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Overhead longwave infrared hyperspectral material identification
using radiometric models

Michael E. Zelinski?®
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Abstract. Material detection algorithms used in hyperspectral data processing are computationally efficient but can
produce relatively high numbers of false positives. Material identification performed as a secondary processing step
on detected pixels can help separate true and false positives. This paper presents a material identification processing
chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms
utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of
the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria
for model selection. The resulting product includes an optimal atmospheric profile and full radiance material model
that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing
all model parameters to improve identification is also presented. This paper details the processing chain and provides
justification for the algorithms used. Several examples are provided using modeled data at different noise levels.
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1 Introduction

Longwave infrared (LWIR) hyperspectral imagers (HSI) can capture high spectral resolution
measurements of the electromagnetic spectrum between 7.5-13.5um."? In this spectral region
many gas® and solid materials*> have spectral emission/absorption features that are observable
by LWIR HSI. Spectral analysts match observed spectral features found in the data with those
found in the spectral database of materials. This is often performed by using automated material
or target detection algorithms.®’ Detection algorithms are designed to be computationally
efficient and process spectra quickly; however, they have typical false alarms rates of
approximately 10~ for common threshold settings®. The detections above the threshold will be
examined by a spectral analyst. As the number of sensors grow and as the sensors themselves
improve, collecting greater numbers of pixels, the amount of false alarms will begin to overload
the current working number of spectral analysts. There is an increasing need to further reduce the
number of pixels inspected by analysts. To mitigate the effect of costly false alarms a “material
identification” algorithm can be used®’. Material identification performs a more thorough
analysis on a single pixel (or region) of interest that passed the detection threshold. It is often
more time consuming than detection algorithms and is not practical to run on a full scene. The
resulting information can provide the spectral analyst with more information about the contents
of the pixel. This information, which is often quantitative, can also be used to set additional
thresholds on the data to further suppress false alarms.

This work will require estimation of atmospheric parameters (transmission, downwelling
radiance, and upwelling radiance). Temperature Emissivity Separation (TES) algorithms provide
a method of acquiring these terms. The In-Scene Atmospheric Compensation (ISAC) algorithm'®
utilizes in-scene blackbodies in an algorithm that provides an estimate of atmospheric
transmission and upwelling. This work was developed for Aerospace Corporation’s Spatially
Enhanced Broadband Array Spectrograph System (SEBASS). SEBASS utilizes a liquid helium
cooled focal plane array that has very well-behaved noise structure and few dead pixels. Not all



LWIR HSI sensors have these characteristics. Another important issue is that not all scenes have
blackbodies present and not all scenes have spatially uniform atmospheric profiles. Because of
these issues the ISAC algorithm is not appropriate for all LWIR HSI imaging scenarios. Other
approaches'! require measuring the atmosphere by sounding, and then using this data in a
radiative transport code such as MODTRAN (MODerate resolution atmospheric
TRANsmission)'? to simulate the atmospheric terms found in the radiance equation. This
approach has problems relating to the availability of time/location appropriate sounding data.
There are also several methods to “search” for correct atmospheric and model terms. This is done
by using precomputed look up tables for the atmosphere!*!® and spectral emissivity smoothness
as a metric for appropriate model parameters (solid materials have broader spectral features than
atmospheric gasses). The work presented here will utilize some of these concepts in a new
approach that does not depend on in-scene blackbodies, sounding, or a spatially uniform
atmosphere. It should be noted that these traditional algorithms are likely more computationally
efficient than the processing chain presented in this document.

This paper demonstrates a physics based processing chain for performing material identification
by unmixing non-whitened LWIR HSI radiance data. Spectra are unmixed by producing radiance
models that match measured scene spectra. The models are comprised of background
endmembers and emissivity spectra that are forward modeled to radiance. Models and scene
measurements are compared by using RMS error.

As mentioned above, researchers have used atmospheric sounding to obtain an atmospheric
temperature/humidity/ozone profile. This paper demonstrates how to acquire the atmospheric
profile by searching for it using an optimization algorithm. Temperatures and abundances for the
material of interest are also determined. If all parameters in the model are correct then it should
match the measurement. If it does not match, then it is unlikely that the pixel under inspection
contains the material of interest.

The processing chain consists of two primary steps, atmospheric inference and radiometric
modeling/pixel unmixing. Figure 1 provides the reader with a summary view of the algorithms.

