cells on one side from the influence of those on the other.
This feature is most useful considering walls composed of N x M x R linear segments of cells

within the pore, as will be illustrated below. Another significant feature of these hard-core
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type models for the equilibrated external fluid on the 3D cubic lattice is that they exhibit
non-trivial phase transitions which correspond to order-disorder transitions for smaller R, and
first-order transitions for larger R [30]. For example, for R = 1 (NN exclusion), the interacting
particle model has a non-trivial equilibrium state exhibiting an order-disorder transition at a
critical concentration of (X.) ~ 0.209 [30]. For R = v/2, the model exhibits an order-disorder
transition at critical concentration (X.) ~ 0.104 [30], etc.

Also of particular significance, we note that consideration of limiting behavior of these
equilibrium LG models for increasing R is well-known to provide an effective tool to elucidate
behavior of the continuum hard-sphere model [30]. Returning to the non-equilibrium TE, TCP
and catalytic conversion models, as noted in Section 5.1, our discrete LG models will approach
continuum Langevin diffusion or reaction-diffusion models upon simultaneously increasing the

exclusion range, R, and pore dimensions, so that R remains a fixed fraction of the pore diameter.

5.2.2 Particle labeling for various applications

Next, we describe the labelling or coloring of particles appropriate for various analyses or
applications. First, we discuss analysis of tracer diffusion of tagged particle(s) for studies of
MSD or TE. Extending basic studies of mean-square displacement (MSD) [17] for R = 0 to
R > 0, one would first equilibrate a distribution of unlabeled particles in the entire external
fluid + pore system at a prescribed external fluid concentration, (X3). Then, a single particle
at a specified initial position inside the pore would be tagged or colored, with the rest of
the particles inside and outside the pore being untagged or uncolored. One must also specify
how the evaluation of MSD accounts for those trajectories where the tagged particle exits the
pore [13]. For analysis of tracer exchange (TE) [22], again one would first equilibrate unlabeled
particles for a prescribed (Xj). Then, particles initially outside the pore would be colored blue
and labeled A , and those initially inside the pore would be colored red and labeled B. Thus, A
diffuses into the pore, and B diffuses out of the pore irreversibly as it becomes instantaneously
diluted in the well-stirred external fluid of A and does not reenter. These studies track the
evolution of the concentration profiles and thus the total number of A and B in the pore.

The tracer exchange curve, 7 (t), is defined as the fraction of A particles in the pore, so that
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v(0) = 0 and v(t) — 1 as t — oo [21]. The mean intercrystalline residence time can be

obtained from [21]

Tintra = / dt [1 -7 (t)] .
0<t<oo

For tracer counter permeation (TCP) studies [24], particles in the reservoir coupled to the
left end of the pore are colored blue and labeled A, and those in the reservoir coupled to the
right end are colored red and labeled B, say. Both reservoirs have the same bulk concentration,
(Xp). After adsorption, there is a finite probability that A (B) particles diffuse through the
pore and exit the opposite right (left) end, where they are immediately infinitely diluted in the
equilibrated reservoir of B (A) particles. Thus, particles after completely traversing the pore
do not re-enter. After a transient period depending on the initial conditions [25], the system
reaches a non-equilibrium steady state. In this steady-state, one can monitor the equal and
opposite but non-trivial fluxes of colored particles through the pore to assess diffusivity within
the pore. From the ratio of these fluxes and the local steady-state concentration gradients, one
can determine a generalized tracer diffusion coefficient [24,25].

In our treatment of simple first-order catalytic conversion reactions [19,26-29], reservoirs
connected to both ends of the pore are exclusively populated by reactant particles which are
colored blue and labeled A, say. Once reactant particles have diffused into the pore, they
convert to product particles colored red or labeled B, say, at specified catalytic cells at rate
r. This reaction rate, r, is an additional parameter in the reaction model, behavior of which
depends strongly on the ratio r/h. Product particles have the same interactions and diffusion
dynamics as reactant particles, and can in principle exit the pore (although a SFD constraint
greatly inhibits this process). When product exits the pore, it is immediately infinitely diluted
in the reactant reservoirs and does not re-enter the pore. After a transient period reflecting
the initial conditions, the system reaches a non-equilibrium steady state with reactant (prod-
uct) concentration decaying (growing) into the pore with the center of long pores exclusively
populated by product. For systems subject to SFD, reactant penetration to the pore, and thus

catalytic yield, is greatly inhibited.
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We could (but do not) consider other more complex catalytic conversion processes within
this framework of a single type of particle (with regard to interactions and hopping dynamics)
but with different labels. For example, one could consider sequential multi-step conversion
reactions, A — B — C occurring at specified cells within the pore [33]. Alternatively, one
could consider different reactants A in the left and B in the right reservoirs which diffuse into
the pore and when on adjacent sites undergo a bimolecular reaction A + B — C 4+ D (with C
replacing A, and D replacing B).

Finally, our primary interest here is in analyzing TCP, TE, and catalytic conversion subject
to a SFD constraint which induces the strongest non-equilibrium correlations and most non-
trivial behavior [20]. This SFD condition is simply imposed by selecting the range of the

exclusion interaction so that particles cannot pass within the pore.

5.2.3 Notation

Cells are labeled by (4,7, k) where k corresponds to the direction of the pore axis, and
layers or planes of cells within the pore correspond to £k = 1 to L. Layers just outside the
pore correspond to k = 0 and k = L + 1. For all k, (4, ) labels the position of cells in planes
orthogonal to the direction of the pore axis. Again, the lattice constant is set as a = 1 below.
For particles of type C = A, B, or X, we let (C; ;1) denote the probability that cell (i, 7, k)
is occupied by (the center of) a particle of type C. If (E; ;i) denotes the probability that
cell (i,7,k) is empty, then (A;;x) + (Bijkr) = (Xijk) and (E;jx) + (Xijk) = 1. We also
define the average concentration in a layer k within the pore as (Cy) = >, (Cijk) /22 ; 1,
where ZZ ;1 =mng =N x M. We will also need to consider probabilities of various multi-cell
configurations, e.g., (C; ;1 Ei jr+1) denotes the probability that cell (i, j, k) is occupied by C,
and cell (i,7,k + 1) is empty. It will also be instructive to consider associated conditional
probabilities, (Q|=) = (Q=) / (Z), which denotes the probability of Q given =, where ) and =
denote the configurations of non-intersecting subsets of cells. For example (C; j x|E; jr+1) =
(CijkEijk+1) / (Eijk+1) denotes the probability that cell (4, j, k) is occupied by C' given that
cell (i,7,k + 1) is empty. Again, (X3) denotes the particle concentration in the bulk external

fluid far from the pore openings, and (Ep) =1 — (X3).
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5.3 Adsorption-Desorption Boundary Conditions for Basic Models

Below, we describe the development of adsorption-desorption boundary conditions for var-
ious pore cross-sections and interaction ranges, R. First, we consider the simplest and most
coarse-grained model of a 1 x 1 x L cell pore. Next, we consider the more complex cases of a
2 x 1 x L and more general N x 1 x L cell pores. Finally, we treat cases of 2 x 2 x L and more

general N x N x L cell pores.

5.3.1 1x1x L cell pore (the coarsest model)

Cells in the pore correspond to (4,7, k) = (0,0,0) with £ = 1 to L, and for these cells we
just use a single label k. The left (right) reservoir corresponds to cells (i,7, k) with & < 0
(k> L+1). We consider LG models for various exclusion ranges, R. As indicated in Section
5.2.1, we will utilize a spatial Markovian shielding property for the equilibrium steady-state
of these models [31]. One manifestation of this property is that strings of R contiguous cells
within the pore with specified state shield cells on one side of the string from the effect of cells
on the other side. Below we focus on determining adsorption and desorption rates for various
R. Schematics of these processes are provided in Figure 5.1(a)-(e) where the actual 3D cubic
lattice of cells in the semi-infinite external fluid reservoirs is for convenience represented by
2D square lattice of cells. The discussion below however refers to the actual 3D reservoirs.
Specifically, we develop expressions for the rates of adsorption and desorption of particles of
type C = A, B, or X, where adsorption, we assume that the relevant reservoir is exclusively
populated by C with a fixed bulk concentration (Cy) = (Xp).

Ezclusion range R = 0, i.e., no interactions between particles on adjacent cells, but exclu-

sion of multiple occupancy of a single cell. See Figure 5.1(a)-(b). The maximum concentration
is (Xmax) = 1. This classic non-interacting model has been considered in most previous studies
of TE, TCP, and conversion reactions [17-22,24-29]. The model thermodynamics is trivial,
the equilibrium state corresponding to a random distribution of particles with the prescribed

concentration (X;). Thus, the rate of adsorption, R,gs, to an end site within the pore, and the
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Figure 5.1: 2D schematic of configurations relevant for adsorption, desorption, and pre-desorption in 1 x1x L cell
models for R =0 and R = 1. E denotes empty cells; £ in red denotes cells prescribed to be empty. Conditional
probabilities, Q,|m, indicating the number of sites required (n) and given (m) empty for a 2D (3D) exterior fluid

lattice.

rate of desorption, Ryes, from an end site within the pore to the exterior fluid, are trivially
Rads =h <C()70’0E1> =h <Cb> <E1> N and Rdes =h <C()’07()Cl> =h <Eb> <Cl> . (5.1)

Here, we use that (Cp,0) = (Ch) = (X3), since the external fluid concentration is uniform, and
we use that cell occupancies inside and outside the pore are uncorrelated.

Ezclusion range R =1, i.e., no nearest-neighbor (NN) pairs of particles. The maximum

concentration is now (Xmax) = 1/2 both within the pore and in the exterior fluid. Recall that
this R = 1 model exhibits an order-disorder transition in the external fluid at (X.) ~ 0.209 [30].
Treatment of adsorption and desorption in this model is now non-trivial [32]. Noting that both
cell 1 and cell 2 must be empty for adsorption to a left end cell 1 within the pore (see Figure

5.1(c)), the corresponding rate is given by
Rads =h <C()70,0E1E2> =h <Co7070’E1E2> <E1E2> =h <CQ> <E1> <E2> . (52)

Using the spatial Markov property that a single cell shields for R = 1, one has that (Cy) =
(Co0,0/E1E2) = (Coo,0|E1) is the conditional concentration at cells just outside the pore open-
ing given that the end cell within the pore is empty. In fact, (Cy) corresponds to the con-
centration in the layer against the wall for a semi-infinite system with R = 1, and thus can

be determined from a tailored simulation for such a semi-infinite system. Its value is slightly
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enhanced relative to (Cp) since such cells against the wall in 3D have only 5 NN which could
be occupied (versus 6 in the bulk).

Desorption from an end site within the pore to the exterior fluid requires the target site
just outside the pore be empty as well as the additional five cells NN to that cell in the 3D
external fluid [32]. See Figure 5.1(d). The associated rate of desorption from the left end of

the pore is given by

Raes = h (Eo0,—1E1,00E-1,0,0F0,1,0E0,-1,0E0,0,0C1)

= h{Eo,0,-1E1,00E-1,00E0,1,0F0,-1,0/0,00C1) (E0,0,0C1) = hQs)1 (C1) - (5.3)

We use that (Eg0,0C1) = (C1) and also use the spatial Markov property

Qs1 = (E0,0,-1E1,00E-1,0,0F0,1,0F0,-1,0/Fo,0,0) -

The conditional probability, Q5|; is determined from a separate tailored simulation for a semi-
infinite system with R = 1 and one cell against the wall specified empty, where one determines
the conditional probability that 5 NN cells are empty in 3D.

Stand-alone simulations must also treat the pre-desorption step of hopping from cell 2 to
cell 1 at the end of the pore which requires the cell just outside the pore to be empty. This
probability is just (Epre) = (Eo) = 1 — (Xp), as indicated in Figure 5.1(e).

FEzclusion range R > 1. The rate of adsorption to an end site within the pore can again

be expressed as the product of the concentration, (Cp), of particles against the wall in a semi-
infinite fluid times the probability of a suitable string of empty sites within the pore. Desorption
from and end site within the pore now requires a larger set of cells just outside the pore to be
empty, and the associated rate of desorption factors as the product of (C) times a suitable
conditional probability. Multiple non-trivial pre-desorption rates must also be determined. See

Section 5.10 for R = 2.

5.3.2 2x1x L cell pore

This case presents new features not seen for the 1 x 1 x L cell models, which are readily

illustrated schematically given the 2D pore geometry. Cells in the pore correspond to (i, 7, k) =
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(0,0,k) and (0,1,k) with £k = 1 to L, and for these cells we just use a label k_ (k;) for
j=0(j7=1). Note that <C’k7> = <C’k+>, i.e., there is just a single independent concentration for
each layer k within the pore. Again, we will prescribe the treatment of adsorption, desorption,
and pre-desorption processes, but we must also now prescribe the treatment of diffusion within
the end layer in the pore. Exclusion range R = 0 again has a maximum concentration of
(Xmax) = 1 and allows a simple treatment of adsorption-desorption since the exterior fluid is
random. However, R = 0 does not impose SFD and thus leads to greatly enhanced diffusion
within the pore relative to cases with SFD. We do not comment further on this case. We will
instead focus on the case R = 1 below, and provide extensive simulation results for this case
in Section 5.4.

Ezclusion range R = 1, i.e., no nearest-neighbor (NN) pairs of particles. In this case, there

is at most a single particle in each layer k within the pore, and SFD is imposed. The maximum
concentration is (Xpax) = 1/2 both inside the pore and in the exterior fluid. An order-
disorder transition occurs in the external fluid at (X.) ~ 0.209 [30]. Appropriate treatment
of adsorption-desorption is non- trivial in this model in contrast to R = 0. In fact, the two
required parameters for adsorption and desorption correspond to those in the 1 x 1 x L cell
model with R = 1. However, we should note that for this 2 x 1 x L cell model with R = 1,
the spatial Markovian shielding property for the equilibrium steady-state is somewhat more
complicated than for 1 x 1 x L. Specifically, it implies that a layer of two vertical cells within
the pore with specified state shields cells on one side from the effect of cells on the other side.
This feature is utilized below.

For the adsorption rate, the relevant multisite probability factors as the concentration,
(Cop), of particles against the wall in a semi-infinite system with R = 1 (as determined for
the 1 x 1 x L cell model) times the probability of a triple of empty cells at the pore opening.
See Figure 5.2(a). This factorization follows rigorously from the Markov shielding property of
the pair of empty cells Ey, Ey_. For desorption, a particle at k = 1, or (0,1,1) ensures that
cell (0,1,0) just outside the pore is empty, and five additional cells are required to be empty.
Thus, the configuration of the external fluid corresponds to that in a semi-infinite system with

a single cell against the wall specified empty, and is identical to that in the tailored simulation
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for desorption in the 1 x 1 x L cell model with R = 1. In this case, again we determine the
conditional probability, @51, of five empty cells NN to this specified empty cell. See Figure
5.2(b). Pre-desorption where the particle hops from cell & = 24 to cell £ = 11 must also
be treated appropriately, noting that this requires a cell just outside the pore to be empty.
However, the situation is analogous to the 1 x 1 x L cell model with R = 1. The relevant
conditional probability that a cell just outside the pore is empty given both cells in layer £k = 1
are empty is given by (Epre) = (Ep) = 1 — (Xp), so it is determined without additional tailored

simulations. See Figure 5.2(c).
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Figure 5.2: 2D schematic of configurations relevant for adsorption, desorption, and pre-desorption, and end layer
hopping in the 2 x 1 x L cell model with R = 1. @’s with (without) parenthesis correspond to 3D (2D) exterior
fluid. All NN cells to particles are empty.

However, unlike the 1 x 1 x L cell model with R = 1, additional non-trivial information is
needed to treat lateral hopping within the pore in the end layer £ = 1. See Figure 5.2(d). For a
particle at k = 14 or (0,1,1) hopping to k = 1_ or (0,0, 1), both cells just outside the pore must
be empty as well as additional sites within the pore. This probability can be factorized exactly
using the Markov shielding property of the pair of cells Cy, F1_ as indicated in Figure 5.2(d).
The additional information needed to prescribe lateral hopping is the conditional probability,
Q1)1, to find an additional empty cell just above or below the cell specified empty. This is
obtained from the same tailored simulation used to assess desorption where one site against a
wall in a semi-infinite system is specified empty. Key parameters for this model ((Co), Q51

(Epre), and Q1) are listed in Table 5.1.
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5.3.3 N x1x L cell pore for N >3

While the 3D pore geometries of N x N x L cell models are of more physical relevance, the
N x 1 x L cell models with 2D pore geometries present analogous features and complications.
These features are more readily illustrated schematically in the 2D pore geometry. Cells in the
pore correspond to (i,j,k) = (0,7,k) for j = 0to N —1 and k = 1 to L. Unlike the above
cases for N < 2, all these models exhibit lateral concentration variation within pore. Note
that (Co k) = (Co,N—1-jk), etc., by reflection symmetry about the longitudinal pore center.
In fact, one can provide an exact analysis of this variation for the total concentration for the
equilibrium steady state in the center of a long pore. See Section 5.5.1 and Section 5.9. For
R = 0, adsorption-desorption is again trivial, so we do not discuss this case further. For R > 0,
we divide the discussion into two cases. For R < N — 1, SFD is not imposed, and these models
are characterized by multiple independent and non-trivial adsorption and desorption rates. For
R > N—1,SFD is imposed. There is a single adsorption and desorption rate for smaller N < 3,

but not necessarily for larger N > 4.
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Figure 5.3: 2D schematic of configurations relevant for determination of adsorption and desorption rates for
particles of type C' = A, B, or X. (a,b) 3 x 1 x L cell model with R =1 (no SFD). (c,d) 3 x 1 x L cell model
with R =2 (SFD), and 4 x 1 x L cell mode with R = 3 (SFD).
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First, we illustrate behavior for R < N — 1 in the simple case N = 3 and R = 1. Here,
particles diffusing on the top and bottom row within the pore can pass each other. Also, sig-
nificantly, there are multiple populated configurations of the end row which complicates the
description of adsorption and desorption. Figure 5.3(a) illustrates three distinct situations
in which adsorption must be described. The rates for two of these involve the concentration
of particles against the wall in a semi-infinite system which comes from one tailored simula-
tion. The other requires a separate tailored simulation in a semi-infinite system where one
cell against the wall is specified empty. Figure 5.3(b) illustrates three distinct situations for
desorption. Two of these require the same tailored simulation as in the adsorption case with
one cell against the wall in a semi-infinite system specified empty. The third requires a separate
tailored simulation with two cells against the wall specified empty. Pre-desorption must also be
described for this model. There are three distinct configurations to be considered (not shown),
and diffusion within the end layer requires consideration of two cases (not shown), but the
associated tailored simulations are included in the treatment of adsorption and desorption.

Second, we briefly comment on cases with exclusion range R > N — 1 (for N > 3) which
imposes SFD. Schematics of adsorption and desorption processes are shown in Figure 5.2(c)
and Figure 5.2(d), respectively, where E labels cells required to be empty for the processes to
occur. For N = 3 and R = 2, a single adsorption and desorption rate apply. This follows since
the occupancy of the site indicated by the asterisk does not influence sites not already labeled
as F (empty) in the external fluid. On the other hand, for N = 4 and R = 3 (corresponding to
spheres with diameter 3 < d < 1/10), the occupancy of the site indicated by the asterisk does
influence the occupancy of two sites not already labeled by E in the external fluid. These two
sites are indicated by stars. Thus, one must determine two distinct adsorption rates and two
distinct desorption rates depending on whether the site labeled by the asterisk is occupied or
not. The TOC figure illustrates multi-particle configurations for N = 4 and R = 3 where cells
required to be empty due to exclusion are labeled by black E, and additional cells required to
be empty for implementation of the indicated adsorption and desorption processes are labeled
by blue E. For N = 4 with larger R = /10, there are still two distinct rates. However, for

N = 4 with still larger R > /13, a single adsorption and desorption rate apply.
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5.3.4 2x2x L cell pore

Cells in the pore correspond to (i,j,k) for i = 0 or 1, and j = 0 or 1, and for k = 1 to
L. Again, by symmetry, there is just a single concentration, (Coox) = (Co1k) = (Ciok) =
(C1,1,%), in each layer k. Exclusion ranges R = 0 and R = 1 do not enforce SFD. Description of
adsorption-desorption is again trivial for R = 0, but not for R = 1. Now, R = /2 which is the
smallest R—value which imposes SFD. We describe the treatment of adsorption, desorption,
and pre-desorption processes for R = 1 and R = /2, but must also now consider diffusion
within the end layer in the pore. Extensive results for R = /2 are presented in Section 5.4.

Ezxclusion range R =1, i.e., no NN pairs of particles, so there can be up to two particles

in each layer k within the pore, and SFD is not imposed. As for the 3 x 1 x L cell model
with R = 1, there are multiple adsorption and desorption rates to be determined, as we now
briefly describe. Adsorption can occur either into a completely empty end layer, or into a cell
in the end layer where the diagonally opposite corner cell is populated. Two separate tailored
simulations are required to determine these rates, one for a semi-infinite system, and the other
for such a system with a single cell against the wall specified empty. Desorption can occur
either from an end layer with a single particle, or from an end layer with two particle in diago-
nally opposite corner cells. Two appropriate tailored simulations are required to determine the
associated rates.

Exclusion range R = /2, i.e., no NN or second NN pairs of particles, so there is at most

a single particle in each layer k& within the pore, and SFD is imposed. The maximum concen-
tration is (Xmax) = 1/4 both in the pore and in the exterior fluid. The latter corresponds to
layers of skewed 2 x 2 ordering. As noted above, an order-disorder transition occurs in the
external fluid at critical concentration (X.) = 0.104 [30]. Appropriate treatment of adsorption-
desorption is of course non-trivial in this model, somewhat akin to the 2 x 1 x L cell model
with R = 1. For this 2 x 2 x L cell model with R = /2 (or with R = 1), the spatial Markovian

shielding property for the equilibrium steady-state has the following form: a complete layer
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of four cells within the pore, i.e., (i,7) = (0,0), (1,0), (0,1), (1,1) with fixed k, which have
specified state shields cells on one side from the effect of cells on the other side. This feature

is utilized below.
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Figure 5.4: Schematic for the 2 x 2 x L cell model with R = v/2 or configurations relevant for determination of:
(a) adsorption; (b) desorption; (c) pre-desorption; (d) hopping in the end layer, for particles of type C' = A, B,
or X.