Initial Atmospheric Optimal Radiometric Modeling
atmospheric —» | Inference Atmosphere and Pixel Unmixing — |D
profile Use optimization algorithm Use optimization algorithm to
to find an atmospheric further optimize the
20 Soectral profile that.prf)c.igces atmosphere. Within each
pectral  __,, | smooth emissivities from » | optimization iteration, find the
Endmembers the 20 spectral endmembers best radiometric model using a
| mixed subset of library spectra
. and endmembers. Converge
SpGCtrum of interest on a best fit radiance model.
Spectral Libra ry Use results for identification.

Figure 1. This flowchart provides a basic view of the data processing pipeline.

Whether this processing chain is applied to real data or simulated data there are several important
assumptions that need to be stated.
e Sensors accurately and precisely measure radiance at the sensor aperture



e MODTRAN simulates atmospheric transmission, upwelling, and downwelling both
accurately and precisely
e Lambertian radiance models are appropriate

This paper is organized as follows. Section 2 contains a description of MODTRAN and provides
several important points on using it in this study. Section 3 describes an approach for obtaining
an optimal atmospheric column parameterization. Section 4 details the Lambertian radiance
model used. Section 5 describes the calculations that occur within each iteration of the
atmospheric inference and spectral unmixing algorithms. Section 6 describes how logistic
regression can be used with multiple model output parameters for identification and reducing
false alarms. Section 7 uses the data processing chain on multiple experiments and results.
Section 8 is the conclusion. Section 9 is an appendix with detailed flow charts of the algorithms.
Section 10 provides a list of references. Throughout the document are several implementation
notes that readers should follow if they choose to implement these algorithms.

The radiance unit used here is a micro-Flick (uF) which is a uW/(cm? sr um).

2 MODTRAN

MODTRAN is a highly capable tool for radiative transport calculations in the Earth’s
atmosphere at altitudes below sea level (e.g. Death Valley) to 100km for wavelengths between
(0.2 to 10,000um) at a spectral resolution of 0.1cm™.

This research makes use of the ‘Card2C1’ to define the temperature, humidity, and ozone. The
algorithms define the profile at four altitudes. The lowest altitude is ground level. The second
altitude is at 300 meters where the atmospheric boundary layer could exist. The third altitude is
at the aircraft altitude. If the aircraft has an onboard temperature/humidity/ozone sensor that data
can be used by the algorithm — this will be discussed in the results. The fourth altitude is at
10km. Between each of the defined altitudes, seven additional atmospheric layers are computed
using linear interpolation for a total of 25 layers. The algorithms described below will control the
atmospheric profile values at the four layers and find an optimal profile for establishing realistic
radiance models.

For the radiance models defined below the atmospheric transmission and the upwelling radiance
values are determined by positioning the MODTRAN observer at the altitude of the HSI sensor.
At this setting the target temperature should be set to OK. To find the downwelling term the
observer should be placed 1m above the target and the target reflectance should be set to 1. The
Lambertian reflectance model should be used here.

Atmospheric band radiance and transmission values vary significantly in narrow wavelength
regions - much narrower than the spectral resolution studied here.'? Therefore, spectral
calibration (band center and width) is critical for this work. Because this work makes use of
simulated data the spectral calibration is known; however, in a real HSI system, wavelength
calibration bandcenters should be known to within 1/10™ of a spectral bin across the entire focal
plane array (accounting for spectral smile and keystone). The spectral band line shape should
also be known, for this work a Gaussian was used. Bands between 8.86um and 13.1um are used,
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outside of this region the water vapor features are large and high frequency enough that they are
not well sampled by MODTRAN at 0.1cm™! resolution.

The code used to interact with MODTRAN was written in MATLAB and makes use of the
MODTRAN class wrapper!® to set the values in the tape5 file. It also includes commands to run
MODTRAN as well as read the output in the tape7 file.

MODTRAN calculations are performed at 0.1cm™ spectral resolution between 1400cm™ and
700cm™. The resulting atmospheric arrays have 7001 elements. When appropriate, radiometric
calculations are done in high spectral resolution. The flowcharts in the Appendix detail when this
is done. Downsampling is done by integrating under the Gaussian (sigma value of 0.024um)
spectral line shape for each spectral band. This work uses a hypothetical sensor with 178 bands,
bandwidth 0.024um/pixel spanning 8.86 — 13.1um. Downsampling is done efficiently by creating
a bandpass array (dimensions 7001x178) that is applied to the high-resolution vectors with a dot
product.