For the adsorption rate, the relevant multisite probability factors as the concentration, (Cp),
of particles against the wall in a semi-infinite system times the probability of a configuration of
seven empty cells at the pore opening. See Figure 5.4(a). This factorization follows rigorously
from the Markov shielding property of the quartet of empty cells Eq o 1)E(1,0,1)E0,1,1)E(1,1,1)-
For desorption, a particle at (0,0, 1) ensures five cells (0,0,0), (1,0,0), (—1,0,0), (0,1,0), and
(0,—1,0) just outside the pore are empty, and an additional nine cells are required to be empty.
Thus, the configuration of the external fluid corresponds to that in a semi-infinite system with
five cells against the wall specified empty. A tailored simulation is performed to determine
the conditional probability, Qg5, that the additional nine cells are empty. See Figure 5.4(b).
Pre-desorption where the particle hops from cell (0,0,2) to cell (0,0,1) must also be treated
appropriately. The particle at (0,0, 2) ensures three cells with £ = 1 are empty. Pre-desorption
requires the forth cell for £ = 1 be empty, and an additional five cells just outside the pore
with £ = 0 are also empty. See Figure 5.4(c). We exactly factorize the probability for pre-
desorption. One factor is the conditional probability that five sites outside the pore are empty

given the state of the sites inside the pore. The other is the probability of the configuration of
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sites inside the pore. The first conditional probability corresponds to the probability of finding
the five empty cells against the wall in a semi-infinite system, (Esp.), and can be obtained
from a tailored simulation.

As for the 2 x 1 x L cell model, additional non-trivial information to treat lateral hopping
within the pore in the end layer £k = 1. See Figure 5.4(d). Consider a particle at (0,0,1)
hopping to (1,0,1). The presence of the particle implies that five cells just outside the pore are
empty. For hopping, an additional three cells just outside the pore must be empty (as well as
additional sites within the pore). This probability can be factorized exactly. One factor is the
conditional probability, ()35, for three empty cells outside the pore given the five empty cells
outside the pore and the specified configuration of cells inside the pore. The other factor is the
probability of the configuration of cells inside the pore. Using the Markov shielding property,
this conditional probability equals the conditional probability for a semi-infinite system with
five cells specified empty that an additional three cells are empty. See again Figure 5.4(d).
(35 can be obtained from the same tailored simulation as used to assess desorption. Key

parameters for this model ((Co), Qg|5, @spre; and Qg5) are given in Table 5.1.

5.3.5 N x N x L cell pore for N >3

Cells in the pore correspond to (i,j,k) fori=0to N —1,j=0to N —1and k=1 to L.
Unlike the above cases for N < 2, all these models exhibit lateral concentration variation within
pore. Note that some (C; ;) for fixed k are equal by rotational symmetry, and by reflection
symmetry about the longitudinal pore center. In fact, one can provide an exact analysis of this
variation for the total concentration for the equilibrium steady state in the center of a long pore.
See Section 5.9. For R = 0, adsorption-desorption is again trivial. For 1 < R < (N — 1)v/2,
SFD is not imposed, and these models are characterized by multiple independent and non-
trivial adsorption and desorption rates. For R > (N — 1)v/2, SFD is imposed. For smaller R

in this range, there can be multiple distinct adsorption and desorption rates.
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Table 5.1: Parameters from tailored simulations determining adsorption, desorption, pre-desorption, and end-

layer diffusion rates for the three SFD models. See Section 5.10 for analytic estimates of these parameters.

(Cy) Adsorption Desorption Pre-desorption End Diffusion
1x1xL, R=0 (Co) (Eo) =1 — (Co) - -

(Ch) (C) 1—(Cy) - _
2x1xL, R=1 (Co) Qs)1 (Epre) =1 — (Co) Qi1

0.20 0.2106 0.2792 0.7894 0.7331

0.10 0.1055 0.5466 0.8945 0.8821
2x2xL, R=+v2 (Co) Qo5 (Espre) Qs)s

0.10 0.1232 0.1936 0.4421 0.5190

0.05 0.0589 0.5326 0.7143 0.8003

5.4 KMC Simulation Results for TCP, TE and Catalytic Conversion

In the analysis below, we focus on comparison of behavior for three SFD models which are
all subject to the SFD constraint: a 1 x 1 x L cell pore with R =0 and (X;) =04;a2x1x L
cell pore with R = 1 and (X3) = 0.2; and a 2 x 2 x L cell pore R = v/2 and (X}) = 0.1. The
exterior fluid concentration consistently is selected to be 40% of the maximum possible value

for all models, so comparison of these cases is natural.

5.4.1 Characterization of TCP

Figure 5.5(a)-(c) shows steady-state TCP concentration profiles for the above three SFD
models for a pore with L = 25 obtained from pore-only simulations utilizing the non-trivial
boundary conditions for R > 0 described in Section 5.3. For the 1 x 1 x L cell model with
R = 0, we note stronger deviations from linearity persisting deeper into the pore, as will be
elucidated below. For the other models with R > 0, the concentration is strongly enhanced
in the pore interior due to the lower cell coordination number relative to the external fluid.
Profiles are more linear in the pore interior, but display oscillations near the pore openings
reflecting the change in coordination number of cells transiting from the external fluid to the
pore interior.

Figure 5.5(d) shows a schematic of steady-state TCP configurations for general systems

subject to SFD. These have the special feature that particles are strictly ordered with A on
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Figure 5.5: TCP profiles for: (a) 1 x 1 x L cell pore with R = 0 and (X;) = 0.4; (b) 2 x 1 x L cell pore with
R =1 and (X)) = 0.2; and (c) 2 x 2 x L cell pore with R = /2 and (X;) = 0.1. In all cases, SFD applies,
L =25, and (Xp) / (Xmax) = 0.4. (d) Schematic of possible TCP steady-state configurations for SFD.

the left, and B on the right [18,25]. A “typical” configuration has an interface between the A-
and B-populated regions somewhere in the middle of the pore (top image). A non-zero flux
of A (B) from left to right (right to left) through the pore corresponds to situations where
the pore is completely populated by A (B). In these cases, the interface has reached the
right (left) end of the pore, as shown in the middle (bottom) image. This latter observation
motivates characterization of the distribution of interface locations [25]. However, first a more
precise definition of interface location is needed. A simple asymmetric choice identifies the
interface location with the right-most A (or left-most B). In this case, the location takes only
integer values. A symmetric definition identifies the interface location as midway between the
right-most A and the left-most B, which implies that the location can take both integer and
half-integer values. In either case, we set the location to k = 0 (k = L + 1) if the pore is devoid

of A (B).
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Figure 5.6: Interface location distribution for TCP profiles with SED in pores with L = 50 for: (a) 1 x 1 x L cell
model with R = 0 and (X,) = 0.4; (b) 2 x 1 x L cell model with R =1 and (X,) = 0.2; (c) 2 x 2 x L cell model
with R = v/2 and (X}) = 0.1. Left row: symmetric definition. Right row: right-most (RM) A (solid orange)
and left-most (LM) B (dashed blue).

Interface location distributions are shown for the three SFD models in Figure 5.6(a)-(c).
In the most simple picture, one might anticipate a uniform distribution of interface locations
within the entire pore. This behavior would correspond to exactly linear TCP profiles. In
fact, for long enough pores, the distribution does have a plateau in the pore interior, i.e., the
interface location is uniformly distributed apart from pore end effects. Indeed, this depletion
of the distribution near the pore ends corresponds to the flattening of the TCP profiles in that
region, which in turn has significant consequences for the generalized tracer diffusivity discussed
below. Note that for maximal concentrations in the three models which we consider with one

particle for each layer k, the interface location using the symmetric definition is restricted to
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half-integers. From Figure 5.6(a)-(c) we see that this preference for half-integer locations is

weakened but maintained at lower concentrations.

5.4.2 Determination of generalized tracer diffusivity

Next, we utilize the above results for TCP concentration profiles, together with an assess-
ment of the flux, J4 (Jp = —J4) of A (B) through the pore, to determine the generalized
tracer diffusion coefficient, Dy, (k, k + 1), for each adjacent pair of layers in the pore [19,20,24].
Our treatment is motivated by hydrodynamic transport theory for continuum systems with
a single type of particle carrying one of two labels, A or B, with slowly varying concentra-
tion gradients [20, 24, 34, 35]. In a counter-diffusion mode with constant total concentration,
(X) = (A) + (B), so that V(A) = —V (B), one has Jy = —Dy,\V (A) and Jg = —D,)V (B)
which are equal and opposite, and where Dy, is the tracer diffusion coefficient. As an aside, we
note that for more general diffusion modes, the diffusion fluxes also depend on the chemical or
collective diffusion coefficient, D., which is concentration-independent for R = 0 [20, 36], but
which has a non-trivial dependence on concentration for our models with R > 0 [37].

We generalize these considerations to our discrete system where the total concentration in
each layer (Xj) = (X;%) is equilibrated, but not constant for R > 0 [32]. We first introduce
fractional concentrations via (cx) = (Cy) / (X;1) for C = Aor B. If Jg>k+1 denotes the net flux
of C from cell k to k+ 1 (which is independent of k for steady-state TCP). Then, Dy, (k, k + 1)
is defined via

1 e e
R —5 (X5 + (X{4,)) Dir (ks k + 1) V (egn) (5.4)

where VG, = G — Gi_1 is a discrete derivative. Note that this definition correctly ensures
equal and opposite fluxes for A and B, and recovers the hydrodynamic expressions. The form
of Jg>k+1 for general (X}) is more complex [38], but is not needed here.

Results for Dy, (k,k+ 1) based on (5.6) are shown for the three SFD models in Figure
5.7(a)-(b). Concentrations and their gradients are obtained from profiles of the type shown in
Figure 5.5(a)-(c). Flux values can be obtained either from counting the number of A’s and B’s
transiting the pore during the simulation, or from end layer concentrations. For example, one

has J4 = hQ (Ar) where @ is the appropriate conditional probability that a particle on the
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end site within the pore can desorb, e.g., @ = (Ep) for the 1 x 1 x L cell model with R = 0,
Q = Qs for a 2 x 1 x L cell model with R =1, and @ = Qg5 for a 2 x 2 x L cell model with
R =2

0.35 0.35
030l (@) L =25 (b) L =50
< 0. < 0.30
X 025 N go5l DI R0 <X,>=04 — -
P T 2x1xL R=1 <X,>=0.2
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Figure 5.7: Comparison of Dy, (k,k + 1) for three models for: (a) L = 25 where Dy, (max) /h = 0.3188, 0.1545,
and 0.0861 for 1 x 1 x L, 2x 1 x L, and 2 x 2 x L. (b) L = 50 where D, (max) /h = 0.3174, 0.1532, and 0.0835
for1x1xL,2x1xL,and 2 X2 X L.

We emphasize two key features of these results. First, there is a well-defined minimum
plateau, Dy, (min), in the values of Dy, (k,k+ 1) in the pore interior, especially for longer
pores. The plateau value decreases with increasing L as discussed further below. Second, near
pore openings, there is a strong enhancement in Dy, (k, k + 1)-values. This enhancement is
most substantial in 1 x 1 x L cell model with R = 0, a feature corresponding to the strong
deviations in linearity of the TCP profiles for this case. It has been suggested [25] that an upper
bound on the maximum value, Dy, (max) = Dy, (1,2) = Dy, (L — 1, L) of Dy, (k,k + 1) might
be obtained from appropriate mean-field type estimates of D;,.. The MF site approximation for
the 1 x 1 x L cell model yields [20] Dy, (1 x 1 x L,site) = h (1 — (Xjnt)) = 0.6h for (Xjne) = 0.4,
and appropriate MF pair approximations for the 2 x 1 x L and 2 x 2 x L cell models also yield
estimates well above Dy, (max). See Section 5.10.

Previous treatments for the classic 1 x 1 x L cell model with R = 0 have considered an
overall diffusivity, Dy, (pore), for finite pores of length L. The dependence of Dy, (pore) on
concentration and pore length was assessed by simulations and also analytic treatments for

systems both with periodic boundary conditions [17,39,40], and for a TCP setup with a near-
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jammed pore [18]. We will associate the minimum plateau value, Dy, (min), with Dy, (pore)
not just for the 1 x 1 x L cell model with R = 0 but for all models. Adapting previously derived
expressions for Dy, (pore) for 1 x 1 x L cell models with R = 0 [17,18,39,40] to more general

models, one might anticipate that
Dy (min) ~ (Xeg) " (1 — (Xe)) h/Leg ? (5.5)

Here, (Xer) = (Xint) / (Xmax) denotes a scaled effective concentration, and Leg o L is an
appropriate measure of pore length. Indeed, results shown in Figure 5.8 reveal an almost

perfect inverse proportionality to pore length, L for all models consistent with (5.5).
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Figure 5.8: Linear variation of Dy, (min) with 1/L where Dy, (min) & 1.42h/L, 0.82h/L, and 0.46h/L for the
1x1xL,2x1xL,and 2 x 2 x L cell model, respectively.

For the 1 x 1 x L cell model with R = 0, the 2 x 1 x L cell model with R = 1, and
also the 2 x 2 x L cell model with R = v/2, a maximally populated or jammed pore has one
particle per layer k, and we set Leg = L [41]. If one makes the crude approximation that
(Xint) ~ (Xp) for the 2 x 1 x L and 2 x 2 x L cell models, then the three models considered
in this section all have the same (Xg) ~ 0.4 yielding Dy, (min) =~ 1.5h/L for all models. This
estimate is quite effective for the classic 1 x 1 x L cell model with R = 0, but not for the other
models. Correcting this estimate by using the simulation value of (Xjy) yields slightly improved
Dy, (min) ~ 1.03h/L with (Xin) = 0.246 for the 2 x 1 x L cell model and Dy, (min) ~ 0.83h/L
with (Xint) = 0.136 for the 2 x 2 x L cell model. However, these values are still significantly

above the precise simulation values. Thus, we conclude that tracer diffusivity is intrinsically
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lower in the 2 x 1 x L and 2 x 2 x L cell models relative to the 1 x 1 x L cell model, and that
the traditional treatments must be modified.

This behavior presumably reflects the feature that diffusional dynamics is intrinsically more
inhibited due to special features of superlattice ordering in the 2 x 1 x L and 2 x 2 x L cell
models. To illustrate this feature, we note that unlike 1 x 1 x L cell models, there are frozen or
jammed configurations (where no hopping is possible) with concentrations below the maximum
value. Such configurations can be constructed, e.g., by removing every third particle along the
pore from a configuration with maximum coverage. The consequences of such ordering have

not been considered in previous analyses.

5.4.3 Characterization of tracer exchange

Figure 5.9(a)-(c) show KMC simulation results for the three SFD models for tracer exchange
concentration profiles of particles of type A entering a pore initially filled with particles of type
B. We emphasize that in contrast to previous studies of TE for the classic 1 x 1 x L model
with R = 0, in our studies for models with R > 0, the equilibrated total concentration is not
uniform inside the pore (both initially and subsequently). As time ¢t — oo, the concentration of
A-type particles inside the pore converges to this total equilibrium concentration. Profiles are
shown for a sequence of quickly growing times ht = 5" with n = 1,2,.... Results reflect slow
pore filling which is a consequence of inhibited transport due to SFD. Predictions of behavior
assuming a position-independent mean-field tracer diffusion coefficient would produce much
faster pore filling. Discussion of an effective beyond-mean-field analytic treatment of TE is

presented in Section 5.5.4. Associated results are also shown in Figure 5.9(a)-(c).

5.4.4 Characterization of catalytic conversion

We consider reaction models where all sites within the pore are catalytic and convert reac-
tant A to product B at rate r. Figure 5.10(a)-(c) shows KMC simulation results for the three
SFD models for steady- state concentration profiles for both reactant, A, and product, B, in
a first-order catalytic conversion reaction. Specifically, we show the variation of these profiles

with decreasing ratio of reaction rate, r, to hopping rate, h, for r/h = 0.1, 0.01, 0.001 and
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Figure 5.9: Profile evolution for tracer exchange for the three models. Time: 0, 5, 5%,..., 5. Solid curves: KMC

simulation. Dashed curves: generalized hydrodynamic theory.

0.0001. The key feature is that reduced r/h allows deeper penetration of reactant into the pore
before reaction. However, it should be emphasized that the reactant penetration depth does not
scale like (h/ r)l/ 2 which would be expected (and is found) in mean-field treatments. Instead-
reactant penetration is greatly reduced and described by distinct scaling behavior reflecting the
special features of reaction in the presence of SFD [19,20]. Discussion of an effective beyond-
mean-field analytic treatment of catalytic conversion is presented in Section 5.5.4. Associated

results are also shown in Figure 5.10(a)-(c).
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5.5 Further Insights From Analytic Treatments
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Figure 5.10: Steady-state concentration profiles for catalytic conversion of the three models for a range of
r/h = 0.1, 0.01, 0.001, and 0.0001 for L = 50. Solid curves: KMC simulation. Dashed curves: generalized
hydrodynamic theory.

The above KMC simulation based studies provide a self-contained comprehensive character-
ization of diffusion and reaction-diffusion behavior. However, deeper insight into some features

of behavior can be obtained from the following analytic treatments.

5.5.1 Pore Interior versus external fluid concentrations

A key feature for models with exclusion range R > 0 is the enhancement of the total particle
concentration within the pore interior, (Xij,), relative to that in the external fluid, (X3). This

behavior can be understood since cells in the pore region can have a smaller number of nearby
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cells within the interaction range (which could potentially be occupied by particles) relative to
cells in the external fluid. This tends to boost the concentration. To quantify this behavior,
we consider an equilibrium pore + external fluid system with long-range exchange dynamics
between pairs of sites in the bulk external fluid and in the center of a long pore at rate f.
We exploit the feature that fluxes for exchange into and out of the pore must balance in
equilibrium [32].

First, consider the 2 x 1 x L cell model with R = 1. Let P; denote the probability that
a cell in the external fluid together with all its six NN cells are empty. Since P includes 6
NN pairs, a MF-type pair approximation implies that Pr ~ (1 — 2 (X3))® /(1 — (X3))°. Also,
let P, denote the probability that a cell in the middle of a long pore together with all its
three NN cells are empty. Since Py includes 3 NN pairs, in a pair approximation, one has
that Py ~ (1 —2(Xin))® /(1 — (Xint))?. Then, the exchange flux of atoms from a cell in the
middle of a long pore to the cell in the bulk external fluid, Jox1_,3p, and for the reverse process,

J3p—s2x1, are given by

Jaxi1—3D = fPr(Xine) and  Jspooxi = [Py (Xp) . (5.6)

Finally, equating Jax1-3p = J3p—ax1 yields (Xin) = 0.2663 (0.1245) versus the simulation
values of 0.246 (0.122) for (X;) = 0.20 (0.10).

For the 2 x 2 x L cell model with R = v/2, let Pig denote the probability that a cell in
the bulk external fluid together with all its 6 NN cells and 12 second NN cells are empty.
Since Pjg includes 30 NN pairs and 32 second NN pairs, a pair approximation implies that
Py~ (1-2 <Xb>)62 /(11— <Xb>)105. Also, let Pjy denote the probability that a cell in the
middle of a long pore together with all its 4 NN cells and 5 second NN cells are empty.
Since Py includes 14 NN pairs and 16 second NN pairs, a pair approximation implies that
Py~ (1—-2(X,))* /(1 - (X3))* . Then the exchange flux out of the pore, Jox2_s3p, and into

the pore, Jsp_,ox2, satisfy

Jax2-53D = P19 (Xint) and  Japooxo = [Py (Xp) . (5.7)

Finally equating Joxo—3p = Jsp—ax2 yields (Xin) = 0.1437 (0.0672) versus the simulation

values of 0.136 (0.066) for (X;) = 0.10 (0.05).
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5.5.2 Determination of the total concentration profile in the pore interior

For the 1 x 1 x L cell model with R = 0, the total concentration is uniform within and
outside the pore with value (X;). However, for the 2 x 1 x L cell model with R = 1, and
the 2 x 2 x L cell model with R = /2, KMC simulation results reveal oscillatory behavior of
the total concentration, (Xj), near the pore ends. See Figure 5.5(b)-(c). We show that the
complete profile, (X%), not just (Xin) = <X I /2>, can be recovered with an analytic treatment
incorporating the appropriate non-trivial boundary conditions.

For either of these models with R > 0, we start by developing a set of diffusive evolution
equations for the (Xj) which will ultimately be solved in the steady-state. However, these
equations couple through the diffusive flux terms to probabilities of various multisite proba-
bilities. Using the spatial Markov property [31], these multisite probabilities can be factorized
and expressed in terms of (X;) and (X j+1) where the latter gives the probability for one of
the configurations with a pair of particles in layers j and j 4+ 1. These closed coupled sets
of equations for (Xj) and (Xj r4+1) have a generic form for k = 2 to L = 2. Those for the
end layers kK = 1, 2, L — 1, and L — 2 have a special form reflecting the non-trivial boundary
conditions and involving the quantities described in Section 5.3. See Section 5.9 for a more

detailed discussion.

5.5.3 Reconstruction of the external fluid concentration distribution

The tailored simulations for R > 0 which determine adsorption and desorption parameters
produce non-trivial and distinct concentration variations in the semi-infinite external fluid. In
the simplest case for determination of (Cp), the concentration just depends on distance from
the wall. In cases where sites against the wall are specified empty, there is a complicated three-
dimensional variation. Since these tailored simulations provide boundary conditions at pore
openings which allow exact analysis of behavior within the pore region, one might anticipate
that information from them should also allow recovery of equilibrium concentration variations
in the external fluid under steady-state conditions [32]. Indeed, this is the case. Various

tailored simulations correspond to different configurations of the end of the pore. A suitable
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weighted average of the external fluid concentrations in these recovers that in the steady-state
of the reaction model. The ability to reconstruct the equilibrium distribution from the tailored
simulations also reflects the spatial Markov field property [31] of these lattice-gas models.