3 Atmospheric Column Parameter Optimization

The atmospheric inference and spectral unmixing methods utilize MODTRAN estimates of the
atmospheric spectral transmission, downwelling, and upwelling. MODTRAN atmospheres are
parameterized by defining the temperature, dewpoint, and ozone profiles of the atmospheric
column. As will be described, if these atmospheric terms are known one can expect smooth
emissivities and low error radiance models. Typically, atmospheric sounding is used to measure
these parameters. An alternate method is to search for them by using metrics relating to
emissivity smoothness and model error. In the approach used here an optimization algorithm is
used to guide the search.

Nelder-Meade (a.k.a. “simplex” or “amoeba” algorithm)'” is a common numerical optimization
algorithm that does not require an analytical derivative. There are implementations in many
coding packages such as Python or MATLAB. An open source constrained version of the
algorithm in MATLAB allows users to set boundaries on each optimized variable'®. This is
particularly useful when the objective function has local minima and the user knows the
initialization is close to an optimal solution.

Numerical optimization algorithms require initialization points. There are several acceptable
ways this could be done. The author uses the median scene brightness temperature to bias the
temperature and dewpoints of a set of atmospheric profiles that loosely resemble standard
atmospheres. Using this set, the atmospheric inference step is repeated using the same
atmospheres but with varying amounts of tropospheric ozone. Readers might find it useful to use
the standard atmospheres. The best atmosphere in the set is selected as the initialization point for
the atmospheric inference, which is then run for 60 iterations. The output of this is then used as
an initialization point for the spectral unmixing method, is run several times with different
initialization constraints (see Table 1). Each successive run improves upon the previous estimate
of the atmospheric parameters. The first run improves the estimate of the atmospheric column
temperature and humidity. The second run improves the estimate of the tropospheric ozone



concentration. The third run fine tunes the most sensitive portions of the profile. As the
optimization algorithm defines new atmospheres they are saved in a database.

Table 1 presents the constraints used on atmospheric optimizations. ‘tp_aX’, ‘dp_aX’, and
‘oz_aX’ indicate the temperature, dewpoint, and ozone constraints at altitude ‘X’. The
values in the table indicate the boundary around the initialization value “i” at each
altitude, for example, if tp_al is 20, then the boundary for the atmospheric inference
method would be [SC, 35C]. The ozone layer uses the initial value +/- the initial value
divided by 2. This prevents negative ozone values from being used. Bold numbers indicate
hard boundaries that are not relative to the initialization value.

Algorithm | tp_al | tp_a2|tp_a3| tp_ad|dp_al|dp_a2|dp_a3|dp_ad4| oz al | oz a2 | oz_ a3 | oz a4 |lter.
Atm. Infer|-15, 15]-16, 16|-16, 16|-16, 16| -16, 16|-16, 16|-16, 16| -16, 16|-i/2, +i/2|-i/2, +i/2|-i/2, +i/2|-i/2, +i/2| 60

Unmix -5,5(-55([-55] 00 | -55]-55] 0,0 0,0 0,0 0,0 0,0 0,0 15
Unmix 0,0 0,0 [ 0,0 0,0 0,0 0,0 | 0,0 0,0 0,.4 0,.4 0,0 0,0 25
Unmix -55(-55(|-55] 00 | -55]|-55]|-55| 00 0,0 -i/2,.1 0,0 0,0 60

4 LWIR Lambertian Radiance Model

The LWIR Lambertian radiance model'® is defined as:
L=B(Met+(1—-8&tly+ L, (1)

Where L is at sensor radiance [uF], B(T) is blackbody radiance defined at temperature T, € is
the material emissivity, 7 is the transmission of the atmosphere from the ground to sensor, Lis
the downwelling radiance, and L,, is the upwelling radiance. The spectral nature of each
component is implied and the A has therefore been omitted from the equation.

Section 5.2 makes use of a target leaving radiance model that incorporates mixtures of target
spectra as well as scene endmembers. This can be defined as:

Lleaving = Ziwfl(l‘em—rl_l‘u) + Z;V fj(B(Tj)sj - (1 - j)Ld) (2)

Where M is the number of endmembers, N is the number of target spectra, Le,y, ; is the i" scene
endmember, and f; and f; are the fractional abundances of each component. The abundances are
constrained such that they sum to 1 and are non-negative.*

5 Calculations Occurring Within Each Iteration

The in Section 3, the atrmospheric inference and pixel unmixing algorithms utilize iterative
optimization to find a solution that is close to optimal. At each iteration, tests are done to assess
how well model parameters approximate the optimal solution. This section will provide details
on the calculations done within each iteration.



A key part of this work is finding the correct material temperature in the radiometric model. Both
algorithms used in the paper have separate approaches to finding this temperature for the
pixels(s) under inspection. The atmospheric inference method uses an approach inspired by
ARTEMIS (Automatic Retrieval of Temperature and Emissivity using Spectral Smoothness)'
that determines optimal temperature by examining the smoothness of the calculated emissivity.
While the pixel unmixing algorithm uses a library based method, where the material temperature
is adjusted to find the lowest root mean squared error between the model and the measurement.
The details of both methods are discussed in the following two sections.

5.1 Temperature Determination for Atmospheric Inference

A key assumption used here is that most solid materials tend to have smoothly varying
emissivity relative to both the sensor’s spectral resolution and the spectral features of
atmospheric gasses.'® If Equation 1 is solved for emissivity and the atmospheric parameters and
material temperatures are known, then the calculated emissivity should be smooth for
Lambertian materials.

The method of temperature determination used by the atmospheric inference algorithm is shown
in Figure 2. Emissivity vectors are created at temperature interval of .1K spanning -30/+80K of
the median brightness temperature. For each emissivity vector a smoothness calculation was
performed. The smoothness metric used here is the product of two numbers. The first number is
the abs(median(e; —.95)), which biases the metric such that high emissivity vectors are
favored. The second number is calculated by down-sampling the emissivity vector by a factor of
2, taking the difference along the adjacent elements of the array (analogous to a derivative),
raising that vector to the 4™ power (this accentuates rough spectral features caused by an
incorrect atmosphere but not emissivity variation), and then taking its mean. A minimum value
indicates the least rough (or smoothest) emissivity that is close to .95. The product of these two
numbers is used in the cost function for the optimization. This process is repeated for all 20
endmembers. Readers should examine Appendix A.1, which shows all steps in the atmospheric
inference algorithm.
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Figure 2. This flowchart shows the temperature determination method used in the atmospheric inference
algorithm. Eq. 1 solved for emissivity is used to calculate emissivity spectra at a range of temperatures (shown
in right hand plot). A smoothness metric is used to select the ideal temperature (left hand plot) at the
minimum roughness value. This is repeated for each of the 20 endmembers. The summation of smoothness
values is used as the cost function in the atmospheric optimization.

This procedure is computationally fast and can be applied to many pixels, temperature ranges,
and atmospheres. In a real-world implementation, it is preferable to have pixels that are at
different temperatures and have different emissivities. The 20 endmembers should be collected
from an area around the pixel of interest. Using a rectangle or circle with size determined by
padding the perimeter around the region of interest by 10 pixels is an appropriate approach.
Endmembers can be selected using the maxD'? algorithm, where the 20 most orthogonal pixel
vectors are chosen.

5.2 Model-Based Temperature Determination and Spectral Unmixing

A key component of material identification is finding the signal model that matches the
measurement. In this section, radiance models are created from a subset of library spectra and the
20 local background endmembers. As in Section 5.1, this method is also part of an iterative
atmospheric optimization used to determine an optimal set of atmospheric parameters, however
here a spectrum of interest is unmixed and several statistics useful for material identification are
found.

Unmixing using radiometric models is a multistep process. To aid in understanding this process
readers should refer to Appendix A.2 and then to the flow charts presented in this section. The
first step is to obtain an initial temperature estimate. Using MATLAB’s Isq/in** models with all
material spectra and background endmembers are fit at a course range of temperatures (dT =



.5K). Figure 3 details this method. The temperature found at this step is used in the following
modeling selection step.

The best-fit model from the initial temperature determination step will likely be overfit.
Reducing the number of variables within the model may result in more reliable model statistics.
This can be done by using Bayesian Information Criteria (BIC). The definition of BIC in model
fitting scenarios where the log-likelihood is being maximized BIC = —2 - loglik + (logN) -
d.?'?* Where loglik is the log-likelihood, N is number of samples, and d is the number of
variables. Including the number of variables in a summation term has a regularizing effect. A
modified version of this equation (mbic) is used here for model selection (see Figure 3B). The
primary modification is that the number of variables is now included in a squared term, this
results in an increased preference for simple models.