For the 2 x 1 x L cell model with R = 1, or the 2 x 2 x L cell model with R = v/2, the
two required tailored simulations have the end layer in the pore either completely empty or
populated by one particle. The former occurs with probability, (E1), and the latter involves
ngy = N X M = 2 or 4 equivalent configurations each occurring with probability (X7), so that
(Eq) + ng (X1) = 1. Then the external fluid concentration is obtained by weighting that for
the semi-infinite fluid by (E;) and that for each of the n, positions of the particle in the end
layer by (X;) [32]. The reconstruction is more complicated for models where multiple tailored
simulations are required to account for all possible configurations of the layer(s) at the end of
the pore influencing the external fluid (e.g., 1 x 1 x L for R > 2, and N x 1 x L with N > 3,

or N x N x L with N >2 for R =1).

5.5.4 Labeled particle concentration profiles in non-equilibrium states

Given the definition of our generalized tracer diffusion coefficient, Dy, (k,k + 1), it is clear
that one could reconstruct the TCP profiles by solving the appropriate discrete diffusion equa-
tions incorporating this Dy, (k,k + 1). However, we claim that knowledge of Dy, (k,k + 1),
together with the non-trivial boundary conditions at the pore opening, also enables character-
ization of other non-trivial behavior including the form of the labelled particle concentration
profiles in TE and in catalytic conversion reactions. This characterization is achieved through
analysis of appropriate discrete generalized hydrodynamic equations for the relevant diffusion
or reaction-diffusion processes [19,20].

With regard to TE, there exist previous analytic studies for the 1 x 1 x L cell model with
R = 0 [21,22], but our approach is different. We solve the discrete time-dependent diffusion

equation,

d/dt (Cy) = =V with JEZF from (5.4) and VG, = Gf, — Gg_1, (5.8)
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together with the appropriate initial conditions for labeled particles and with time invariant
(Xk) = <X Zq>. We find that this analytic prediction recovers the evolution of the concentration
profiles determined precisely from KMC simulation in Section 5.4 for all three models consid-
ered. See Figure 5.9(a)-(c).

For description of the non-trivial reactant and product concentration profiles in catalytic

conversion reactions, we use the discrete reaction-diffusion equations
d/dt (Ag) = —r (Ag) — VJIEFL and  d/dt (By) = +r (Ay) — VIR (5.9)

The form of J]g?kﬂ must be generalized from (5.4) to treat cases with evolving total con-
centration [38], but here we focus on analysis of behavior in the reactive steady state where
d/dt (Cy) = 0 and Jg>k+1 reduces to (5.4). Extending previous success with this approach for
the 1 x 1 x L cell model with R = 0 [19,20] and with R = 1 [32], we find that the analytic
treatment recovers steady-state concentration profiles given in Section 5.4 for the 2 x 1 x L
cell model with R = 1 and the 2 x 2 x L cell model with R = v/2. See Figure 5.11(a)-(c).

There is one caveat in the analysis of these equations which does not arise in the KMC
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Figure 5.11: Key single- and multi-cell probabilities and exact relations between them.

simulations. This relates to determination of the rate at which particles adsorb into the pore.
For the 2 x 1 x L cell model with R = 1, from Figure 5.2(a), the adsorption rate is given by

Raas = (Co) <E1 LBy By > The concentration (Cy) was determined from tailored simulations.
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The quantity <E1 LEo E17> was determined “in-situ” in the pore-only KMC simulations. For
the above analytic treatment, an estimate of <E1 LEo E17> is needed which we obtain directly
from simulations of an equilibrated single-component system (although analytic determination
is also possible). For example, we find that <E1+E2+E17> = 0.3433 (0.6482) for (X3) = 0.2
(0.1). The situation is analogous for the 2 x 2 x L cell model with R = v/2 where the ad-
sorption rate is given by Radgs = (Co) (E0,0,1E1,01F0,1,1F1,1,1F002F102F0,1,2). Appropriate
simulations to determine the probability of these seven empty cells give values 0.2112 (0.5688)

for (Xp) = 0.1(0.05).

5.6 Refined Models: Finite Interactions, Diffusion Variability, etc.

5.6.1 Finite-strength interactions

First, we consider the inclusion of finite-strength interactions beyond possible short-range
steric blocking for the three SFD models for which detailed analysis was presented in Section
5.4. In the simplest case, we modify the 1 x 1 x L cell model with R = 0 to include finite NN
interactions between particles [21]. This model satisfies a spatial Markov property wherein,
e.g., single cells within the pore shield cells on one side from the influence of those on the
other [31]. Now hopping rates must be selected to be consistent with detailed-balance. In a
so-called initial-value approximation (IVA), these depend only on the state of cell(s) NN to
the initial cell before hopping, but in general choices they depend on state of cells NN to both
initial and final cells [42]. The adsorption rate is determined from simulations in a semi-infinite
system assessing the probability for various configurations of NN sites for a particle against the
wall. For IVA, one simply multiplies these probabilities by the appropriate hopping rates. For
more general choices, one also needs to account for the state of site £ = 2. Determination of
the desorption rate requires a separate simulation to assess for the IVA choice the probability
of an empty cell just outside the pore with a populated end site. For general choices, one must
also determine the probabilities of all possible configurations of NN external fluid sites to this

empty cell.
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For the 2 x 1 x L cell model with R = 1, one might naturally include finite-strength
interactions of range v/2. It is still the case that a vertical wall of two cells within the pore
shields cells on one side from the influence of those on the other. A more extensive set of analysis
is now required to determine the probabilities of various configurations impacting adsorption
and desorption rates, analogous to the above 1 x 1 x L cell example. For the 2 x 2 x L cell
model with R = v/2, one might naturally include finite strength-interactions of range 2. Now
a vertical wall of eight cells of thickness two (rather than thickness one) within the pore is
required to shield cells on one side from the influence of those on the other. Thus, for example
in determining rates for the adsorption process shown in Figure 5.4(a), one needs to perform
tailored simulations for two separate cases with cell (1,1,2) for k = 2 occupied and empty as
this impacts the state of the external fluid. Again, extensive analysis is required to determine
probabilities of various configurations impacting adsorption and desorption rates.

Certainly, the presence of these finite-strength interactions will impact the concentration
in the pore interior relative to that in the external fluid. Analytic assessment can again come
from the type of flux balance described in Section 5.5.1. One could also include finite-strength
interactions between particles and the pore walls which would also impact the concentration in
the pore interior. It is also well-recognized that finite strength interactions impact the collective
diffusion coefficient for the system [37,42]. However, the presence of finite-strength interactions
should not alter the basic features of transport for SFD which reflect the (generalized) tracer

diffusion behavior and are dominated by the stronger no-passing constraint.

5.6.2 Diffusion variability

Next, consider incorporation of spatial variability in diffusivity across the pore for N x 1 x L
or N x N x L cell pores with N > 3. (For N < 2, all rows of cells in the direction of the
pore axis are equivalent by symmetry, and thus are characterized by the same hop rates for
diffusion.) In the absence of finite inter-particle interactions, all cells which are not blocked by
steric interactions are energetically equivalent. Thus hopping rates between NN pairs of cells
must be the same in both directions according to detailed-balance. However, one can specify

different rates for hopping between NN cells in different symmetry-inequivalent rows of cells
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along the pore, e.g., a different rate for the central row in a 3 x 1 x L cell model compared to
the outer rows. Different rates can also be specified for the cross-channel direction. Clearly
these alternative prescriptions of diffusive kinetics will not impact the spatial Markov properties
of the model (an equilibrium property) or our basic formulation and determination of exact
boundary conditions for adsorption and desorption.

With regard to the basic features of transport for SFD, the main impact of the more general
prescription of diffusivity is that the generalized tracer diffusion coefficient will scale with the
average hop rate in the direction of the pore axis (which replaces the single hop rate in the

simpler models).

5.6.3 Distinct particle types

For the catalytic conversion reaction models, in general the product species will have dif-
ferent diffusivity (and interactions) than the reactant species. Now in a “color-blind” analysis,
where one cannot distinguish between reactant and product species, steady-states do not corre-
spond to a single-component equilibrium model [20]. Consequently, a spatial Markov property
does not apply for the non-equilibrium steady-state within the pore, although it does still apply
for the external fluid as we retain a well-stirred equilibrium assumption. This condition suffices
to still allow exact determination of adsorption and desorption rates from tailored simulations.

Thus, one can still implement stand-alone pore simulations with exact boundary conditions.

5.7 Conclusions

We have successfully developed an approach which allows efficient pore-only simulation
for various intra-pore diffusion and reaction-diffusion processes in linear nanopores where we
exactly account for coupling to an equilibrated external fluid. This is achieved by formulating
exact adsorption-desorption boundary conditions (BC’s) describing the coupling to an external
fluid. Parameters in these BC’s are obtained from suitably tailored simulations. We describe
these processes by spatially discrete lattice-gas models with finite-range exclusion, and our

formulation exploits an exact spatial Markov shielding property of these models. These models
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converge to continuum hard-sphere Langevin type models upon taking increasingly fine lattices
(i.e., reducing the lattice constant relative to molecule and pore dimensions).

Our formulation is tested for various models where transport within the pore is subject to
single-file diffusion. Specifically, we assess behavior for tracer counter permeation (TCP), tracer
exchange (TE), and catalytic conversion reactions within the linear nanopore. Furthermore,
after extracting a generalized tracer diffusion coefficient from the TCP analysis, we show how
simulation results for TE and catalytic conversion can be recovered from an analytic generalized

hydrodynamic formulation incorporating the generalized tracer diffusion coefficient.
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5.9 Appendix A: Derivation of Governing Equations for (z;)

Utilizing the non-trivial boundary conditions at the pore openings together with the spatial
Markov property of the lattice-gas models, it is possible to determine analytically the entire
profile for the total concentration, (X}), inside the pore. As noted in Section 5.5.2 we start
by developing a set of diffusive evolution equations for (X). For the simplest 1 x 1 x L cell
models with R = 0 or R = 1, one can obtain a closed set of equations for the (Xj) [20,32].
However, for other more complex models, these equations couple through the diffusive flux
terms to probabilities of various multisite probabilities.

2 x 1 x L model with R =1. This case, while being relatively simple, illustrates the key

features of the more complicated models. Thus, it is instructive to provide a detailed pre-

sentation. First, in Figure 5.11, we provide some examples of relevant single- and multi-cell
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Figure 5.12: Evolution equations for: (a) (Xx) and (c) (Xkx+1) for the 2 x 1 x L cell model with R = 1.

Steady-state factorized forms of these equations are shown in (b) and (d).

probabilities and of the exact relationships between them based on conservation of probability.
Of particular significance will be the pair probability (X}, x4+1) for one of the two configurations
with a pair of particles in layers k and k + 1. Next, in Figure 5.12(a),(c) we show the generic
form of the evolution equations for (Xj) in the pore interior, as well as those for (X p41)-
Note that cross-pore hopping terms cancel in the equation for (Xj). In the steady-state where
the total concentration is equilibrated, we can factor these multi-site probabilities using the
Markov property for this model which implies that a vertical pair of cells of any specified state
shields cells on one side from the influence of those on the other. The steady-state factorized
form of these equations is shown in Figure 5.12(b),(d). Using the relations in Figure 5.11,
all of the quantities can be rewritten in terms of (Xj) and (X x+1). These coupled sets of
equations for (Xj) and (Xj 1) have a generic form for k = 2 to k = L — 2. To provide
a closed set of equations for these quantities we must add appropriate equations for the end

layers k = 1,2, L — 1, and L. These are illustrated in Figure 5.13(a)-(d) and have a special
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form reflecting the non-trivial boundary conditions and involving the quantities described in

Section 5.3.
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Figure 5.13: Evolution equations for: (a) (X1); (b) (X2); (¢) (X1,2); and (d) (Xs,3) for the 2 x 1 x L cell model
with R = 1. Steady-state factorized forms of these equations can be obtained analogous to Figure 5.12(b),(d).

In the interior of a very long pore, it is clear that (Xj) = (Xin) and (Xp 1) = (Xo,,,)
are independent of k and are intimately related. This relationship follows from the factorized

equation in Figure 5.12(d), together with the relations in Figure 5.11, imply that

(Xint) (Xint) = (X2350)) = (X230 (1 = 3 (Xine) + (X210)) (5.10)

which determines (Xy, ) in terms of (Xjn). One finds the expected behavior that (X, ) ~

int

(Xing)? for (Xing) << 1, and (Xy, ) ~ (Xins) ~ 1/2 for a jammed pore.

3 x 1 x L cell model with R = 1. We first note that an alternative treatment of the above

2 x 1 x L cell model with R = 1 could use as two independent variables the probabilities of
the possible configurations of an adjacent pair of columns (i.e., of 4 cells) with one particle
and three empty cells, and with two particles and two empty cells. (The latter is the variable
(X k+1) selected above.) In this spirit, for the 3 x 1 x L cell model, one might naturally choose
as independent variables the probability of configurations of an adjacent pair of columns (i.e.,
of 6 cells) with one, two, and three particles (and other cells specified empty). The Markov

property for this model implies that columns of three cells shield. This allows factorization of
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the configuration probabilities appearing in the steady state version of these equations so that
they can ultimately be written as a closed set in terms of the selected variables. This analysis
for a long pore determines the distinct concentration for the central row versus the upper and
lower rows.

2 x 2 x L cell model with R = v/2. The treatment of this case is quite analogous to that of

the 2 x 1 x L cell model with R = 1. Again, the evolution equations for (X}) for the concen-
trations in each layer couple to the pair probability, (X} r+1), for one of the four configurations
with a pair of particles in layers k and k + 1. Again, cross-pore hopping terms cancel in the
equation for (Xj). In the steady-state where the total concentration is equilibrated, we can
factor these multi-site probabilities using the Markov property for this model which implies
that a layer of four cells of any specified state shields cells on one side from the influence of

those on the other.

5.10 Appendix B: Supplementary Material

5.10.1 Boundary conditions for a 1 x 1 x L cell pore with R =2

To illustrate the additional complications in treating models with longer interaction range
R > 2, we consider the simplest case: the 1 x 1 x L cell model for R = 2, i.e., no pairs of
particles with separations 2 or less. In this case, there are no pairs of particles in the 3D fluid
with separations 1, v/2, v/3, or 2. The maximum concentration in this model is (Xmax) =1/3

within the pore. The rate of adsorption to an end site within the pore is given by
Rads =h <C()70’0E1E2E3> =h <CO7070’E1E2E3> <E1E2E3> =h <Co> <E1E2E3> . (511)

Using the spatial Markov property that a pair of cells shields for R = 2, one has (Cy) =
(CopolE1EaE3) = (Coo0|E1E2) is the conditional concentration, (Cp), at cells just outside
the pore opening given that the end pair of sites within the pore are empty. Again, (Cp)
corresponds to the concentration in the layer against the wall for a semi-infinite system, and
can be determined from a tailored simulation. See Figure 5.14(a).

Desorption from an end site within the pore to the exterior fluid requires 23 sites just

outside the pore to be empty in 3D. Using the spatial Markov property, the associated rate of
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Figure 5.14: 2D schematic of configurations relevant for adsorption, desorption, and pre-desorption in 1 x 1 X L
cell model for R = 2. E denotes empty cells; E in red text denotes cells prescribed to be empty. Conditional
probabilities, @y, indicating the number of sites required (n) and given (m) empty for a 2D (3D) exterior fluid

lattice.

desorption is given by

Raes = hQ13110 (C1) - (5.12)

Here @13)19 is the conditional probability for 13 cells to be empty given 10 cells closest to the
pore opening are empty in 3D. Q310 is determined from a second tailored simulation for a
semi-infinite system with 10 cells against the wall specified empty. See Figure 5.14(b).
Stand-alone simulations must also treat the pre-desorption step of hopping from cell 2 to
cell 1 at the end of the pore which requires 10 cells just outside the pore to be empty in 3D.
Analysis of the associated conditional probability, Qqg;, requires a third tailored simulation
given one cell against the wall in a semi-infinite system is specified empty. See Figure 5.14(c).
One must also treat hopping from cell 3 to cell 2 which requires a single cell just outside the

opening of the pore to be empty. See again Figure 5.14(d).

5.10.2 Mean-field type treatments of tracer diffusivity

Below, J(’f?kﬂ denotes the net flux of C = A or B from cell layer k to k + 1. We consider
behavior in a counter diffusion mode where the pore is occupied by just A and B such that
the total concentration of particles X = A + B or either type is constant (at least in the pore
interior). Thus (Xjn) and (Fin) = 1— (Xin) are independent of k. Schematics of the multi-cell

probabilities associated with this diffusion flux are given in Figure 5.15 for the 1 x 1 x L cell

model with R = 0, the 2 x 1 x L cell model with R =1, and 2 x 2 x L cell model with R = /2.
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Figure 5.15: Schematic of multi-cell configurations probabilities defining Jg>k+1 for the: (a) 1 x1x L cell model
with R = 0; (b) 2 x 1 x L cell model with R = 1; and (c) 2 x 2 x L cell model with R = /2.

First, we consider behavior for the 1x1xL cell model with R = 0 where it is natural to apply

a standard mean-field (MF) site approximation to obtain 5.15(a)

T = h((CkEgi1) — (BxCrir))

~ ((Cr) (Brt1) = (Er) (Crr1) = =P (Eine) V (Crpa) (5.13)
where V (Cy) = (Cf) — (Ci—1). We thus conclude that
Dy (1x 1% L, R =0,MF site) = h (Eing) = h (1 — (Xint)) - (5.14)

This result implies that Dy, (1 x 1 x L, MF site) = 0.6h for (Xj,;) = 0.4 which is significantly
above Dy, (max) = 0.32h for this model with L > 25.

For any model with R > 0, the site approximation is inadequate as it does not account for
the exclusion of nearby pairs of particles. However, the pair approximation is reasonable for
the 2 x 1 x L cell model with NN exclusion. We now consider the 2 x 1 x L cell model with
R =1. Here, we use the simplified notation (Cy ;) = (Cj ) for cells within the pore where
j=0or1landl<k< L. After applying the standard pair approximation to factorize the

k>k+1
JC

probabilities of multi-cell configurations appearing in Figure 5.15(b) for , one obtains

(CrxEok) (CriErit1) (BokEor+1) (B k1 Lo k+1) (B k1B kr2)
(C1 1) (Eo ) (Eojt1) (1)’
(Cri+1E0 k1) (Crp1E1 k) (Fo kLo k+1) (F1k+1E0 k1) (B1p—1E1 k)
(Ctjes1) (Eo jor1) (Eog) (Er i)’ .

E>k4+1
JEZEL

—h (5.15)
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Using that exact relations including (C yEok) = (Ck), (Eo k) = (Eint), (EokEok+1) = 2 (Eint)—

1, etc., it follows that
JEF 2 (2(Bing) — 1) (Bing) ™ V (Cgr) - (5.16)
From (5.16), we conclude that

Dy (2 x 1 x L, R =1, pair) =h (2 (Eint) — 1) / (B )?

=h (1 =2 (Xiu))” / (1 = (Xine))" - (5.17)

This result implies that, e.g., Dy (2 x 1 X L, R = 1, pair) = 0.406h for (Xin) = 0.246 which is
significantly above Dy, (max) ~ 0.15h for this model with L > 25.

For the 2 x 2x L cell model with R = /2, it is reasonable to implement a pair approximation
which accounts for the feature that both NN and second NN pairs of cells cannot be occupied.
Each of the multi-site configurations shown in 5.15(c) determining the particle flux include: 3
NN CE pairs, 14 NN EE pairs, 3 second NN CE pairs, and 16 second NN EE pairs. Either
the NN or second NN EE pairs produce a factor 2 (Fiy) — 1. Also accounting for cells shared

between multiple NN and second NN pairs, we obtain

Dy (2 % 2% L,R=1/2, pair) =1 (2(Bing) — 1%/ (Eiye)

=h (1= 2(Xine))™ / (1 = (Xime))™. (5.18)

This result implies that Dy, (2 x 2 x L, R = /2, pair) = 0.263h for (Xin) = 0.136 which is

significantly above Dy, (max) = 0.08h for this model with L > 25.

5.10.3 Analytic estimates of adsorption parameters

Determination of the adsorption rate for reactants into the pore in our 2 x 1 x L cell model
with R = 1 and the 2 x 2 x L cell model with R = v/2 requires analysis of the concentration
variation approaching a planar wall in a semi-infinite lattice-gas model on a simple-cubic lattice
with R = 1 and R = /2, respectively. We let (X() denote the concentration in cells in the
layer adjacent to the wall, (X_;) the concentration in cells in the next layer away from the

wall, etc., and (Xj) denotes the bulk concentration far from the wall. Analytic estimation
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of this concentration variation, and importantly of (Xj), is possible utilizing appropriate pair
approximations. In this analysis, we consider the semi-infinite equilibrated fluid as having
arbitrary-range exchange dynamics described by a rate f, where exchange events are consistent
with range R exclusion. In equilibrium, the corresponding flux of atoms from a cell adjacent to
the wall to the bulk, J,_,, and the reverse flux from the bulk to the wall, J,_,,,, must balance.

First, we estimate (Xy) for models with R = 1. The probability, P;, of an empty cell in
the bulk with all six NN cells also empty is estimated in a standard pair approximation as
P~ (1—2(X))° /(1= (X3))®. The probability, Ps, of an empty cell against the wall with all
five NN cells also empty is estimated as Ps ~ (1 —2(Xo))* (1 — (Xo) — (X_1)) / (1 — (X))
Then it follows that

Jw—>b =T <X0> P7 and Jb—m; =T <Xb> P@. (519)

Assuming that (X_1) =~ (Xp), i.e., rapid decay of concentration oscillations, the equality
Jwosb = Jp—w, yields (Xo) ~ 0.2189(0.1071) versus the Monte Carlo simulation values of
0.211 (0.106) for (Xp) = 0.20(0.10). The above analysis can be refined to provide additional
assessment of concentration oscillations away from the wall.

For models with R = /2, we implement a pair approximation which accounts for the fea-
ture that both NN and second NN pairs of cells cannot be occupied. The probability, Pig, of
an empty cell in the bulk with all six NN cells and all additional twelve second NN cells also
empty is estimated as Prg ~ (1 —2(Xp))™® /(1 — (X3))'". The probability, P4, of an empty
cell against the wall with all five NN cells and all additional eight second NN cells also empty

is estimated as Pry ~ (1 —2(Xo))® (1 — (Xo) — (X_1))° / (1 — (Xo))'%. Then, it follows that
Jw_)b =T <X0> P19 and Jb—>w =T <Xb> P14. (520)

Assuming again that (X_1) = (X;), the equality Jy,_p = Jp_w, yields (Xg) =~ 0.187(0.081)
versus the Monte Carlo simulation values of 0.123 (0.059) for (X3) = 0.10(0.05). The above

analysis can be refined to assess concentration oscillations [32].
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Figure 5.16: Profile evolution for tracer exchange for the three models. Time: 0, 5, 52,...,5”. Solid curves: KMC

simulation. Dashed curves: generalized hydrodynamic theory.

5.10.4 Analytic estimates of desorption parameters

To treat desorption, one needs to assess the conditional probability Qs); (Qgj5) in the 2x1x L
(2 x 2 x L) cell model with R =1 (R = v/2). Recall that Q51 = Ps/P1 denotes the conditional
probability in a semi-infinite system to five empty cells NN to a specified empty cell against
the wall in the semi-infinite system for R = 1. Here Py (P;) is the probability of all 6 cells (just
one cell against the wall) being empty. See Figure 5.3(b). Qg5 is the conditional probability to
find nine empty cells NN to a set of five empty cells against the wall for R = v/2. Here P4 (Ps)
is the probability of all 14 cells (just 5 cells against the wall) being empty. See Figure 5.4(b).

For the 1 x 1 x L cell model with R = 1, a standard pair approximation leads to the estimate

Ps ~ (Eo0,-1E0,0,0) (E0,0,0E1,0,0) (E0,00E0,1,0) (E0,00E-1,0,0) (Fo,0,0E0,-1,0)/ (Eo)*.



136

1.0 —
0.8 G
nt) 0.6 /

04 / IxIxL R=0 <X,>=0.4 — -
02 / 2x1xL R=1 <X,>=0.2

| _— 2x2xL R=\2 <X,>=0.1 —
0.0

2 4 6 8 10 12 14
Ln(ht)

Figure 5.17: Simulated tracer exchange curves for the three models in Figure 5.16.

Since <E0707,1E0’070> =1- <X(]> - <X,1>, <E0’070E1’070> =1- 2<X0>, etc., and <E0> =
1 — (Xo) = P, it follows that

Qsp1 (pair) = Ps/Py = (1 — (Xo) — (X_1)) (1 = 2(Xo))* / (1 — (X0))” . (5.21)

For (X;) = 0.2, we conclude that Qs (pair) = 0.237 (0.213) just using (Xo) ~ (X_1) =~
(Xp) = 0.2 (using simulation values of (Xp) = 0.212 and (X_;) = 0.199). These compare
with the simulation value of Q5; = 0.279 for (X;) = 0.2. For (X;) = 0.1, we conclude that
Q51 (pair) = 0.555 just using (Xo) ~ (X_1) ~ (X;) = 0.1, compared to the simulation value of
Q51 = 0.547.

For the 2 x 2 x L cell model with R = /2, we implement a pair approximation which
accounts for the feature that both NN and second NN pairs of cells cannot be occupied. Py4 is
factorized into 4 NN pairs and 4 second NN pairs in layer £ = —1, 12 NN pairs and 8 second
NN pairs in layer £ = 0, and 5 NN pairs and 16 second NN pairs with one empty cell in layer
k = 0 and the other in layer k = —1. Likewise, P5 factorizes into 4 NN pairs and 4 second NN

pairs in layer kK = 0. One concludes that

Q|5 (pair) = P14/ Ps

= (1= (Xo) = (X-1)™ (1= 2(X_1))* (1 = 2(X0)) ™ / | (1 = (X-1))™ (1 - <Xo>)41} - (5:22)

For (Xp) = 0.1(0.05), we conclude that Qs (pair) = 0.233 (0.562) just using (Xo) ~ (X_1) ~

(Xp) = 0.1(0.05), compared to the simulation value of Q5; = 0.194 (0.533).
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5.10.5 Additional analysis of tracer exchange

Here, we provide a more complete presentation of results than in Section 5.4.3 for TE where

the pore is initially populated by B and the exterior reservoir by A (and the total concentration

is equilibrated). Figure 5.16 shows the evolution of concentration profiles both for A entering

the pore and for B exiting the pore. In Figure 5.17, we show the corresponding tracer exchange

curve, v (t), versus t, where v (t) simply gives the fraction of particles inside the pore which are

of type A at time t.
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CHAPTER 6. MOLECULAR PASSING PROPENSITY IN NARROW
PORES: 2D LANGEVIN ANALYSIS OF MONOMERS AND LINEAR
OLIGOMERS IN A RECTANGULAR CHANNEL

Abstract

We consider a two dimensional monomer-oligomer system in an infinitely long rectangular
channel of width W, where the monomers and oligomers diffuse undergoing Brownian motion.
The oligomers are linear and are made out of non-intersecting circles. The interactions between
the monomers, oligomers and the channel’s walls are purely steric; meaning that the oligomers
cannot intersect with each other or the pore walls. Based on this, we measure the passing
propensity of the monomers and the oligomers in the small gap regime, where we expect
the passing propensity as a function of gap size to follow a power law P ~ (g/r)?. Using the
scaling law, we determine o for the monomer-dimer system and the monomer-trimer system. We
compare the results for the monomer-dimer and monomer-trimer case using Langevin molecular
dynamics simulations to those obtained by solving the corresponding Fokker-Planck equation.
For wider gaps, the asymptotic behavior of the passing propensity for longer monomer-oligomer

systems is examined.

6.1 Introduction

Solution-phase transport and reaction processes in nanoporous materials are strongly im-
pacted when the diameter of the pores become comparable to a suitable defined linear size of
the relevant molecular species [1]. There is broad recognition that inhibited passing within the
pores, and in particular the extreme case of single-file-diffusion (SFD) which corresponds to

no passing, produces anomalous diffusion behavior. In the case of SFD, the mean-square dis-
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placement of a tagged particle increases sub-linearly with time contrasting the standard linear
increase [2]. It is also clear that such inhibited passing should impact behavior in more com-
plicated reaction-diffusion processes such as catalytic polymerization. In such solution-phase
polymerization processes, monomers diffuse in the presence of a solvent into catalytically func-
tionalized nanoporous material and the polymerization reaction occurs when monomers meet
other monomers or previously formed oligomers in the vicinity of catalytic sites [3-5].

Despite the evident importance of assessing suitably-defined passing propensities, P, for
various species within pores, there has been relatively little analysis of such quantities [6, 7].
A reasonable strategy to assess solvent-mediated passing of species of interest is to implement
Langevin molecular dynamics simulations for this process where the solvent is treated implic-
itly. It is also appropriate to note that an alternative but mathematically equivalent treatment
of such passing processes can instead analyze boundary-value problem for the Fokker-Planck
equations (FPE) which correspond to the Langevin dynamics [6]. Given the lack of previous
systematic studies of this phenomena, here we implement simple modeling for the passing on
monomers and linear oligomers as a function of oligomer length. Furthermore, given the lack
of basic insight into such behavior, we consider just a 2D version of this process where the
monomers are chosen as circles of radius r, and the oligomers as linear strings of circles also of
radius r, where both species diffuse within a rectangular pore of width W. The only interac-
tions are the pore walls. One advantage of this system is that one can more readily compare
the results of Langevin simulations with those of an equivalent Fokker-Planck analysis, where
the latter has greater potential to provide deeper insight into behavior.

For the above system, it is clear that passing is sterically blocked for pore width smaller
than a critical value of W, = 4r. Thus, if one defines a gap size as g = W — 4r, the passing
propensity P must vanish as g decreases to g. = W, — 4r = 0. Furthermore, it is natural to
explore possible scaling behavior P ~ (g/r)?, where o denotes a non-trivial exponent [6]. Such

a scaling analysis will be the one component of the current study.
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6.2 Description of the System

Consider a mesoporous material that is immersed in a continuous fluid in which two kind
of molecules are dissolved in it. The molecules in the fluid are monomers and oligomers, as
described in Section 6.1, that can diffuse into and within the pores. These oligomers ran-
domly diffuse within the pore following a Wiener process, i.e. Brownian motion; see Figure
6.1. In a somewhat coarse grained model, the oligomers are regarded as spheres and the pores
as cylindrical channels. Further simplifications of the system requires: (i) The system to be
two-dimensional, (i) the oligomers, instead of being composed of spheres, to be composed of
circles, and (i7i) instead of a cylindrical channel of radius R, a rectangular channel of width
W; that will be referred to as the “pore” from here on, see Figure 6.2.
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Figure 6.1: Schematic of the diffusion model. Particles of different species undergo Brownian motion and diffuse

into the pore. Within the pore they can pass each other.

In the case of a two-dimensional and less coarse grained model, the oligomers can be com-
posed of circles of not necessarily the same radius, and in different arrangements. It is the
case that we shall focus on linear oligomers; that is, monomers, dimers, trimers, tetramers, and
pentamers, all made of non-intersecting circles of equal radius, that is set to unity; see Figure
6.3.

To determine the passing propensity, we shall consider a monomer-oligomer system. Specif-
ically, the five types of setups that are going to be considered are monomer-monomer (m-
m), monomer-dimer (m-d), monomer-trimer (m-tr), monomer-tetramer (m-te), and monomer-
pentamer (m-p). To describe the system thoroughly, the following assumptions are made: ()
The oligomers move in a viscous isotropic and homogenous fluid, meaning that if a rigid set
of axis is set and fixed on an oligomer, no matter where the oligomer is placed, or how the
oligomer is rotated, the diffusion tensor remains the same when calculated with respect to the

fixed axis. (#i) The pore in an infinite length rectangle along the main axis and it has a cross
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Figure 6.2: Mapping of the 3D problem to 2D. The case depicted above would be that of a dimer and trimer.
The oligomers that are made of spheres and move in an infinitely long cylinder with cross-section diameter D,

are mapped into an infinite rectangular pore of width W.

section width W, see Figure 6.1. (iiz) The solvent is an ideal fluid, where no-slip boundary
conditions are used. (iv) There is no hydrodynamic interaction of the oligomers with the walls.
(v) The oligomers only have steric interactions with each other and the pore walls; other type
of long and short range interactions are suppressed. (vi) The oligomers are made of circles, all
of equal radii. (vii) The oligomers are rigid, meaning that the relative angles and distances of
the atoms within an oligomer are constant.

With these assumptions, the equations of motion are obtained and two methods are pre-

sented to obtain the scaling exponent o, for a m-d and m-tr system.

6.3 The Equations of Motion

To get the translational equations of motion, one uses Newton’s second law

net

. 5 P 2p
with 77 = 47 r:%,

= is just the sum of

etc. The net force exerted on the i*" oligomer, ﬁinet,
all forces on all the atoms in the oligomer. The forces that are applied on the oligomers, in
this case, are the frictional forces, that are proportional to the velocity and a force described

by random Wiener process, so that the equations read

mi = —(i+ F (1) ; (6.2)
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Figure 6.3: 2D oligomers to be examined. The shapes of the oligomers to be used, not to scale, are (a) monomer,
(b) dimer, (c) trimer, (d) tetramer and (e) pentamer. The radius of each circle is 7 = 1 and the mass of each

circle is taken as m = 1, such that, for each oligomer, the center of mass of coincides with the geometrical center.

where (; is the mass independent translational friction tensor. Assumptions on (; are given
further ahead. The last term in Equation 6.2, F (t), is a random normal distributed force, such

that the time average of the force is zero and the forces are spatially uncorrelated
<ﬁ (t)> =0, (6.3a)

(F; (t) Fj (t')) = 2kpT ¢, 6i56 (t —t') . (6.3b)

This equation is now not a deterministic differential equation, but a stochastic differential
equation. Thus, we are forced to use different methods to solve this equation. We shall

consider the overdamped equations of motion, P = 0, thus, Equation 6.2 becomes

F=F@t) with Ft)=2ksTl W and Dy = kT (6.4)
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where D is the positive definite translation diffusion tensor and W is a 2 x 1 vector of normally
distributed random numbers. From Equation 6.4, the stochastic differential equation to be

solved is
7 =2 W, (6.5)
where fi; is a tensor such that ji;fi] = D;. Physically, Dy is required to be a symmetric positive
definite tensor, thus, fi; is obtained from a Cholesky decomposition and is symmetric.
For oligomers that are composed of two or more circles, besides the oligomers translating,
the oligomers can rotate. Since the system is analyzed in two dimensions, the oligomer can
only rotate about the plane, that is simpler than that of the formulation of the problem in

three dimensions. The rotational equation of motion is simple and given by
Tiner = Li0;. (6.6)

The net torque exerted on the i*" oligomer, 7;__,, is just the sum of all torques on all the atoms
in the oligomer. The torques that are applied on the oligomers, in this case, are the frictional
torques applied to the oligomer with respect to center of mass of the oligomer. The torques that
are applied are proportional to the angular velocity with respect to the plane and a random

Wiener process, i.e., a torque due to Brownian motion, so that the equation reads
10 = —C0+7(t); (6.7)

where (, is the inertia independent rotational friction coefficient, ¢, > 0. The term 7 (¢) is the

random normal distributed torque, such that the time average of the torque is zero and obeys

(r) =0, (6.8a)

(t(t)7 (t')) =2kpT¢o(t —1'). (6.8b)
Since we are working in the overdamped regime, 6= 0, thus, the equation to be solved is
GO=T(t). (6.9)

To solve the equations, there is the possibility of solving the differential equations using a

FPE approach, since for every Langevin equation there exists a FPE [6,8,9]. In this context,
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Figure 6.4: Conventions for translation and rotation of an oligomer. The oligomers are made of circles, in this

h

example a trimer, of the same radius, that is set to unity, » = 1. For translation, the i*® oligomer translates

along the x; and y; body-fixed axes, represented by the solid arrows. If the oligomer is not a monomer, it rotates
about its geometrical center. The diffusion coefficients D,/, D, and Ds,, are all set to unity. The surrounding
disk is defined as the disk of radius R;, that encloses the oligomer, and is centered at the geometrical center.

The pore-fixed axes are represented by the dashed lines.

a FPE has already been used to analyze the system for the m-m and the m-d case [6]; where
Langevin MD simulations were also used to validate the results. The small gap limit for a

trimer and wider gaps for longer linear oligomers are going to be examined.

6.4 Using an Algorithmic Process to Solve the Equations

To obtain the passing probabilities, a FPE method can be used. In particular, the limit of
small gaps has already been examined for the m-m and higher dimensional cases such as sphere-
sphere and sphere-dimer case [6,10]. To solve Equation 6.9 and Equation 6.5, a stochastic
simulation method is used. We make the assumptions: (i) The oligomers are made of circles
of the same radii, that we label as r. For simplicity, we use » = 1. (i) A body-fixed frame for
each oligomer is used to calculate the diffusion tensor and calculate the displacements. The
rotations are calculated about the center of mass of the oligomer, that in this case coincides
with the geometrical center, e.g., see Figure 6.4. (ii7) The oligomers are chosen so that they
are linear, and the circles of which they are composed do not intersect each other. (iv) Choose

the translational diffusion tensor and the rotational diffusion coefficient of the oligomers to be
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independent of the oligomer length and width. Also the forces and torques are uncorrelated,

so that in the body-fixed frame

. Dy 0
D, = and D, = Dy; (6.10)

0 Dy

in the appropriate units. The dimensions of the diffusion tensor, Dy, are units of length squared
divided by time, {Dt] = L?/T. In the rotational case, the dimensions of the diffusion tensor,
D,, are 1 divided by units of time, [D,] = 1/T. This choice simplifies the FPE, and makes
it suitable to compare the translational and rotational scales by setting [L] = 1. This will be
useful to compare the results with the ones in [6].

It is worth mentioning that there is currently no theory to choose the diffusion coefficients
for complicated shaped oligomers in two dimensions, whereas for the three dimensional case
the coefficients can be approximately obtained using several assumptions [11-14].

The discrete version of Equation 6.8b is obtained from the relation

1 tnt1 2k T;(Sl
/ _ 2hpTGi0y (6.11)

GG 1) =5, [ GG (ar= L,

where G can represent either the components of the force F' or the torque 7. To solve the

equations, an Euler-Maruyama scheme is used

Figl — T 2 5 b — 0 2 2
— J— X i = —— Uy, “ ]_2
At V Al At V aghr?V (6.12)

with fi;, = /Dy, =1 and fi, = /D, = 1, that results in the simplification in the equations

Fip1 =T [ 2 5 O —6 ]2 &

At VA ™ At At (6.13)

The form of Equation 6.13 provides an algorithm to solve the equations at each time step.

6.4.1 The simulation algorithm

Define the following quantities: (i) The position of the i oligomer as the position of the
center of mass of the i*" oligomer, #; = (;,1;). (i) The orientation of an oligomer as the
direction of the unit vectors fixed in the oligomer with respect to a fixed frame in the pore.

(7i1) The separation of the oligomers as the difference in position of the first and the second



150

oligomer AZ = ¥ — Ty = (x1 — x2,y1 — y2). (iv) A move is the change in position and/or
orientation of the oligomers. (v) The initial separation in the x axis of the oligomers as Axy.
(vi) A pass as the separation of the oligomers such that Ax < —Axg. (vii) A fail as the
separation of the oligomers such that Ax > 2Ax. (viii) A trial as a series of valid movements
from a starting position that end in a pass or a fail. (ixz) A run as a defined number of trials.
() The passing propensity as the number of trials in a run that result in a pass, divided by the
total number of trials (passes + fails).

Using these definitions, the algorithm used follows the steps:

Step 1 Setup the width of the pore so that there is a possibility of oligomers passing each other;
if there is not such a pore width, terminate the program. Set the pass and fail counters
to zero, and the number of maximum trials, Ny.x, to some integer number greater than

Zero.

Step 2 Setup the oligomers in a valid initial configuration and set the initial separation of the

oligomers in the x axis as Axg.
Step 3 Save the information of the current configuration of the oligomers.
Step 4 Make a move for oligomer 1 and oligomer 2:
(a) Stochastically change the position and orientation of oligomer 1 and oligomer 2. The

orientation of an oligomer only has to be changed if it is not a monomer.

(b) If the oligomers intersect the wall or each other, reset the oligomers to the configu-
ration before making the moves and go to Step 4(a); otherwise, continue to Step

5.
Step 5 Check the separation of the oligomers:

(a) If the separation of the oligomers in the z axis is less than or equal to —Axg, add

one to the pass counter and continue to Step 6.

(b) If the separation of the oligomers in the x axis is greater than or equal to 2Azg, add

one to the fail counter and continue to Step 6.
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(c) If the separation of the oligomers in the x axis is such that —Azy < Az < 2Axg, go

to Step 3.
Step 6 Check if the simulation is done:

(a) If the number of trials is less than Npyax, go to Step 2; otherwise continue to Step

7.
Step 7 Get the passing propensity as P = # of passes/Nmax and finish the program.

To exactly determine the minimum pore width of the linear oligomers used here, it is trivial to
see that the minimum vertical phase space that the oligomer has available is pspin, = W — 2r,
that is when the oligomer’s longest axis is aligned with the main axis of the pore. Discussion

for general shaped configurations is discussed in Section 6.8.

6.4.2 Setting up the initial configuration

The initial configuration of the oligomers is important since it influences the passing propen-
sity. The physical condition that we choose for the starting position is when the oligomers are
separated by a distance along the x axis of the pore Azxy = r. = R, + Ra,, where 7. is the
sum of the radius of the surrounding disks of the oligomers, see Figure 6.4. The surrounding
disk of an oligomer is defined as the minimum disk with radius R;, from the center of mass of
the oligomer that encloses all the atoms in the oligomer. Even if the surrounding disk gives an
idea of the typical oligomer size, it often provides no information about the shortest or longest
axis of the oligomer.

The fixed choice of the initial separation of the oligomers along the z axis leaves two free
parameters, that are the y position and orientation of the oligomers within the pore. The
initial ¢ position of the oligomers are randomly determined from the available phase space for
the oligomer to move in. The procedure to determine the initial y position of each oligomer
is to: (i) Set the center of mass of the oligomer in the y = 0 coordinate, see Figure 6.5a)
(7i) Randomly rotate the oligomer about the center of mass, such that the oligomer does not

intersect the pore walls, and fix the orientation of the oligomer; the oligomers will not intersect
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each other because of the initial Az position, see Figure 6.5b) (iii) For the i*" oligomer, get
the available space in the y axis and call it L,s, = Ly, + Ly,, as defined in Figure 6.5b) . (iv)
Include the physical constraint that the oligomers will always have a tendency to be in an
initial orientation such that the phase space for them to move is maximum, i.e., get the ratio
P = L,,/(W — 4r) and choose a random number in the range n = (0,1). If n is less than
or equal to P, accept the orientation of the oligomer and choose a random position for the
oligomer in the y direction, such that the oligomer does not intersect the pore walls.

As it is important to keep track of the position of the atoms in the oligomers, it is impor-
tant to keep track of the position of the center of mass, and the orientation of the axis of the
oligomers, since the moves will always be performed with respect to this body-fixed frame. An

example of a valid initial configuration of the oligomers is shown in Figure 6.5¢).