The reduced model is then used in a final temperature determination. This step is identical to the
initial temperature determination except that a finer temperature increment is used (dT=.1K). An
important implementation note is that the final temperature found here is then used as an
initialization point for the next iteration of atmospheric optimization.

—— Model Selection Using Bayesian Information Criteria —
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Figure 3. A) A method for determining model constituents and material temperature is provided here. A non-
negativity and sum to 1 constraint is placed on the abundances of the model. Referring to Eq. 3, em, 4, ghas
dimension [M x numbands] and L,; has dimension [N x numbands|. B) With material temperature held
static a search of models is performed. A modified version of BIC that more strongly preferences simpler
models is used. The maximum mbic value is chosen as the best model.



6 Logistic Regression for Spectral Identification

Traditional detection algorithms utilize a user defined threshold to establish which pixels will be
presented to the analyst. Identification offers a different approach where information can come
from multiple sources. A spectral analyst might find it useful to inspect the detection score (such
as the Adaptive Cosine Estimator!®), RMS Error, overall F-statistic, partial F-statistic?*, target
material temperature, number of target materials, and target abundances. If the analyst views
identification results from many detections, some patterns might appear in the identification
results that would allow for additional thresholding. Another option is to acquire an equal
number of true and false positives and use the fit statistics with a logistic regression
algorithm?!?? to establish a decision surface that optimally separates the true and false positives.
Once the surface is established future identification results can be tested against this decision
surface to determine whether the detection is a true or false positive. A 2-dimensional illustration
of'this is provided in Figure 4. The parameters shown here could be RMS Error vs. determined
target abundance. Reflecting that pixels fit with models that have low RMS Error and high
abundance are more likely to be true positives. Adding additional information such as partial F-
statistics, model size, temperature, etc. can increase the ability of this method to separate true vs.
false positive detections.

The author has found this to be a powerful approach to eliminate large numbers of false alarms
in real datasets. If readers choose to employ this method caution should be taken when using data
from multiple sensors. A decision surface established using data from a one sensor may not be
useful for analyzing data from other sensors with different noise character. Results using the
simulated data will be provided in Section 7.6.

Logistic Regression
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Figure 4. Illustration of logistic regression used to optimally adjust identification thresholds. The true and
false positives are used to train the logistic regression decision surface. The future identification result (green)
will use the decision surface to classify whether it is a true or false positive detection.



7 Experiments and Results

Using synthetic data makes it possible to create and test algorithms under many different
conditions. Presenting the processing chain with challenging conditions, such as increased noise
or decreasing target abundance, allows us to understand the limitations of the processing chain.
This section will present a variety of tests allowing us to understand how well the processing
chain determines abundance, temperature, and the overall error when compared to the
measurement. Simulated false positive detections will also be examined with the algorithm and
their results be compared to those of the simulated true positives.

NASA’s ASTER spectral library has reflectance measurements of many common materials. The
experiments in this paper utilize jhu.becknic.rock.sedimentary.limestone.coarse.limest1.spectrum
as a surrogate target and jhu.becknic.manmade.roofing.rubber.solid.0833uuu.spectrum as the
background material. All “scene measurements” are modeled using mixtures of these two
materials at different abundances and temperatures. The input target spectral library used in
unmixing includes other ASTER limestones with 11.4pm features:
jhu.becknic.rock.sedimentary.limestone.coarse.limestl.spectrum’
fhu.becknic.rock.sedimentary.limestone.coarse.limest2.spectrum’
jhu.becknic.rock.sedimentary.limestone.coarse.limest3.spectrum’
jhu.becknic.rock.sedimentary.limestone.coarse.limest4.spectrum’
jhu.becknic.rock.sedimentary.limestone.coarse.limest5.spectrum’
ipl.nicolet.rock.sedimentary.limestone.solid.fge3.spectrum’

The background endmember pixels were created by selecting other common roofing materials

also in the ASTER library:
fhu.becknic.manmade.roofing.rubber.solid.0833uuu.spectrum’
fhu.becknic.manmade.roofing.rubber.solid.0834uuu.spectrum’
fhu.becknic.manmade.roofing.shingle.solid.0490uuu.spectrum’
fhu.becknic.manmade.roofing.shingle.solid.059 7uuu.spectrum’
jhu.becknic.manmade.roofing.shingle.solid.067 2uuu.spectrum’
fhu.becknic.manmade.roofing.shingle.solid. 068 Ouuu.spectrum’
fhu.becknic.manmade.roofing.shingle.solid. 068 3uuu.spectrum’

The 20 background spectra were modeled using a random material temperature selected from a
Gaussian distribution with mean 30C and standard deviation 2.5C.