6.4.3 Moving the Oligomers: Translation and Rotation

To get the translational and rotational quantities, it is convenient to refer to Equation 6.13,
that clearly gives an algorithm to choose the displacements. Since we are working in a body-
fixed frame and the fluid in which the oligomers are moving in is isotropic and homogeneous, the
diffusion tensor and coeflicient will remain constant. To get the displacements, the procedure
is to: (i) Get 3 normal distributed random numbers. (i) With the diffusion tensor for each

component, calculate the displacement. Following Equation 6.13
d; = V2AtW;, (6.14)

where ¢ € {1,2,3}. (i73) The translational quantities are associated with the first two indices,
i € {1,2}, and the rotational with the last, i = 3. To implement the translational algorithm,
a transformation to the pore-fixed frame is needed. If the body-fixed frame vector basis of the
ith oligomer is defined by {é;,é;,}, where the vectors are expressed in the pore-fixed frame,

the displacement vector of the oligomers in the pore-fixed frame is
AZ; = dléil + dgéiz. (6.15)

(iv) Translate the center of mass by AZ; and all the atoms by AZ;.
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Figure 6.5: 2D oligomers initial trial setup. The procedure to set up a trial, initially, is to (a) setup the oligomers
separated by a distance of Azo = Ri, + Ra,, as shown. (b) Rotate each oligomer by an arbitrary angle about
its geometrical center and get the available phase space. Determine if the configuration is valid. (c) If the
configuration is valid, set the y position of each oligomer randomly, according with the available y phase space;

otherwise, repeat the process until a valid configuration is reached.
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To rotate the oligomer: (i) Translate the oligomer such that the center of mass of the
oligomer lies at the (x,y) = (0, 0) coordinate. (i) Rotate the atoms of the oligomer, along with
éi,, €i,, about the plane of the oligomer. (i7) Move the atoms and the center of mass such that
the position of the center of mass matches with the original position of where it was.

Once the oligomers are moved, it has to be checked whether the oligomers obey the steric
constraints, i.e., the oligomers do not intersect each other or the pore walls; the two cases are
evaluated separately. To check if the oligomers intersect the pore walls, it is useful to first check
if the surrounding disks (defined in Section 6.4.2) intersect the pore wall. If the surrounding
disk of an oligomer does not intersect the pore walls, the oligomer does not intersect the pore
walls. Otherwise, intersection of every circle in the oligomer with the pore walls has to be
checked. To check the intersection of the oligomers, it suffices to check if the surrounding disks
do not intersect each other. If this does not happen the oligomers cannot intersect. Otherwise,
the intersection of the oligomers has to be checked for each of the circles the oligomers are
composed of.

To evaluate the intersection criteria of the oligomers within the pore, define three logical
variables Acy,, Acy, and Acjo; where Acy,, and Ac,, are the binary logical variables (true/-
false) that denote the intersection of the oligomers with the wall and Acjo the binary logical
variable that denotes if the oligomers intersect each other. To accept a move of the oligomers

Am (Acy, , Acy,, Aci2) must be true, where
Am(Ul,UQ,...,UN):Ul/\Ug/\.../\UN; (6.16)

the “A” operator makes reference to the logical “and” operator and “V” to the logical “or”
operator.

To evaluate Ac,,, the intersection of the oligomers’ circles with the pore walls have to be
tested. Define yx = +W/2 and y, = —W/2 as the equations of the lines where the pore has its
walls. For the oligomer not to intersect the pore walls, then either two of the conditions have

to be met: (i) That the surrounding disk, R does not intersect the pore walls; a condition

lsurr?

that is enough for the oligomer to not intersect the pore walls; or (i7) the individual circles, of
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which the oligomer is composed of, should not intersect the pore walls. Thus,

Acwi = {[(yicm + Risurr) S yt] /\ [(yicm - Risurr) Z yb]} \/
N;
A s +7i) <wed Al(wi —1i;) = v} (6.17)
7=1

must be true. To determine if the oligomers do not intersect each other, Acjs, then either
two of the conditions have to be met: (i) That the surrounding disks of the oligomers do not
intersect each other; a condition that is enough for the oligomers to not intersect each other;

or (7i) the individual circles of both oligomers should not intersect each other. Thus,

Acip = { {(l’lm — 2900)" + Y1ew — yzcm)ﬂ > (R + R2sm)2} Vv
N1 N»

AN {[(ﬂfli — ;)" + (n, — yzj)Q] > (r, +rzj)2} (6.18)

i=1j=1
must be true. See Figure 6.6.

To determine the outcome of a trial, the following criteria is used: (i) If the molecules
have passed each other, the separation of the centers of mass of the oligomers along the = axis
of the pore has to be less than or equal to —Azg, or (ii) if the molecules have failed to pass
each other, the separation of the centers of mass of the oligomers along the x axis of the pore
has to be greater than or equal to 2Ax, see Figure 6.7. If the separation of the centers of mass
of the oligomers along the x axis of the pore does not meet the pass or fail criteria, the trial
continues until one of the two conditions is met.

It is important to notice that if the problem is to be solved computationally, for relatively
narrow pores and when oligomers are in the passing positions, the number of conditions to
be evaluated are Ny - Ns, a quantity that must be evaluated at least once for each move. The
evaluation of these conditions, the translation and rotation of the oligomers, and the generation
of the normal distributed random numbers are the main sources to determine the speed at
which the program runs. Thus, it is of the highest importance to determine an appropriate
time step At, so that the oligomers appropriately explore the possible phase space and make
no unphysical moves (e.g., pass through each other), but is fast enough to output results in an

acceptable amount of time.
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Figure 6.6: 2D oligomers, examples of valid and invalid configurations. The configuration is not valid when
(a) one or both oligomers intersect the pore, or (b) the oligomers intersect each other. An example of a valid

configuration is when both oligomers (c¢) do not intersect each other or the pore.



157

y T_’ ! HT—‘ z UL»."I:

’
1

/ Y1 ' ,/N‘\/ |/_\| Ty
) %. . o (X RS W,
s g

XS

! : P , yen i
Y2 v;\_) €Ty IE Ty é y'_fz \ﬁ’é\l E
: i : N |
| Ar = Axg | Axr < —A.'rol ) Az > 2Axg -

(a) (b) (c)

Figure 6.7: 2D oligomers, examples of a passing and failing criteria. Define Az from (a) a valid initial condition.
The oligomers have (b) passed each other if the separation of the centers of mass of the oligomers along the
z axis of the pore is greater than or equal to —Azg. The oligomers have (c) failed to pass each other if the

separation of the centers of mass of the oligomers along the = axis of the pore is greater than or equal to 2Axg.

6.5 Results

To determine the passing propensity of the oligomers, the diffusion tensor for each oligomer

in the body-fixed axis and in dimensionless units is given by
D, =Dy =Dy, =1; (6.19)

see Figure 6.4. To obtain the passing propensity in the wide pore limit, the oligomer systems
that are chosen are (see Figure 6.8): (¢) m-m, (é)m-d, (¢%¢) m-tr, (iv) m-te, and (iv) m-p.
Using dimensionless quantities, all the circles have unit radius r = 1, the pore widths to be
explored are in the range W/r € [4.4,10.8]. Define the gap as the vertical phase space available
for oligomers to pass each other, when in the transition state, see Figure 6.9; for this particular
case the gap is simply given by g = W — 4r, that clearly implies (g/r) = (W/r) — 4. Thus,
gaps in the range of (g/r) = [0.4 — 6.8] are examined. The remaining parameter that needs to
be chosen is the time step At. To get physical results, a time step that is small enough for the
oligomer to properly explore the phase space is needed. However, the smaller the time step,
the longer it will take for the simulations to run. Thus, it is convenient to probe several time
steps, and determine which is the biggest time step at which the results start converging. The

passing propensity is obtained as a function of the gap divided by the unit radius.

W



Following the algorithm in Section 6.4.1, the results for the different monomer-oligomer
systems are obtained. The number of trials needed to get the simulations to converge to a stable
result is N = 2.5 x 10°. To determine the number of trials needed to get accurate results, the
passing propensity P = # of passes/n is calculated each n = 100 trials, until n = N, and

a visual estimate of how many trials are needed to get a constant probability, i.e., a small
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fluctuation of results about a fixed value; examples are shown in Figure 6.11.

The passing propensity as a function of the gap for the different systems are presented
in Figure 6.11. From the results in Figure 6.11, the optimal time step for the simulations is

determined to be At = 1074, The results for At = 10~ for all the systems are compared in

Figure 6.12.
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Figure 6.8: 2D oligomers systems to be examined, (a) m-m, (b) m-d, (¢) m-tr, (d) m-te and (e) m-p. All the

circles have the same radius » = 1 and the same diffusion coefficients along the body-fixed axis. Diagrams not
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Figure 6.9: Gap definition for a 2D system of oligomers. The gap is defined as the minimum amount of phase

space available for the oligomers to pass each other in the transition state.
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Figure 6.10: 2D passing propensity evolution with number of trials, the m-d case. A time step of At = 1074 is
used. The passing propensity for several gap sizes is shown; fluctuations after n = 120000 trials are small and

can be considered as the minimum number of trials to get a reliable estimate.
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m-te and (d) m-p systems. The optimal time step is determined to be At = 1074,
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For specific gap sizes, the passing propensity for longer monomer-oligomer system is bigger
than that for shorter oligomers. This can be explained by the available phase space for the
oligomers to move in. Assume a linear oligomer made out of N barely touching but non-
intersecting circles, as the oligomers that were used as the models, see Figure 6.8. If a gap
is fixed, as the oligomer becomes longer, the less phase space available the oligomer will have
to move and rotate in it. With the additional constraint that the long axis of the oligomer
is more likely to be initially aligned with the z-axis of the pore, the longer the oligomer, the
more likely it will remain aligned with the pore with increasing oligomer length, whereas for
shorter oligomers, as the gap grows wider, the longest axis of the oligomer will be more likely
to be perpendicular to the z-axis of the pore (see Figure 6.5). If the results are examined for
(g/r) = 0.4 and (g/r) = 0.8, the results are consistent in that the smallest passing propensity
is for the m-p system, and gradually increases as the number of circles of the oligomer decrease
down to two, i.e., the m-d system; see Figure 6.12. It can also be inferred that the magnitude
of the passing propensity, for larger gaps than the ones shown, will eventually assume the order

Pronomer = Paimer 2 Pirimer 2 Pretramer 2> Ppentamer; as one would expect.

0.25
§0.20 ‘/‘/A
= e Circle
(2]
$ 0.15 = Dimer
o
= Trimer
%0.10
_E’ : A Tetramer
@ v Pentamer
a 0.05

0.00
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Figure 6.12: Passing propensity for different monomer-oligomer systems as function of (g/r). A time step of

At = 107" is used. To determine the passing propensity for each (g/r) data point, N = 250000 trials are used.
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Figure 6.13: Results for the m-m system. The results obtained for this work match (red markers/triangles), to
within the uncertainty, with those reported in [6,10] (black markers/circles), specially when going to the small

gap regime.

To validate the results, the m-m system is compared with the Langevin MD simulation
results of [6,10]. The results are further validated for the small gap regime, see Section 6.5.1.
The results for m-m obtained in this work are compared to those in [6,10] in Figure 6.13 and
Figure 6.16(a), and the numerical results are compared in Table 6.1.

Of special interest are the results obtained for the m-d and m-tr systems. Using the results
for the m-d and m-tr systems implementing the FPE [15] are obtained and compared to those
obtained in this work, see Figure 6.14. It must be noted that when using the FPE, the same
technique from [6] is implemented for the longer monomer-oligomer system, i.e., the flux of
“injected” probability is kept constant, so that the boundary valued problem can be solved;
the reader is referred to [6] for details. The results using the FPE approach do not really
match the Langevin MD simulation results as the gap starts to get bigger, however, for smaller
gaps the methods start to converge, see Section 6.5.1; consistent with the assumption that the
probability for small gaps should converge. However, for scaling purposes, if the results are
plotted in a log-log scale, when using the FPE approach, the general trend is that the results

converge with those of the Langevin approach, in particular for the m-tr system.



163

0.25
o 0.20
2
‘@
$0.15 e Monomer
Q
09_ = Dimer
2 0.10 Trimer
[}
©
a 0.05
.00
0.0 1 2 3 4 5 6 7
Gap/Circle Radius (g/r)
(a)
0.25
o 0.20
2
‘@
$0.15 e Monomer
Q.
Dﬁi = Dimer
2 0.10 Trimer
[}
©
a 0.05
0.00H2—
1 2 3 4 5 6 7
Gap/Circle Radius (g/r)
(b)

Figure 6.14: Comparing results for the monomer-oligomer system with the FPE. Comparing the results from (a)
this work compared to the (b) results using the Fokker-Planck equation [15] for m-m (black circles), m-d (blue

squares) and m-tr (orange diamonds). The results are qualitatively similar.
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Table 6.1: Results for the m-m system. The results obtained for (a,c) this work match, to within the uncertainty,

with (b,d) those reported in [6,10] , specially when going to the small gap regime.

Comparing M-M Results

P L0g10 (P)
(9/r) | (a) (b) | Logio(g/7) (c) (d)
0.6 0.0486 | 0.04262 | -0.221849 -1.31336 -1.37039
1.2 0.09506 | 0.08473 | 0.0791812 -1.022 -1.07196

1.8 0.13052 | 0.11699 0.255273 -0.884323 | -0.931851
2.4 0.15593 | 0.14161 0.380211 -0.80707 | -0.848906
3. 0.17521 | 0.16145 0.477121 -0.756441 | -0.791962
3.6 0.19083 | 0.1795 0.556303 -0.719353 | -0.745936
4.2 0.20193 | 0.19004 0.623249 -0.694799 | -0.721155
4.8 0.21411 | 0.19979 0.681241 -0.669363 | -0.699426
5.4 0.22531 | 0.21108 0.732394 -0.64722 | -0.675553
6. 0.22707 | 0.21962 0.778151 -0.64384 | -0.658328
6.6 0.23779 | 0.22472 0.819544 -0.623806 | -0.648358
7.2 0.24114 | 0.23552 0.857332 -0.617731 | -0.627972
7.8 0.24672 | 0.24058 0.892095 -0.607796 | -0.61874
8.4 0.25136 | 0.24594 0.924279 -0.599704 | -0.609171
9. 0.25716 | 0.24999 0.954243 -0.589797 | -0.602077

6.5.1 Small Gap Results

In the small gap limit, the passing propensity is believed to behave as a power law, P ~
(g/r)?. From results in [6], in a m-m system the o parameter is determined to be o = 1.4 using
Langevin MD simulations that matches well when solving the FPE. For this case, the scaling
coefficient o for the m-d and m-tr system is determined, both using the Langevin method. As
for the previous Section, all the radii of the circles in the i*" oligomer are set to r = 1 and
the diffusion coefficients in the body-fixed frames axes are chosen to be ng = Dyg = Dy, = 1;
see Figure 6.4. Since for smaller gaps the probability is significantly lower, a larger number of
trials have to be run. We choose this number to be N = 5000000 for gaps that are smaller
than (g/r) = 0.2, otherwise, the number of simulations remains the same, N = 250000. As
noted before, the time step is of crucial importance to optimize the data acquisition process.
Thus, we choose a time step of At = 107°, that is the time step for which the results barely

change if the time step is decreased, as noted in [10].
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Figure 6.15: Passing propensity as a function of gap size for small gaps. Results for (a) m-d and (b) m-tr
are shown. Since the difference in the results for the two time steps is significant, we choose At = 107° for

subsequent analysis.

The first feature to be explored is how well the passing propensity converges by changing
the time step, in the small gap regime. For bigger time steps than At = 1074, it is clear
that the simulations will not produce acceptable results, so we mainly focus on the time steps
At = {10_4, 10_5}. Since for small gaps the passing propensity is small, a subtle change in
results will change the scaling o in a significant way. Since the results for At = 10~% differ
significantly from the results for At = 1075, we choose to use the time step At = 107 for the
subsequent analysis; see Figure 6.15.

For wider gaps, the FPE analysis yields results that do not agree with the Langevin
analysis. However, for smaller gaps, the results should converge. To see how well the results
converge, a log-log plot of the passing propensity against the full range of gaps examined is
presented in Figure 6.16; the data for the m-m case corresponds to that in [6]. It is the case
that for the m-m and the m-tr case, the results for both the Langevin simulations and the FPE
agree for small gaps, whereas the results for the m-d do not. However, it is seen that in the last
few data points for the m-d case, the results begin to be closer together and possibly converge
at smaller gap sizes.

To determine the scaling exponent o, the results from the Langevin simulations are going
to be used. It is worthwhile to mention again that the definition of “small gap” refers to the
regime where P ~ (g/r)?. As can be seen from Figure 6.16, the small gap regime for the m-m

system starts at gap sizes smaller than that for m-d and m-tr systems. Thus, it is important
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to determine what gap sizes are adequate to determine o for each system. The systems to
be examined are m-d and m-tr; the m-te and m-p systems are not examined. The small gaps
range for both the m-d and the m-tr systems range from (g/r) = 0.05 to (¢/r) = 0.2. Of
particular interest is the point where the m-d and the m-tr curves intersect, and the ordering
of the magnitude of the passing propensity becomes natural, i.e., for longer monomer-oligomer
systems the passing propensity should be smaller than for shorter monomer-oligomer systems.

The methodology to determine the scaling exponent o exploits the properties of logarithms
P=a(g/r)” = Log,(P)=oLog,(g/r)+ Log, (a). (6.20)

Thus, we use the logarithm of the gaps and with the respective passing propensity of the system
under consideration, and then make a linear fit y = az + ¢ of the data; with y = Logq (P),
x = Log; (9/7), and a = 0. Results are presented in Figure 6.17. The results for the fits are
presented in Table 6.2.

From Figure 6.17, it can be inferred that the points used to fit the data changes significantly,
and it is not clear if the point with (g/r) = 0.8 lies within the small gap regime. Statements
about the validity of the linear fits can be made from Table 6.2. The R? values for the linear

fits indicate that for the m-m system, the gap value (g/r) = 0.8 might be too big, this from a



168

Table 6.2: Linear fits to determine the small gap scaling exponent o. Refer to Figure 6.17 for the definition of
(a) and (b); (c) corresponds to the fits from the data obtained by solving the FPE [15]. The R? values, or how

close the values are to the regression line, are given below each data set.

Fits for monomer-oligomer small gap results

Oligomer monomer dimer trimer
(a) y=146x—-0944 y=150rx—-145 y=217Tx—1.14
R? 0.9974 0.9998 0.9990
o 1.46 £0.1 1.50 £ 0.1 2.17+£0.1
(b) y=137r —1.03 y=1492—1.47 y=2.06x—1.24
R? 0.9943 0.9998 0.9971
o 1.37+0.1 1.494+0.1 2.06 £0.1
(c) y=141x—-0.92 y=1.36x—-0.60 y=196x+1.77
R? 0.9998 0.9999 0.9987
o 1.41 1.36 1.96

slight decrease in the R? value for data set (b); thus, to two significant figures, the value for
the scaling exponent of the m-m system can be considered to be o = 1.4, as the results in [6]
suggest. For the m-d system, the R? value remains the same when adding the (g/r) = 0.8 gap
to the fitting data. Thus, it can be inferred that the scaling exponent for the m-d system, to
two significant figures, is ¢ = 1.5, slightly above the ¢ = 1.4 predicted by solving the FPE, and
the gap (¢g/r) = 0.8 correspond to the small gap regime. For the m-tr system, the R? value
slightly changes when adding the (g/r) = 0.8 gap to the fitting data, and the scaling exponent
o is slightly different for both cases. Thus, it can be inferred, that the scaling exponent will lie
somewhere between 2.17 and 2.06, that can be taken as o ~ 2.1; a value slightly above the one
proposed by solving the FPE for the m-tr system [15].

It is worth noticing that the intersection point of the curves for the m-d and the m-tr
intersect twice; the intersection point for the wider gap regime can be easily obtained. In
Figure 6.17(b), the monomer- dimer and m-tr fitted curves intersect closer at the location
where the data points are, so that the most likely values for scaling exponent are closer to

those in data set (b) of Table 6.2(b).
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6.6 Summary and Conclusion

The passing propensity within infinite rectangular pores of width W for monomer-oligomer
systems has been elucidated by using a Langevin simulation approach, and the results have
been compared to those obtained by solving the FPE [6,15]; both in the small gap regime,
where P ~ (g/r)?, and for wider gaps. For the small gap regime, m-m, m-d and m-tr systems
were examined; for the wider gap the former, including m-te and m-p systems, were examined.

The scaling exponents for the small gap regime are determined to be oy = 1.4 + 0.1,
Om-d = 1.5 £0.1 and oy ¢y = 2.1 0.1, that are consistent with the idea that the longer the
oligomer is, the passing propensity should get smaller faster, and are consistent with those
obtained by solving the FPE in the small gap regime, however, they exhibit a slightly higher
value than those predicted in [6,15].

For wider gaps, the passing propensity for some of the oligomers, in general, do not follow
the order Py.q > Puntr > Pute > Pm-p, however it is natural to expect it, since the physical
condition that initially the shortest axis of the oligomer tends to be perpendicular to the longest
axis of the pore, favors passing for longer oligomers in a specific gap regime. Asymptotically, it is
expected that the natural order of the passing propensity becomes Py,.q > Pm-tr > Pmte > Pmop-

The systems examined here have given insight in the scaling limit of small gaps for the
monomer-oligomer system. Further work can be devoted to elucidating the scaling exponent
for more complex systems such as dimer-oligomer systems. Further work can be directed
towards the determination and scaling of more realistic three-dimensional systems such as
sphere-oligomer, or even oligomer-oligomer, using more detailed modeling, as the exact diffusion

coefficients can be exactly obtained from the procedure in [13].
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6.8 Appendix A: Determining the Initial Orientation for a General Shaped

Oligomer.

To approximately, but accurately, get the minimum pore width for oligomers to be able to
fit the pore is to algorithmically get the shortest distance that transverses the oligomers, that
will be defined as the shortest axis of the oligomer; in an analogous way, the longest distance
that transverses the oligomers will be defined as the long axis of the oligomer.

To get the shortest oligomer axis and length, project each atom position vector onto a se-
lected unit vector 7# = (cos (6),sin (6)); with 6 € [0, 7); and add and subtract the corresponding
atom radius from this value, make a set of values out of the maximum values and a second
list out of minimum values. From the set of these maximum values get the maximum value;
for the list of the minimum values, get the minimum value. Subtract the minimum value from
the maximum value and take the absolute value, this will be the length of the oligomer along
7, given a fixed angles #. Do this for the complete range of # and obtain the maximum length
Imax and the minimum length l,,;,. The minimum width of the pore for the oligomer to fit is
Imin- In Figure [add references] the shortest axis of the oligomers are shown.

In the particular case of two dimensions, the value of the shortest axis determines the min-
imum pore width for a single oligomer to fit in the pore, even if the oligomer does not have
a symmetry axis. The minimum passing space will be useful to determine the initial setup of

each trial.
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CHAPTER 7. LANGEVIN ANALYSIS OF THE MOLECULAR
PASSING PROPENSITY IN CYLINDRICAL PORES: APPLICATION
TO PNB CONVERSION INTO AN ALDOL PRODUCT

Abstract

Langevin molecular dynamic simulations are used to determine the passing propensity of
4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone in a cylindrical channel. The molecules
are coarse-grained to molecules made out of spheres. By imposing non-overlapping steric con-
straints on the molecules with the pore walls and between themselves, the passing propensity
of the molecules in the channel is determined. Then, the passing propensities, along with other
parameters, are then mapped into a further coarse-grained kinetic Monte Carlo model, where
the whole reaction-diffusion system is modeled. The results for the product yield in the Monte
Carlo simulation are then compared with the experimental results. All length units are given

in angstroms (A) and mass units in atomic mass units (au), unless otherwise stated.

7.1 Introduction

Solution-phase catalytic conversion processes in nanoporous materials involve diffusion of
reactant from the exterior fluid into the pores, conversion to product in the vicinity of catalytic
sites, and ideally efficient diffusion product out of the pores. The latter is necessary to free up
space for additional reactant to enter the pores. Thus, there is some recognition that inhib-
ited passing of reactants and products within the pores, and in particular the extreme case of
single-file-diffusion (SFD) corresponding to no passing, strongly inhibits reaction yield [1-4].

A detailed molecular-level description of this process could in principle be provided by

many-particle Molecular Dynamics (MD) simulations, or many-particle Langevin simulations
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(where the solvent is treated implicitly). However these approaches are not particularly useful
due to the large number of particles and/or the fundamental difficulty in accessing experimen-
tally relevant time scales. Thus, instead typically coarse-grained stochastic lattice-gas modeling
is implemented where the pore is divided into a linear array of cells with size comparable to the
reactant and product species . Adsorption and desorption from the pore, and diffusion with the
pore, are treated by movement of reactants and products between the cells with appropriately
selected rates. Just allowing hopping to adjacent unoccupied cells corresponds to imposing a
SFD constraint. Thus, in general one allows exchange of reactant and product on adjacent
sites at a rate controlled by an exchange probability, Pey, [2,4] defined precisely in subsequent
sections. From the comments above, it is clear that reaction yield should depend strongly on
this parameter Pey.

For modeling of specific reaction processes, it is clear that reliable systems specific param-
eters are needed for input into the coarse-grained modeling. In particular, it is important to
obtain a reliable estimate of some measure of passing propensity, P, for reactants and prod-
ucts (defined in subsequent sections), which directly determines the exchange probability, Pex,
introduced above. While the above mentioned many-particle MD or Langevin simulations of
the overall process are not viable, we suggest that targeted Langevin simulations of a single
pair of reactant and product molecules is viable, and can provide effective quantification and
insight into the behavior of P. There is a lack of such analysis for specific systems in the
literature. However, such simulations will be the main focus of this Chapter. Our modeling
will be simplified assuming that the major factor controlling P is steric effects (i.e., non-overlap
of reactant and product molecules treated as rigid with hard-core interactions, and no overlap
of these species with the pore walls).

In Section 7.2, the general strategy to model the molecules and the Langevin equations of
motion are presented. In Section 7.3, the implementation of the Langevin simulations is dis-
cussed and algorithm to determine the passing propensity P is given. In Section 7.4, details on
how to get the numerical quantities needed as input for the Langevin simulations are examined.
In Section 7.5, the results for the Langevin simulations are analyzed and a brief discussion of

how to get parameters for the kinetic Monte Carlo (KMC) simulations is presented. Finally, in
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Section 7.6, the results for the KMC simulations are presented, ending with a brief summary

and conclusion in Section 7.7.

7.2 General Strategy to Model the Molecules and the Langevin Equations
of Motion

To determine passing propensity of the molecules, P, and the product yield for the reaction
described in Section 7.1, the parameters of the system must be determined. To determine these
parameters, a thorough description of the system under study is necessary. The system under
consideration consists of amine functionalized mesoporous silica nanoparticles. These nanopar-
ticles are characterized by the structure of its nanopores, i.e., the nanopores are linear, cylin-
drical, transverse the particle and do not intersect with each other [5-7], see Figure 7.1. The
nanoparticles are immersed in an acetone and 4-nitrobenzaldehyde solution. Inside the pore,
the 4-nitrobenzaldehyde molecules diffuse near the pore walls, where the 4-nitrobenzaldehyde
molecules catalytically and irreversibly react with the acetone in the presence of catalytic
amine groups, and forms 4-(4-nitrophenyl)-2-butanone [8]. The width of the pores in the silica
nanoparticles we consider range from ~ 2nm — 5nm, pores that are wide enough for the 4-
nitrobenzaldehyde and 4-(4- nitrophenyl)-2-butanone molecules to be able to pass each other.
When the molecules are close to the pore ends, the product molecules can diffuse out of the
pore, thus populating the outside of the pore with product, that can eventually diffuse into the

pore again, when the outside concentration is high enough.

7.2.1 The equations of motion

To describe how bodies move in a three-dimensional environment, the way the bodies trans-
late and rotate are needed. For an isotropic body, i.e., a sphere, the equations of motion take
a simple and straight forward form. Spheres are often used in modeling complicated shaped
bodies [9-11]. The main strategy will be to coarse grain the molecules as a set of spheres whose
radii corresponds to the van der Waals radius of the atoms which they are composed of.

Before writing the equations of motion for the molecules, we shall make some approxima-

tions: (¢) The molecules move in a viscous isotropic and homogeneous liquid, meaning that if a
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Catalytic site

Figure 7.1: Schematic of the process and silica nanoparticles. To the left Schematic of the conversion of PNB to
an aldol compound by reaction with acetone in amine-functionalized MSN. The attachment of PNB to the amine
functionalized groups form a Schiff base, reducing the effective pore diameter. In the middle, pore cross-sectional
schematic. To the right, TEM image of mesoporous silica nanoparticle (MSN) with visible pores oriented from

left to right.

Figure 7.2: Pore model for the 3D Langevin simulations. The molecules, that are modeled as a collection of

spheres, undergo Brownian motion within an infinite length cylindrical pore of cross-sectional diameter D,,.

rigid set of axis is set and fixed on a molecule, no matter where the molecule is placed, or how
the molecule is rotated within the fluid, the diffusion tensor remains the same when calculated
with respect to the fixed axis. (i4) The pore is an infinite length cylinder along the main axis
and it has cross section diameter D), see Figure 7.2. (iii) The solvent is an ideal fluid, where
no-slip boundary conditions are used. (iv) The molecules only have steric interaction with each
other and the pore walls; other type of long and short distance interactions are suppressed.

To get the translation equations of motion, one uses Newton’s second law

F.  =m;T, (7.1)

net
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is just the sum of all forces

net ?

with 7 = 3—’;, P = %f, etc. The net force on the i molecule, F’z
on all the atoms in the molecule. The forces that are applied on the molecules, in this case,
are the frictional forces, that are proportional to the velocity, and a random Wiener process,

reflecting the thermal fluctuations in the solvent environment, so that the equations read
mit =~ + F(t); (7.2)

where é is the mass independent translational friction tensor, further details are given in Section
7.2.2. The last term in Equation 7.2, F (t), is a random normal distributed force, such that

the time average of the force is zero and the forces are spatially correlated [12]

<ﬁ (t)> —0, (7.3a)
(F; (t) Fj (t')) = 2kpT¢, 0 (t—t');  4,j € {x,y,2}. (7.3b)

The equation is now not a deterministic differential equation, but a stochastic differential
equation. Thus, we are forced to use a numerical or computational method to solve this
equation. We consider exclusively the overdamped regime, where P = 0, so that Equation 7.2

becomes [13, 14]
GF=F(t) with F(t) = 2kpT (W and Dy = kT ¢ (7.4)

where D, is the positive definite symmetric translation diffusion tensor and W is a 3x 1 vector of
normally distributed random numbers. From Equation 7.4, the stochastic differential equation
to be solved is

F=V2 W, (7.5)

where fi; is a symmetric tensor such that i} = D,. Physically, D; is required to be a
symmetric positive definite tensor, thus, ji; is obtained from D, by a Cholesky decomposition.
To solve the equations, an Euler-Maruyama scheme is used so that the discrete correlation of
F (t) is [15]

(Fi (tn) Fj (n))

1 tnt1 2kpT (;,.
/ _ 2kBT Gy (76)

= F;(t) F;
AL ) BOE®a==]1-

The solution of the equation, at each time step, is given by

_fi - _; 2 - -, - . B 5
% = \/:t,utiWi — Tl =T+ \/Kti,uti)/\/i; fi= f(ti)- (7'7)
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Figure 7.3: Rotations of asymmetric molecules. In general the molecules are asymmetric and rotations about
the different axes have to be distinguished. The translational coordinates and rotation angles are shown; the x,

y, z coordinates correspond to the translational coordinates and 6., 6, and 6. to the rotation angles.

For rotations, the equations of motion to be solved are similar to those of Newton’s equations
for translation
P = 103 (7.8)
where I; is the moment of inertia tensor and 5; represents the angles of rotation around the
different axis of the i*® molecule , see Figure 7.9 and Figure 7.10. As for the translational
equations, the net torque on the i*" molecule, 7;__,, is the sum of all torques on all the atoms
in the molecule.

As for the translational part, the rotational equations of motion include a random Wiener
process, that represent the torques induced by the thermal fluctuations in the solvent, and
a frictional force that is proportional to the angular velocity of the body. The equations of
motion are given by

~ =

6=—Co+7(t); (7.9)
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where CN; is now the rotational friction tensor. In an analogous way to translations, the random

torque obeys
(7 (1)) =0, (7.10a)
<Ti (t) 75 (t’)> = 2kpT¢(r,; 6 (t — t') ; i,j €{z,y,2}. (7.10b)

Since we are working in the over-damped regime, 6= 0, the equations of motion are simplified

to

0=—GO+7(t); (7.11)

for which the solution is

6 =2 W, (7.12)

where [i; is a symmetric tensor such that ﬂrﬂ"f = f),n, and is the rotational analogous of f)t.

To solve the equations, an Euler-Maruyama scheme is used so that the discrete correlation of

7(t) is [15]
1 tnt1 2kgT C’l“‘j
iltn) T (tn)) = i j = ——". 1
s () = [ 0 0= = (713)
The solution of the equation, at each time step, is given by
01— 0; 2 > > SN T~

In principle, the equations of motion could be considered separately, however, it is well
known that, in general, there is coupling between the translation and rotation of bodies [16].
It is a good strategy to merge Equations 7.2 and 7.9 into a single set of equations [14], that

will be the topic of the next section.

7.2.2 Coupled translational and rotational equations of motion

To get the coupled equations of motion, define a 6 x 1 vector that contains the force and

torque. The vector is defined as

—

— Fre
Jtnet = ' . (715)

Tnet
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with an adjustment of units for either one of the quantities ﬁnet O Tpet, SO that the units in
Equation 7.15 match. We now proceed to write the equations of motion for the coupled system
in terms of the friction tensor and the Wiener process in a body-fixed frame, where there is
only fluid resistance

~ = -

Fuer = —CV + F (1) (7.16)

with ¢ the grand resistance tensor, that contains all the information of the rotation, transla-
tion, and translation-rotation coupling friction terms. Vs a 6 x 1 vector that contains the
time derivatives of the linear displacements, ¥, and angular displacements, 5, with one of the
quantities multiplied by the appropriate units so they can be merged into a single vector. 6 is
the friction tensor, that is independent of the masses of the particles of which the molecule is
composed of. The random force F (t) is chosen in an analogous way to Equation 7.3, so that

the properties of F (t) are

<f(t)> =0, (7.172)

(F;i () Fj (') = 2kpT(ii 0 (t—t'); 4,5 € {1,2,3,4,5,6}. (7.17b)

Thus, following the procedure in Section 7.2.1, the equations of motion to be solved in the

overdamped regime Fe¢ = 0 are

—

~% = \/2kgTC'PW - % = V2iW; (7.18)

with 17 = D. The form of D is a 6 x 6 positive definite symmetric tensor that is naturally
decomposed into four 3 x3 blocks, each of which contains the diffusion coeflicients for translation

(Dy), rotation (D,,.), and translation-rotation (Dy,) coupling

_ D, Df - :
D = , where T' denotes the transposition operation. (7.19)
Dtr Drr

This tensor is a quantity that depends on the choice of the origin of the set of axis, the
orientation of these with respect to the molecule, and the viscosity of the fluid in which the
molecule is immersed. The diffusion tensor can be calculated by following the procedure in [9];

the procedure is outlined in Section 7.10. The vector R is a 6 x 1 vector that contains the
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translational displacements ¥ = (z,y, z) and the rotational angles, = (02,6y,0.), about the
x, y, and z axis, respectively. The vector W is a 6 x 1 vector of independent and uncorrelated
random normal distributed numbers.

To solve the equations of motion, at each time step, an Euler-Maruyama scheme is used.
Define the i** component of a vector 7 as v;, and the ij component of a two dimensional tensor

7 by 1;5. The solution at each time step of Equation 7.18 is

Rinir = Ri,, + V2480, p1ijWj,,, (7.20)

where Einstein summation over repeated indexes is used.

7.3 Simulation Algorithm

In Section 7.2.2 the solution for each time step to the equations using an Euler-Maruyama
scheme were derived (Equation 7.20). This solution to the equations and the constraints pro-
vide an algorithm to determine the passing propensity, P, as defined in Section 7.1.

It is convenient to define terminology before proceeding. Define the following quanti-
ties: (i) The position of the i" molecule as the position of the center of mass of the i*h
molecule, Z; = (x;,y;,2;). (i) The orientation of a molecule as the direction of the unit
vectors fixed in the molecule with respect to a fixed frame in the pore. (i7i) The sepa-
ration of the molecules as the difference in position of the first and the second molecule
AZ = @) — @9 = (21 — 22,y1 — Y2,21 — 22). (iv) A move is the change in position and/or
orientation of the molecules. (v) The initial separation in the z axis of the molecules as Azy.
(vi) A pass as the separation of the molecules such that Az < —Azy. (vii) A fail as the sep-
aration of the molecules such that Az > 2Azy. (viii) A trial as a series of valid movements
from a starting position that end in a pass or a fail. (ixz) A run as a defined number of trials.
(z) The passing propensity as the number of trials in a run that result in a pass, divided by the
total number of trials (passes + fails).

Using these definitions, the algorithm used follows the steps:

Step 1 Setup the width of the pore so that there is a possibility of molecules passing each other;

if there is not such a pore width, terminate the program. Set the pass and fail counters
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to zero, and the number of maximum trials, Nyax, to some integer number greater than

Zero.

Step 2 Setup the molecules with the center of mass in the coordinate (z1,y1,21) = (0,0, R1,)
and (z2,y2, 22) = (0,0, —Ra,) , such the body-fixed axes of the molecules are aligned with

the pore-fixed axes.

(a) Setup the molecules in a random and valid and initial orientation, i.e., the molecules
do not intersect the pore walls, and set the initial separation of the molecules in the

z axis as Azg = Ry, + Ra,.
Step 3 Save the information of the current configuration of the molecules.
Step 4 Make a move for molecule 1 and molecule 2:

(a) Stochastically change the position and orientation of molecule 1 and molecule 2.

(b) If the molecules intersect the wall or each other, reset to the molecules to the config-
uration before making the moves and go to Step 4(a); otherwise, continue to Step

5.
Step 5 Check the separation of the molecules:
(a) If the separation of the molecules in the z axis is less than or equal to —Azg, add

one to the pass counter and continue to Step 6.

(b) If the separation of the molecules in the z axis is greater than or equal to 2Azp, add

one to the fail counter and continue to Step 6.

(c) If the separation of the molecules in the z axis is such that —Azy < Az < 2Azp, go

to Step 3.
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Step 6 Check if the simulation is done:

(a) If the number of trials is less than Nyax, go to Step 2; otherwise continue to Step

7.
Step 7 Get the passing propensity as P = # of passes/Nmax and finish the program.

Details on the procedure are given next.

7.3.1 Estimating the minimum pore width

To exactly get the minimum pore width for molecules to be able to fit the pore, there is
not a procedure, in general. What can be done to get a good estimate of this minimum pore
width, for each molecule, is to algorithmically get the shortest distance that transverses the
molecules, that will be defined as the shortest axis of the molecule; in an analogous way, the
longest distance that transverses the molecules will be defined as the long azis of the molecule.

To get the shortest molecule axis and length, project each atom position vector onto a
selected unit vector, 7 = (sin (#) cos (¢) , sin (0) sin (¢) , cos (0)); with 6 € [0,7) and ¢ € [0, 7);
and add and subtract the corresponding atom radius from this value, make a set of values out of
the maximum values and a second list out of minimum values. From the set of these maximum
values get the maximum value; for the list of the minimum values, get the minimum value.
Subtract the minimum value from the maximum value and take the absolute value, this will be
the length of the molecule along 7, given fixed angles 6 and ¢. Do this for the complete range
of 6 and ¢ and obtain the maximum length I, and the minimum length ly;,. The minimum
width of the pore for the molecule to fit is [ In Figure 7.4 the shortest and longest axes of
the molecules are shown; refer to Section 7.4 for a more detailed description of the molecule

models used.

7.3.2 Setting up the initial configuration

The initial configuration of the molecules is important since it influences the passing propen-
sity. The physical condition that we choose for the starting position is when the molecules are

separated by a distance along the z axis of the pore Azy = r. = Ry, + Ra,, where . is the
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(a) (b)

Figure 7.4: 3D molecule models, longest and shortest axis of the molecules. The models for the molecules to be
used for (a) 4-nitrobenzaldehyde and (b) 4-(4-nitrophenyl)-2-butanone; refer to Section 7.4 for a more detailed
description of the molecule models used. The shortest axis of the molecule is represented by the shortest arrow
(blue) and the longest by the longest (magenta) arrow. For the shortest axis for (a) is lmin = 3.40 units and for
(b) lmin = 5.92 units.

sum of the radius of the surrounding spheres of the molecules, see Figure 7.5. The surrounding
sphere of a molecule is defined as the minimum sphere with radius R;_ from the center of mass
of the molecule that encloses all the spheres in the molecule. Even if the surrounding sphere
gives an idea of the typical molecule size, it often provides no information about the shortest
or longest axis of the molecule.

The fixed choice of the initial separation of the molecules along the z axis leaves several
free parameters, that are the x and y position of the molecules within the pore, and the orien-
tations of the molecules. The initial z and y position of the molecules are randomly determined
from the available phase space for the molecule to move in. The procedure to determine the
initial = and y position of each molecule is to: (i) Set the center of mass of the molecule in the
(z,y) = (0,0) coordinate. (i) Randomly choose and fiz the orientation of the body-fixed axis
of the molecule, such that the molecule does not intersect the pore walls; the molecules will
not intersect each other because of the initial Azy position. This is to make sure the molecule

can explore all the possible orientations uniformly. (iii) Get the projection of the molecule in
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Figure 7.5: 3D molecule models, definition of the surrounding sphere; example with linear oligomers at a valid
initial configuration. The figure shows a dimer and a trimer in the pore of diameter D,. The surrounding spheres
are located at the center of mass of the i*" oligomer, in this case the geometrical center of the molecules, and

denoted as R;,.

the x and y plane of the molecule. (iv) Uniformly choose a unit vector in the xy-plane such
that 7 = (cos () ,sin (0)) with 6 in the range [0,27), so that the phase space available for the
molecule to move in can be calculated and call it L,,, for the selected orientation, see Figure
7.6. (v) Include the physical constraint that the molecules will always have a tendency to be
in an initial orientation such that the phase space for them to move is maximum, i.e., get the
ratio P = Lys/(Dp — lmin) and choose a random number in the range n = (0,1). If n is less
than or equal to P, accept the orientation of the molecule and choose a random position for
the molecule along the unit vector 7; that is, the molecule should not intersect the pore walls.

As it is important to keep track of the position of the spheres in the molecules, it is
important to keep track of the position of the center of mass, the hydrodynamic center and the
orientation of the axis of the molecules, since the moves will always be performed with respect
to this body-fixed frame. An example of a valid initial configuration of the molecules is shown

in Figure 7.7.
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Figure 7.6: Setting up the initial orientation of the molecules in 3D. The phase space, for the molecules to move
in a randomly chosen direction in the zy-plane, for the *" molecule, is given by the sum of the lengths of the
arrows, Lps; = Li; + Ly,. The arrows start on the surface of the closest atom to the wall and end on the wall,

in the previously chosen direction.

7.3.3 Moving the Molecules: Translation and Rotation

There are several methods to choose the rotation of the molecules, these include the use
of quaternions and different schemes of Euler angles [17]. An important quantity that has
not been introduced is the hydrodynamic center, that is the location where the overall force
is imprinted on the molecule [9]. The hydrodynamic center is also the point about which
the molecule rotates. For a free rotating particle the hydrodynamic center coincides with the
center of mass, however this is not always the case. In Section 7.9, a procedure to calculate the
position of the hydrodynamic center of a molecule made of spheres is given.

To get the translational and rotational quantities, it is convenient to refer to Equation 7.20,
that clearly gives an algorithm to choose the displacements. Since we are working in a body-
fixed frame and the fluid in which the molecules are moving in is isotropic and homogeneous,
the diffusion tensors will remain constant. To get the displacements, the procedure is to: ()
Get a 6 x 1 vector made of normal distributed random numbers. (i) With the diffusion tensor,

calculate the displacement following Equation 7.20

di =V QAtMijo, (7.21)
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Az = Rlﬂl
@,»,

Az = Rlel +R2€

(a) (c)

Figure 7.7: 3D valid initial configuration for the molecules, using the molecules for the simulation. View from
the top of the (a) z—axis, (b) z—axis and (c) y—axis. The initial separation of the molecules in the z—axis is
always the same, Az = Azgp = Ry, + R2,. The body-fixed axis of the molecules are represented by the arrows

attached to the molecules; see Section 7.4 for details.

where Einstein summation convention over repeated indices is used and 4,j € {1,2,3,4,5,6}.
(7i7) The translational quantities are associated with the first three indices, ¢ € {1,2, 3}, and
the rotational with the last three, i € {4,5,6}. To implement the translational algorithm, a
transformation to the pore-fixed frame is needed. If the body-fixed frame vector basis of the
ith molecule is defined by {é;,, é;,, €5}, where the vectors are written in the pore-fixed frame,

the displacement vector of the molecules in the pore-fixed frame is
AZ; = dié;, + doé;, + d3éyy. (7.22)

(iv) Translate the hydrodynamic center, center of mass, and all the spheres in the molecule by
AZ;.

For the rotational part, several methods to rotate the molecules exist [17]. We choose an
Euler-zyz rotation scheme, that is also known as the Tait-Bryan angles rotation scheme. The
Tait-Bryan angle scheme consists on a sequence of rotations about the 3 different angles of
rotation. In particular, we are interested in the scheme where the molecule is first rotated
about the body-fixed frame along the x axis, then in the body-fixed frame about the y axis
and then about the z axis. To rotate the molecule: (i) Translate the molecule such that the

hydrodynamic center of the molecule lies at the (x,y, z) = (0,0,0) coordinate. (ii) Rotate the
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spheres of the molecule, along with é;,, é;, and the center of mass vector, about the é;, axis.
(7i7) Rotate the spheres of the molecule, along with é;,, é;, and the center of mass vector, about
the é;, axis. (iv) Rotate the spheres of the molecule, along with é;,, é;, and the center of mass
vector, about the é;, axis. (v) Move the spheres and the center of mass such that the position
of the hydrodynamic center of matches with the original position of where it was.

The rotations are made using quaternions. The rotation of vector Z about the unit vector

7 by an angle 0 is given by Z’, using the formula
#'=cos(0)Z+ (Z-9) (1 —cos () g+ cos () T x §. (7.23)

It is worth mentioning that it is tempting to try to find a three dimensional orthonormal set
of axis where both the translational and rotational parts of the diffusion tensors are diagonal,
with no coupling. This is, most of the time, not possible.

Once the molecules are moved, it has to be checked whether the molecules obey the steric
constraints, i.e., the molecules do not intersect each other or the pore walls; the two cases are
evaluated separately. To check if the molecules intersect the pore walls, it is useful to first check
if the surrounding spheres (defined in Section 7.3.2) intersect the pore wall. If the surrounding
spheres do not intersect the pore walls, the molecules do not intersect the pore walls. Otherwise,
intersection of every sphere in the molecule with the pore walls has to be checked. To check
the intersection of the molecules, it suffices to check if the surrounding spheres do not intersect
each other. If this does not happen the molecules cannot intersect. Otherwise, the intersection
of the molecules has to be checked for each of the spheres the molecules are made of.

To evaluate the intersection of the molecules with the pore and between each other, define
three logical variables Acy,, Acy, and Acio; where Ac,, and Ac,, are the binary logical
variables (true/ false) that denote the intersection of the molecules with the wall and Ac;o the
binary logical variable that denotes if the molecules intersect each other. To accept a move of

the molecules Am (Acy,, Acy,, Aci2) must be true, where
Am(Ul,UQ,...,UN):Ul/\UQ/\.../\UN; (7.24)

the “A” operator makes reference to the logical “and” operator and “V” to the logical “or”

operator.
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To evaluate Ac,,, the intersection of the molecules’ spheres with the pore walls have to
be tested. If there are two circles, such that R; > ro, and if the bigger circle is centered at
(z1,y1) = (0,0) and the smaller one at (z2,y2), then circle 2 is inside circle 1, without any
intersection, if (W%—m) < Rj; that is equivalent to (w% —i—y%) < (Ry — 7’2)2. Define
R, = D, /2 as the pore radius, r;; as the radius of the 4% sphere of the i*" molecule, and T
and y;; as the x and y coordinates. For the molecule not to intersect the pore walls, then either

two of the conditions have to be met: (i) That the surrounding sphere, R does not intersect

Tsurr )
the pore walls; a condition that is enough for the molecule to not intersect the pore walls; or
(7i) the individual spheres, of which the molecule is composed of, should not intersect the pore

walls. Thus,

N;

Acu, = [(ak, +92,) < (B — Ri,,.)’] A (22 +32) < (®—-n)Y]  (2)

must be true.

To determine if the molecules do mot intersect each other, Acjs, then either two of the
conditions have to be met: (i) That the surrounding spheres of the molecules do not intersect
each other; a condition that is enough for the molecules to not intersect each other; or (i)
the individual spheres of both molecules, of which the molecules are composed of, should not

intersect each other. Thus,

Acip = {[(ﬂﬁlm — 2200)% F Ylem — Y2em)” + (Z1em — chm)Q] > (Rig + Rzm)Z} Vv
N1 No

/\ /\ {[(3711 - x2j)2 + (yli - y2j)2 + (211. - Z2.7)2} 2 (7’11. +T2j)2} (7.26)

i=15=1
must be true. For a graphical representation, refer to Figure 7.8.

It is important to notice that if the problem is to be solved computationally, for relatively
narrow pores and when molecules are in the passing positions, the number of conditions to be
evaluated are N1 - Ny, a quantity that must be evaluated at least once for each move. The
evaluation of these conditions, rotating and translating the molecules, and the generation of
the normal distributed random numbers are the main sources to determine the speed at which
the program runs. Thus, it is convenient to model the system such that the molecules have the

least number of spheres possible, as described in Section 7.4. It is also critical to determine an



190

(a) (b) ()

Figure 7.8: 3D molecule intersection validation conditions. If (a) one of the molecules, or both, intersect the pore
wall, it is a forbidden configuration. (b) If the molecules intersect each other, it is a forbidden configuration. (c)

The molecules do not intersect the pore walls or each other, thus, it is a valid configuration.

appropriate time step At, so that the molecules appropriately explore the possible phase space
and not make unphysical moves (e.g., pass through each other), but is fast enough to provide

results in an acceptable amount of time.

7.4 Coarse Graining the Molecules

As was mentioned in Section 7.2, the molecules to be used in the Langevin simulations are
4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone. Since the length of the major axis of
the molecules are comparable to that of the pore diameter, the shape of the molecules play a
crucial role in determining the passing propensity, P, described in Section 7.1. The molecules
are modeled using solid spherical atoms, where the radius of the spheres are determined to be
the van der Waals radius of the atoms.

When modeling this system, the choice on the number of spheres with which to represent
the molecules is of critical importance. As the number of spheres of which the molecule is
composed of increases, the number of operations to move a molecule increases, thus, the required
computational time to move a molecule increases. The molecules have to be chosen so that
number of spheres is small, while retaining the essential geometrical features that will determine

the allowed configurations of these inside the pore.
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()

Figure 7.9: 3D 4-nitrobenzaldehyde molecule models. (a-c) The steric model used, different points of view, see
Table 7.1; (d-f) The model used to calculate the hydrodynamic parameters, i.e., the diffusion tensor, see Table
7.3. (g) Comparing the two models.
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Table 7.1: 4-nitrobenzaldehyde steric model, atoms and properties list with respect to the center of mass. All

the length units are in angstroms (A) and mass units in atomic mass units (u).

4-nitrobenzaldehyde steric model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass
Number Type T Y z Radius
1 O 3.2112 0.9307 —0.0019 1.52 15.9994
2 0] 3.0311 —1.2571 —0.0002 1.52 15.9994
3 @) —3.8866 —0.6218 —0.0016 1.52 15.9994
4 Cu 0.7978 1.722 0.0008 1.7 12.0107
5 Cu 0.6277 —1.8921 0.0007 1.7 12.0107
6 Cx —1.1109 1.8741 0.0008 1.7 12.0107
7 CH —1.3843 —1.4818 0.0005 1.7 12.0107
8 Cu —3.3357 0.8647 —0.0012 1.7 12.0107

Although the exact shape of the molecules can be obtained (see Section 7.9), the molecules
will be represented by an alternative set of spheres, that are given in Table 7.1 and Table 7.2
(see Figure 7.9(a-c) and Figure 7.10(a-c)).

The models for the molecule were chosen such that the most important geometrical details
were retained. To determine the hydrodynamic properties of the molecules, i.e., the diffusion
tensor, more constraints are set (see Section 7.10). Thus, a different model for the molecules
has to be used. The models are chosen so that the constraints in Section 7.10 are met, and
at the same time retaining the overall shape of the molecules in Table 7.1 and Table 7.2. The
models of the molecules to be used to determine the hydrodynamic properties for the molecules
are given in Table 7.3 and 7.4; in Figure 7.10 the molecules are shown. From the values in
Table 7.3 and 7.4, and the axis shown in Figure 7.10, the diffusion tensor and its square root

for the molecules in the hydrodynamic center are given by

P D, D}, | [ i
Dtr Drr Htr oy

(7.27)

=
Il
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(8)

Figure 7.10: 3D 4-(4-nitrophenyl)-2-butanone molecule models. (a-c) The steric model used, different points of
view, see Table 7.2; (d-e) The model used to calculate the hydrodynamic parameters, i.e., the diffusion tensor,

different points of view, see Table 7.4. (f) Comparing the two models.
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Table 7.2: 4-(4-nitrophenyl)-2-butanone steric model, atoms and properties list with respect to the center of

mass. All the length units are in angstroms (A) and mass units in atomic mass units (u).

4-(4-nitrophenyl)-2-butanone steric model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass
Number Type T Y z Radius
1 O 4.6229 0.6048 —0.6887 1.52 15.9994
2 O 4.3809 —1.3303 0.3192 1.52 15.9994
3 C 0.3655 1.8117 —0.6657 1.7 12.0107
4 C —0.0008 —1.1512 0.8858 1.7 12.0107
5 C 2.2539 1.5148 —0.7967 1.7 12.0107
6 C 1.8818 —1.4603 0.7553 1.7 12.0107
7 C —4.4445 —0.8195 —0.6628 2.7 12.0107
8 C —1.7139 0.6337 0.2351 2.9 12.0107

with specific components for the 4-nitrobenzaldehyde molecule (A)

1.7690 x 1072 57222 x 107° —1.1217 x 1077
Da, =] 5.7222x107° 15937 x 1072 —5.4258 x 1078 |, (7.28a)

—1.1217 x 1077 —5.4258 x 1078  1.4704 x 102

1.3156 x 1078 94785 x 1078  —9.9911 x 10~
D, =| —92178 x 10~8 —1.2536 x 10~ —2.7047 x 106 |, (7.28b)

—1.0049 x 107° 2.4085 x 1076 —1.2819 x 10~8

6.4684 x 107%  —1.1358 x 1076 —9.9009 x 10~

Dy, =| —-1.1358x 1076 4.7063 x 1074  1.0423 x 1078 | ; (7.28¢)

—9.9009 x 1079  1.0423 x 1078 4.2623 x 10~*
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Table 7.3: 4-nitrobenzaldehyde model for hydrodynamic quantity calculations, atoms and properties list with

respect to the center of mass. All the length units are in angstroms (A) and mass units in atomic mass units

(u).

4-nitrobenzaldehyde hydrodynamic model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass
Number  Type T y z Radius
1 O 3.2112 0.9307 —0.0019 1.52 15.9994
2 O 3.0311 —1.2571 —0.0002 1.52 15.9994
3 O —3.8866 —0.6218 —0.0016 1.52 15.9994
4 C 0.7978 1.722 0.0008 1.7 12.0107
5 C 0.6277 —1.8921 0.0007 1.7 12.0107
6 C —1.1109 1.8741 0.0008 1.7 12.0107
7 C —1.3843 —1.4818 0.0005 1.7 12.0107
8 C —3.3357 0.8647 —0.0012 1.7 12.0107
and the 4-(4-nitrophenyl)-2-butanone molecule (B)
1.3946 x 1072  —5.7788 x 1076 2.4703 x 1076
Dp, = | —5.7788 x107% 1.2242 x 1072 —1.0212x10°% |, (7.29a)
24703 x 107% —1.0212 x 107%  1.1874 x 102
—1.4641 x 1077 3.3012x 1076 1.1200 x 10~°
DL, =] —1.0059 x 107 —1.2793 x 1075 6.7952 x 10-6 |, (7.29b)
—6.3523 x 1076 9.0551 x 1076  1.0817 x 107°
3.5629 x 1074  —3.2336 x 107 2.0460 x 1076
Dp, =| -3.2336x1076 22778 x 1074 5.2070 x 10~ (7.29¢)
2.0460 x 107%  5.2070 x 1076 2.1898 x 10~*
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Table 7.4: 4-(4-nitrophenyl)-2-butanone model for hydrodynamic quantity calculations, atoms and properties
list with respect to the center of mass. All the length units are in angstroms (A) and mass units in atomic mass

units (u).

4-(4-nitrophenyl)-2-butanone hydrodynamic model molecule

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass
Number  Type T y z Radius
1 0] 4.6229 0.6048 —0.6887 1.52 15.9994
2 0] 4.3809 —1.3303 0.3192 1.52 15.9994
3 C 0.3655 1.8117 —0.6657 1.7 12.0107
4 C —0.0008 —1.1512 0.8858 1.7 12.0107
5 C 2.2539 1.5148 —0.7967 1.7 12.0107
6 C 1.8818 —1.4603 0.7553 1.7 12.0107
7 C —4.4445 —0.8195 —0.6628 2.7 12.0107
8 C —1.7139 0.6337 0.2351 2.9 12.0107

As the D tensor, the ji tensor is also calculated for the 4-nitrobenzaldehyde molecule (A)

1.3300 x 1071 22072 x 10~*  —4.4100 x 1077
HA, = 22072 x 1074 1.2624 x 107! —2.1900 x 1077 |, (7.30a)

—4.4100 x 1077 —2.1900 x 10~7  1.2126 x 101

8.3700 x 1078 6.1300 x 10~7  —6.4999 x 10~°
ph =1 —6.0800 x 1077 —8.5700 x 10~8 —1.8316 x 10~° |, (7.30b)

—6.8497 x 1075 1.6836 x 107> —9.0700 x 10~8

2.5433 x 1072 —2.4075 x 107° —2.1500 x 107

pa,,. = | —2.4075x 107°  2.1694 x 1072 2.4700 x 107 | ; (7.30c)

—2.1500 x 1077 2.4700 x 10~7  2.0645 x 102
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and the 4-(4-nitrophenyl)-2-butanone molecule (B)

1.1809 x 1071 —2.5251 x 10~® 1.0787 x 10~°
pB, = | —2.5251 x 10~®  1.1064 x 10~}  —4.6501 x 104 |, (7.31a)

1.0787 x 107°  —4.6501 x 10~*  1.0897 x 107!

~1.1000 x 1076 2.4650 x 107>  8.4253 x 1075
fp, = | —7.7946 x 1075 —1.0161 x 10~* 5.4692 x 10~ |, (7.31b)

—4.9960 x 1075 7.2447 x 10~°  8.7521 x 10~°

1.8875 x 1072 —9.5644 x 10~° 6.1519 x 10~°
UB,, = | —9.5644 x 1075 1.5091 x 1072 1.7432 x 107% |- (7.31c)

6.1519 x 107°  1.7432 x 10~%  1.4796 x 102

For more details on the molecules, refer to Section 7.9.

7.5 Langevin Results

To implement the Langevin simulation we use the molecule models described in Section
7.4. The components of the diffusion tensor used for the 4-nitrobenzaldehyde molecule are the
ones obtained in Equations 7.28(a)-(c), with the components of the square root given by the
quantities in Equations 7.30(a)-(c), and in a similar way for the 4-(4-nitrophenyl)-2-butanone
molecule, the components of the diffusion tensor used are given by 7.29(a)-(c) and the com-
ponents of its square root by 7.31(a)-(c); all calculated in the axis shown in Figure 7.10 and
Figure 7.9. The set of pores diameters used is D, = {15,20,25,30}. The number of trials to
determine the passing propensity is set to N = 200000. Examples of the convergence of the
passing propensity with the number of trials is shown in Figure 7.11

Thus, to determine if the time step is adequate, the time steps explored are At =
{1.0,0.1,0.01}, as initial guesses; the results are given in Figure 7.12. It can be seen that the
results start converging when a time step as big as At = 0.1 is considered; thus, it is deter-
mined that reasonable results can be obtained by using a time step of At = 0.1, making it the
optimum time step to determine the passing propensity. The values for the passing propensity

as a function of pore width are given in Table 7.5.
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Figure 7.11: Passing propensity of molecules as a function of number of trials. A time step of At = 1.0 is

implement, for pore diameters D, = {15, 20, 25,30}.

Table 7.5: Passing propensity as a function of pore width and time step. The passing propensity is determined
using N = 200000 trials. Time steps of At = {1.0,0.1,0.01} are examined. The results converge for times of
the order At = 0.1. See Figure 7.12.

Pore Diameter (A)
Time Step
15 20 25 30
1.0 0.02272  0.1336  0.2046  0.2392
0.1 0.02679 0.1362 0.2087 0.2409
0.01 0.02830 0.1377 0.2091 0.2421

It is worth mentioning that it can be inferred, by the magnitude of the probability, that
the small gap regime has almost been reached. This, by noticing that the available passing
space can be estimated using the shortest axes of the molecules. The shortest axes of the
molecules are given by Iy = 3.40 units for the 4-nitrobenzaldehyde molecule and Iy, = 5.92
units for the 4-(4-nitrophenyl)-2-butanone molecule, see Figure 7.4, so that the critical pore
width for the system to undergo single-file diffusion is Dy, =~ lmin; + lmin, = 9.32 units. Thus,
the pore widths examined leave “gaps” of significant size, g > 5.68, for the molecules to pass
each other; where the gap is defined as g = D) — lmin; — lmin,. Figure 7.8 gives an idea of the

scale, since the diagrams were made from data taken from the actual simulations.
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Figure 7.12: Passing propensity of molecules as a function of pore diameter. A time steps of At = {1.0,0.1,0.01}
are implemented, for pore diameters D, = {15, 20, 25,30}. The optimum time step is determined to be At = 0.1.

The specific values are given in Table 7.5.

Having all the parameters from the Langevin simulations, these can be mapped onto pa-

rameters for a more coarse grained KMC model for validation with experimental data.

7.6 Kinetic Monte Carlo Results: Validation with Experimental Results

Using Langevin molecular dynamics simulations to model the system is prohibitive in this
case, since the required time scales are not reachable, even for today’s super-computers. Thus,
we coarse-grain the continuous model to a 1 dimensional lattice-gas model, that has the char-
acteristics: (¢) The continuous pore of length L is tessellated into a linear array of L cells,
where the width of each cell, a, matches the longest effective particle diameter. (i7) Instead of
particles diffusing, the particles hop between adjacent neighboring cells. The hop rate of the
4-nitrobenzaldehyde particles and the 4-(4-nitrophenyl)-2-butanone molecules, that we shall
call A and B respectively, can be different. (ii7) The cells can have 3 states, with a particle

A or B, or empty; with at most one particle per cell, that reflects the non-overlapping steric
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constraint. (iv) The particles can only hop to next neighbor cells. If the cell to which the
particle is hopping is empty, the particles jump with hop rate h for A particles, or hg for B
particles. If the cell to which the particle is hopping is not empty and the particles are of differ-
ent species, the particles can exchange with probability P at a rate hex = (ha + hp) /2 [18].
(v) We shall be concerned with the initial phase of the reaction where there is only reactant in
the well stirred fluid, and when the inside of the pore has reached a steady-state.

To determine the parameters for the KMC simulation from the Langevin MD simulation

A diffusion A, B exchange B diffusion

linear nanopore in a zeolite or MSN

ﬂulﬁ a B diffusion E A diffusion | ﬂuld
A adsorption h Pe h Ah E desorption A
c c C [ c ’c 7T c I Yy c ’c Ycl Ve c c
Aﬁ'}-»hAAB d, B BB |A B| A Al B> AlA
A B diffusion A, B exchange A diffusion A A
n=1 2 3.. U

A — B unimolecular rxn

Cc

A k B

c

v

Figure 7.13: Coarse graining the continuum model to a discrete model. The continuous model is tessellated
into an array of cells, where only one particle is allowed per cell, reflecting the steric interaction condition. The

b particle specie hops to nearest neighbor empty cells with rate h;, and if the particle hops to an adjacent
occupied cell, it can exchange sites with a different species at a rate hex. Particles can adsorb/desorb from the
pore, from both pore ends, from/into a well-stirred and equilibrated fluid. Irreversible conversion of A particles

to B particles, at rate k, is only allowed within the pore.

parameters, the following relations are used [9, 18]

h = Dypa 2, (7.32a)

2P
Pox = 7—= 32
TP (7.32b)

where Dyp is the average translational diffusion tensor in the hydrodynamic center and is

easily calculated as 1/3 of the trace of the translational diffusion 3 x 3 matrix

1
DMD = gtr (Dtt) ; (733)
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Table 7.6: Passing probability as a function of pore width. The passing probability, Pex, is obtained from the
passing passing propensity, P, using the Langevin results with a time step of At = 0.01.

Pore Diameter (A)
15 20 25 30
P 0.02830 0.1377 0.2091 0.2421
Pex =2P/(1—P) | 0.05825 0.3195 0.5287 0.6395

and a is related to the typical particle size, see Figure 7.13. The passing probability between
A and B particles for the KMC model, P, is calculated from the passing propensity of the
molecules, P defined in Section 7.1, for a specific pore width; that is determined from Langevin
MD simulations.

The passing propensity for the molecules in Table 7.5, for a time step of At = 0.1, is mapped
onto the KMC model, see Table 7.6. The average diffusion coefficients for each specie are given
by one third of the trace of the matrices of Equation 7.28a and Equation 7.29a; thus, the values
for the coefficients are D4 = 1.6110 x 1072 and Dpg = 1.2687 x 1072, The hop rates are given
by ha = 1.6110 x 1072272 and hp = 1.2687 x 1072a~2, where a? is a free parameter. Now
that the parameters have been set, it remains to choose the reaction rate, that is not a trivial
parameter to choose. Since there is no a priori knowledge of the reaction rate, the goal will be
to get a family of curves and determine how the reactivity behaves as function of reaction rate
divided by hy4; that will be related to the initial product yield for the results presented in [19].

To eliminate some of the system’s parameters, it is instructive to write the master
equations for the discrete system. The master equations are first order differential equations
that determine the evolution of the system with time, so that, in this discrete model, the
evolution equations will relate the concentration of reactant A and product B at time ¢, at

each cell. To do this, relate the concentration of specie C = {A, B} at site n at time ¢,
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(Cp) (t) = (Cy), with the coupled differential equations:

d <£n> =—k(An) +ha ((Ap1En) — (En—1An) + (EnAnt1) — (AnEnt1)) +
Pexhex (<Anlen> - <Bn71An> + <BnAn+1> - <Aan+l>) ) (7343)
L) — 4 k() + by ((BaaBu) = (B Bu) + (BaBass) — (BuBui)) +

Poxhex ((Bn—14yn) — (Ap—1Bpn) + (ApBnt1) — (BpAnt1)) - (7.34b)

such that the terms on the righthand side represent the gain/loss by reaction, diffusion to empty
sites and exchange with different species. These equations are the lowest order differential
equations in a hierarchy of coupled differential equations. We are interested in the steady state,
so that d (A4,) /dt = d (B,) /dt = 0, that makes it possible to re-write the master equations for

the system in the form

0= = 5 (An) + ((Au1 Bu) = (BamrAu) + (BnAui) = (AnBnsr)) +
Pexzbej (<An—1Bn> - <Bn—1An> + <BnAn+1> - <Aan+1>) ’ (7353‘)
0=+ hﬁ <An> + 273 (<anlEn> — <En—1Bn> + <Ean+l> - <BnEn+1>) +
A A
Pexf;:j ((Bn-14n) — (An—1Bp) + (AnBpi1) — (BaAnia)). (7.35D)

meaning that the only free parameter is k/h4. With these considerations, the simulations are
run and the initial reactivity of the system is determined for a family of values of ket = k/ha;

where the reactivity n is defined as

L
0= ket (An). (7.36)

i=1
Since the typical length of the molecules is ~ 1nm, see Figure 7.17 and Figure 7.18, and the
typical length of the nanopores pores is ~ 100 nm units, see Figure 7.2, the number of cells
L that represent the pore is taken as L = 100. To determine the adsorption and desorption
parameters, the details of the reaction are given: The catalytic reaction is performed for 2
hours at 60°C; this, with 3 mol% catalyst, 0.39 mmol 4-nitrobenzaldehyde, 1.5 mL acetone
and 1.5 mL hexane [19]. This means that the percentage concentration of 4-nitrobenzaldehyde,

by mass, is given by

(Xo) = 0.39 x 1073 mol Myng/(0.39 x 1072 mol Myxp + 1.5mLps + 1.5 mLppey);  (7.37)



203

with the values Mynp = 151.12¢g/mol, pac = 0.786 g/mL and ppex = 0.655 g/mL, this implies
that the outside reactant concentration must be taken as (Xp) = 0.03. More details on how
to determine the boundary conditions are given in [20]. The results for the simulations are
presented in Figure 7.15.

The experimental results suggest that the percentage yield is not linearly correlated as

3.0 100
— 7 T T -
~25
2 9 80
=20 5
g a| o kg=001 2 60
B1sfe— T v kg=0.001 $
o kei=0.0001 £ 40
=0.! c
3 1.0 ® fef 8
i 8
2] 0.5}— ° * L —e 20
0.0 0
1.0 1.5 2.0 25 3.0 1.0 1.5 2.0 25 3.0
Pore Diameter (nm) Effective Pore Diameter (nm)

(a) (b)

Figure 7.14: (a) KMC results for several 7/kes ratios against (b) experimental results for percentage yield in [19].
The parameters for the KMC simulation are taken as ha = 1, hg = 0.788, hex = 0.894 and (Xo) = 0.03. The
catalytic reaction is performed for 2 hours at 60 °C}; this, with 3 mol% catalyst, 0.39 mmol 4-nitrobenzaldehyde,
1.5 mL acetone and 1.5 mL hexane [19].

the effective pore diameter increases, and could eventually plateau at values lower than 100%,
both in the simulations and experimentally. By using a low concentration of (Xj), the results
do not match. However, we believe that the concentration (Xy) by mass is not an appropriate
measure of the actual concentration, due to the constraints imposed by the model. Thus, we
explore a range of higher concentrations to determine if a higher concentration will yield similar
results; the results are presented in Figure 7.15.

With the KMC results for the higher concentrations, the trend gets closer to that of
the experimental results, in particular for the (Xy) = 0.8 results with effective reaction rate
kes = 0.001.

The KMC results indicate a similar trend for specific concentrations, however the small
conversion; for small pore diameters the scaled reactivity grows at a faster rate than for wider

pores, however, the plateau is reached for pore diameters lower than those for the experimental
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Figure 7.15: KMC results against experimental results, for outside concentrations of (a) (Xo) = 0.2, (b) (Xo) =
0.4, (c) (Xo) = 0.6, (¢) (Xo) = 0.8. The parameters for the KMC simulation are taken as ha = 1, hg = 0.788,
hex = 0.894. The catalytic reaction is performed for 2 hours at 60 °C’; this, with 3 mol% catalyst, 0.39 mmol
4-nitrobenzaldehyde, 1.5 mL acetone and 1.5 mL hexane [19].
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results. It is worth mentioning that even if a trend exists, it is difficult to elucidate the true

behavior with the limited amount of experimental data available.

7.7 Summary and Conclusion

Using molecular dynamics techniques, and molecular modeling techniques, we have deter-
mined the passing propensity of two molecules, 4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-
butanone, made out of spheres, in an infinitely long cylindrical channel of diameter D,, by
only including steric constraints. Once the passing propensity of the two molecules was deter-
mined, the parameters were mapped into a further coarse grained KMC model to determine
the reactivity of the system using several reaction rates. The results were then compared to
experimental data.

It was found that the trend in the KMC results had some similarities with the experimental
results. However, due to the lack of experimental results, a more thorough comparison with
extended data sets should be conducted to verify the trend in the KMC results. Also, we
believe that other important interactions between the molecules and the pore walls are missing

from the model and will be the focus of future work.
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7.9 Appendix A: The Shape of the Molecules

The 4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone molecule are modeled using

spheres. The center of the spheres correspond to the location of the atoms of which these
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Table 7.7: 4-nitrobenzaldehyde atom and properties list with respect to the center of mass, using a solid sphere

model. All the length units are in angstroms (A) and mass units in atomic mass units (u).

4-nitrobenzaldehyde

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass
Number Type T Y z Radius
1 (0] 3.2112 0.9307 —0.0019 1.52 15.9994
2 0] 3.0311 —1.2571 —0.0002 1.52 15.9994
3 O —3.8866 —0.6218 —0.0016 1.52 15.9994
4 N 2.5149 —0.1132 —0.0005 1.55 14.0067
5 C 1.1 0.0034 0.001 1.70 12.0107
6 C —1.6803 0.2328 0.0007 1.70 12.0107
7 C 0.5042 1.2646 0.0009 1.70 12.0107
8 C 0.3056 —1.1431 0.0009 1.70 12.0107
9 C —0.886 1.3793 0.0009 1.70 12.0107
10 C —1.0846 —1.0285 0.0007 1.70 12.0107
11 C —3.1296 0.353 —0.0009 1.70 12.0107
12 H 1.0914 2.1794 0.0007 1.20 1.00794
13 H 0.7351 —2.1417 0.0006 1.20 1.00794
14 H —1.3357 2.3689 0.0006 1.20 1.00794
15 H —1.684 —1.9351 0.0003 1.20 1.00794
16 H —3.5417 1.3764 —0.0014 1.20 1.00794
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are composed of. The radii of the spheres are the corresponding van der Waals radius of the
atoms; see Table 7.7 and Table 7.8, along with Figure 7.16.

Comparing the typical dimensions of the molecules give insight on the validity of the
models used. The molecules are compared in Figure 7.17 and Figure 7.18, revealing that the

“real” molecules are similar to those used as the models.

7.10 Appendix B: Calculating the Diffusion Tensor and its Square Root

The procedure to get the diffusion tensor is the one developed in [9]. The general strategy

is to calculate the 6 x 6 friction tensor ¢ and use the simple relation
D =kpT(L (7.38)

Where the tensor D is composed of 3 x 3 blocks, that correspond to the translational part

(Dy), the rotational part (D,,), and the translational-rotational coupling (Dy,), such that

_ D, D]
D= . (7.39)

Dt’r Drr
The diffusion tensor is dependent of the reference frame used, and the hydrodynamic center
can be calculated from this diffusion tensor. Once the hydrodynamic center is obtained, the

diffusion tensor is calculated with respect to this point. The relative vector from the initially

chosen reference frame to the hydrodynamic center is calculated as [9]

X z 4
rpo, DY +Dy -Di{ D DY - D}
o, |=| -Di¥ Dp+Di DY D -Di |- (T40)
z X T
D -DY Dz+DY |\ DI -DY

For a molecule made of N particles, the strategy to calculate the 6 x 6 friction tensor, { , is to
get a 3N x 3N matrix, B, composed of N three times three blocks B. Choose T;; as the 3t x 3
tensor with the information of the hydrodynamic friction between the i*" and j* sphere in the
molecule. The entries of the matrix B match with the T;; tensors, that is

Tij i#j

Bij == s Q = 671'77003. (741)
éI i=j
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(d) () (f)

Figure 7.16: 3D real molecule models for (a-c) 4-nitrobenzaldehyde molecule model, see Table 7.7, and (d-f)

4-(4-nitrophenyl)-2-butanone, see Table 7.8; views from different perspectives.
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Table 7.8: 4-(4-nitrophenyl)-2-butanone atom and properties list with respect to the center of mass. All the

length units are in angstroms (A) and mass units in atomic mass units (u).

4-(4-nitrophenyl)-2-butanone

Atom Atom Coordinate Coordinate Coordinate van der Walls Mass
Number Type T Y z Radius
1 (0] —2.0576 0.7186 1.6184 1.52 15.9994
2 0] —4.5294 0.7087 0.1689 1.52 15.9994
3 O 4.6229 0.6048 —0.6887 1.52 15.9994
4 O 4.3809 —1.3303 0.3192 1.52 15.9994
5 N 3.9027 —0.267 —0.1448 1.55 14.0067
6 C —1.7139 0.6337 0.2351 1.70 12.0107
7 C —0.2243 0.3946 0.1336 1.70 12.0107
8 C —2.5134 —0.4907 —0.4331 1.70 12.0107
9 C 0.5755 1.3524 —0.4662 1.70 12.0107
10 C 0.309 —0.7771 0.6433 1.70 12.0107
11 C —4.0182 —0.2778 —0.3586 1.70 12.0107
12 C 1.9497 1.1319 —0.5593 1.70 12.0107
13 C 1.6833 —0.9977 0.5503 1.70 12.0107
14 C 2.5037 —0.0431 —0.0509 1.70 12.0107
15 C —4.8708 —1.3612 —0.967 1.70 12.0107
16 H —1.9856 1.5935 —0.2207 1.20 1.00794
17 H —2.2347 —0.5788 —1.4895 1.20 1.00794
18 H —2.3256 —1.4512 0.0605 1.20 1.00794
19 H 0.1554 2.271 —0.8652 1.20 1.00794
20 H —0.3106 —1.5252 1.1282 1.20 1.00794
21 H 2.558 1.8976 —1.034 1.20 1.00794
22 H 2.0803 —1.9228 0.9603 1.20 1.00794
23 H —1.4492 1.3476 2.0429 1.20 1.00794
24 H —4.6964 —2.3033 —0.4415 1.20 1.00794
25 H —4.6256 —1.4685 —2.0265 1.20 1.00794
26 H —5.9274 —1.0947 —0.8751 1.20 1.00794
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Figure 7.17: Comparing all the 3D models for the 4-nitrobenzaldehyde molecule from different perspectives. The
left most images corresponds to the “real” molecule, see Table 7.7. The images in the middle correspond to the

steric model, see Table 7.1. The images in the right correspond to the hydrodynamic model, see Table 7.3.

with I the 3 x 3 identity matrix. For spheres of different radii, o; and o, and don’t intersect,
the expression for T;; is given by [9]

2 2
o + 05
R2

ij

3 R2,

Tij = (87T7]0Rij)_1 <I +

[11 R, R,

> s Rij = 7_‘; & 7:}‘; (7.42)

where 7 is the vector of the i*" particle with respect to the point where the friction tensor is
being calculated, R?j is the distance between the particles squared, and 7 is the viscosity of
the fluid. For particles that intersect and have the same radius o, the T;; tensor is [9]

_ 9 R;; 3 RiRy;
)

Since the results are passing propensities and the particles are immersed in the same fluid, the
viscosity of the fluid can be ignored, along with common factors, such as 7.

Once the B tensor is calculated, define C = B~!, such that C has the same dimensions as B
does, i.e., a 3N x 3N matrix. The different parts of the 6 x 6 friction tensor, that is made of

four blocks of 3 x 3 tensors. If { is given by

T
= Gt Gir , (7.44)

Ctr Crr
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Figure 7.18: Comparing all the 3D models for the 4-(4-nitrophenyl)-2-butanone molecule from different per-
spectives. The left most images corresponds to the “real” molecule, see Table 7.8. The images in the middle
correspond to the steric model, see Table 7.2. The images in the right correspond to the hydrodynamic model,

see Table 7.4.

the 3 x 3 blocks (i, (4 and (., are given by
N N
Gt = Z Z Cij, (7.45a)
i=1 i
N N
Gr=>_> UGy, (7.45b)
i=1 i
N N
w=2_> U,U; (7.45¢)
i=1 i

where C;; are the 3 x 3 blocks from C, and Uj is a 3 x 3 matrix related to the coordinates of

the i*" particle

0 —Zi Y
v i 0

The rotational part of the tensor (., is related to (¢ by [9]

4
Crr = (RS +6mVI, V= ngi: ol. (7.47)
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Finally, the diffusion tensor D is calculated using Equation 7.38 and is given by [9]

—1
- D. Dj, G CF
D=| 7" 7" | =k | " . (7.48)
Dtr Drr Ctr Crr

The diffusion tensor D has to be a 6 x 6 positive definite and symmetric matrix, i.e., D;; = Dji,

the

1]

matrix is invertible, diagonalizable, and the eigenvalues A > 0.
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CHAPTER 8. GENERAL CONCLUSIONS

In this work, several reaction-diffusion systems in nanopores were analyzed using lattice-
gas models. Kinetic Monte Carlo simulations were primarily used to determine the detailed
concentration of the particles inside the pore, i.e., the pore’s particle concentration profiles,
when imposing the single-file diffusion (SFD) constraint in the systems. All the particles in the
systems were assumed to have the same hop rates, unless otherwise stated.

The first system considered is an extension of the simple A — B reaction to an isomeric
stereoselective reaction A — B¢+ B!, where the local environment favors one of the isomers over
the other depending on the local reaction conditions. It was found that this kind of reaction,
at low reaction rates, allows an analytic treatment by making use of an extended generalized
hydrodynamic method, that consists on individually assessing the pair quantities (A, Fy11)
and (E,A,+1) rather than just the difference; mean-field theories fail completely in describing
these reactions at low reaction rates. Also, it was found that at high reaction rates, where a
mean field theory correctly describes the particle concentration profiles inside the pores, the
extended generalized theory manages to describe it as well.

The next system considered was an extension of the simple A — B with R = 0 model,
where more general steric interactions are used, i.e., a reaction-diffusion system with up to
nearest-neighbor exclusion, R = 1, is considered. It was found that unlike the simple A — B
model, the change from a 3D to a 1D environment induces non-trivial correlations in the ad-
sorption and desorption processes; a feature that complicates the simulation of only the pore,
instead of the fluid+pore, unlike for the simple R = 0 case where the adsorption and desorption
parameters are trivially determined. These correlations in turn predict density oscillations near
the pore walls and adsorption/desorption sites, that matches the prediction of fluid density os-

cillations near the pore walls in real fluids. Also, a methodology was developed to treat the fluid
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and the pore separately, instead of having to simulate the fluid and pore as a single system.
Tailored simulations were implemented to determine adsorption and desorption parameters,
that were used to simulate only the pore system. The single pore system, whose adsorption
and desorption parameters were found by tailored simulations, particle concentration profiles
matched that of the fluid coupled to the pore. An analytic theory to match the results from
the KMC simulations, similar to that for the simple A — B model with R = 0, was developed
and successfully implemented. This was also compared to mean-field type of equations that
failed to predict the proper trend in the reaction-diffusion case. For the case of only diffusion,
a pair approrimation was sufficient to properly describe the concentration profile, confirming
the Markovian property of the system.

Following the analysis of the two systems, we developed a framework that allows the im-
plementation of simplified simulations for more general fluid+pore reaction-diffusion systems.
Instead of a one-dimensional pore, we considered an N x M cross-sectional pore of length L
coupled to a semi-infinite three-dimensional fluid, with a generalized exclusion range R. Tai-
lored simulations to obtain the proper adsorption/desorption parameters to simulate only the
pore are developed and are implemented for specific values of N, M and R; applications for
these systems are shown and for each system an analytic theory is successfully developed. The
pore concentration profiles are analytically reconstructed using the Markov property of the
systems.

For systems in one-dimension, the SDF constraint is relaxed by including a passing prob-
ability between particles of different species. This passing probability was obtained by im-
plementing Langevin MD simulations. The first case under consideration was motivated by
polymerization reactions in narrow channels. Of particular interest is the simplification of
the problem to two-dimensions. The molecules are initially coarse-grained to models where
molecules made out of a collection of spheres diffusing in an infinitely long cylindrical chan-
nel of cross-section D,. These molecules are mapped to molecules in two dimensions that are
made of circles that diffuse in an infinitely long rectangular channel of width W; that is re-
ferred to as “the pore”. It is assumed that the oligomers have the same diffusion coefficients

along their two main symmetry axes, as well as for the rotational diffusion coefficient. The
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interactions considered are steric, such that the molecules cannot intersect the pore walls or
each other, otherwise the interactions are fluid-mediated. In this work, we were focused on
elucidating the passing propensity for linear oligomers in monomer-oligomer systems. The
small and large gap regimes were examined. It was concluded that for small gaps, the pass-
ing propensity of monomer-monomer, monomer-dimer and monomer-trimer systems scale as
P ~ (g/r)?; where o is the scaling exponent. This scaling exponent for different oligomers
was determined to follow omonomer = Odimer < Otrimer, that basically shows that for longer
oligomers the passing propensity decreases faster with decreasing gap size. For wider gaps, it
was found that the passing propensity for longer oligomers is higher than for shorter oligomers
in a given range, this due to the initial constraint that the shortest axis molecules tend to
be perpendicular to the longest axis of the pore. It can also be seen that as ¢ — oo, the
expected magnitude of the passing propensity P for different sized oligomers is restored, i.e.,
Peircte (9) = Paimer (9) = Pirimer (9) > Pretramer (9) > - - ..

For the last part of this work, an application to the catalytic conversion of 4-nitrobenzaldehyde
to 4-(4-nitrophenyl)-2-butanone is examined. The 4-nitrobenzaldehyde is dissolved in an ace-
tone and hexane solution that contains mesoporous silica nanoparticles, that have amine func-
tionalized nanopores. The aldolization reaction takes place in the nanopores. Based on the
properties of the mesoporous silica, we implemented a KMC one-dimensional model with a con-
stant concentration of reactant in the outside fluid with exclusion range R = 0. The particles
do not have the same hop rate, and exchange is possible. To assess the exchange probability, a
realistic model of the molecules was implemented. The exchange probability was determined by
obtaining the passing propensity of the 4-nitrobenzaldehyde and 4-(4-nitrophenyl)-2-butanone
molecules, that were coarse-grained as molecules made out of spheres, by Langevin MD sim-
ulations in three dimensions. The hydrodynamic properties such as the diffusion tensor were
obtained by further approximation of the models. Once the passing propensities and diffusion
tensors were obtained, these parameters were converted to the required parameters for the
KMC simulations, where the reactivity for the molecules was obtained and compared with the
experimental data; we believe that the effective fractional volume of the reactant is higher than

the one calculated from the experimental data. We determine that the choice of outside con-
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centration (Xg) for the KMC model has to be higher than that described in the experiment,
along with a low reaction rate. Even if the KMC results follow the experimental trend, we
believe that other interactions and further modeling of the channel have to be included for

effective modeling of the system.

8.1 Future Work

Prospective future work includes numerous possibilities. Currently, the analytic theories
for the reaction-diffusion kinetic Monte Carlo models we have presented limit the hop rates
of the particles to be the same; i.e, the hop rate for the i*" species is the same as the hop
rate for the j'™ species, h; = hj; and it is limited to the irreversible conversion of a single
particle type. A future perspective would be to develop analytic theories for reaction-diffusion
systems where particles of different species to have with unequal hop rates and/or where there
is a bimolecular reaction A + B <» C + D. Further work can expand on obtaining an analytic
theory for reaction-diffusion systems for wider pore lattices with higher exclusion range.

Future work for the Langevin MDs simulations would be directed towards refining the
current model by including interactions that go beyond the steric interactions, or refine the
steric interactions by modeling the interior of the pore in mode detail. Not only the modeling
but the algorithm can be refined to include adaptative time steps and parallel processing

capabilities.
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