In the following sections scene radiance spectra are modeled with the middle-latitude summer
standard atmosphere, sensor altitude at 5.5km above sea level, and 4.5km above ground level.

Ideally an analyst would like to see a model with low RMS Error, realistic temperature, target

material abundances above ~.3 if it is the only target predictor variable in the model, and high
partial F-statistic.
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7.1 Impact of System Noise on Model Parameters

This section examines the effect of additive Gaussian noise and target material abundances on
several fit parameters. The radiance in the scene measurement was modeled using
Jhu.becknic.rock.sedimentary.limestone.coarse.limest1.spectrum and
Jhu.becknic.manmade.roofing.rubber.solid.0833uuu.spectrum at 25 and 30C respectively. Five
sets of spectra (10 scene pixels and 20 endmembers) were created where the pixel of interest was
modeled with abundance values .1 to 1 in increments of .1. At five additive Gaussian noise at
levels (0, .5, 1, 1.5, and 2uF) this amounts to 150 spectra total. The limestone spectrum has a
~7% spectral emissivity feature at 11.25um. This feature at 25C and fractional abundance of .1
should be about 4pF in depth prior to atmospheric attenuation.

The full pipeline was applied to all datasets. Figure 5 shows a summary of the algorithm’s
performance for these tests. The first column shows the RMS Error in pF between the modeled
and measured radiances. The second column shows the determined target fractional abundance
from the radiance model. The third column shows the determined temperature. The dashed lines
in the second and third columns are the true value values, deviations from these values are errors.
Each of the 5 rows pertains to a different noise level (0, .5, ... 2uF). The horizontal axis of each
plot is the fractional abundance of the limestone spectra in each modeled target vector. The plots
show disagreement in the RMS Error between modelled and measured spectra in the OuF noise
data. This is expected as the optimized atmospheric profile will not match the original profile and
that will be reflected in the fit as error. Other contributing effects are found in the values for the
“Determined Fractional Abundance” and the “Determined Temperature”. At higher target
abundances the error consistently increases. The reason for this is that at lower target abundances
(higher background abundances) the background endmembers can explain more of the variance,
as they have a variety of temperatures and spectral shapes. The algorithm shows good matching
between the modeled and predicted abundance (less than 10% error). This behavior might
change if there is a large discrepancy between predicted and real temperatures, for example if a
predicted temperature is low a higher abundance might produce a best-fit model as it would
compensate for the low temperature. Temperature estimations have precision of (+/- 1C) for
abundances greater than 50% at all noise levels.
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Figure 5. Demonstration of algorithm performance at several noise levels (increasing from 0, .5, 2uF).
Performance is consistent even at higher levels of noise.

7.2 Importance of Atmospheric Interrogation

The spectral unmixing can be run without estimating the atmosphere with the atmospheric
interrogation algorithm. The results displayed in the Figure 6 utilized the same zero-noise
dataset from the first row of Figure 5. Here we see a dramatic increase in RMS Error and a
reduction in the accuracy of the determined temperature and abundance. The spectral
interrogation algorithm is therefore helpful in the retrieval of abundance and temperature.

Error Determined Abundance Determined Temperature
5 1 50
/
4.5 0.9 /
/ .45
4 0.8 i o,
8 4 PN
.35 £ 07 e E]
= e / 3
=3 506 7 Q35
g 2 4 g
=25 <os5 4 o
i} = ; [ .
2 2 504 vii §
o © 7/ =
1.5 © 0.3 7 € o5
[ Y 8
J3)
1 0.2 7 8
/ 20
05 01 7
/
0 15
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Fractional Abundance Fraction Abundance Fraction Abundance

Figure 6. Retrieval of model abundance and temperature is significantly improved by using the armospheric
interrogation algorithm.
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7.3 Demonstration of Initial Atmospheric Search

The pixel unmixing calculations specified in the second and third row of Table 1 can be omitted
from the processing chain. Using the zero-noise dataset the reduced pipeline is run the results are
shown in Figure 7. The RMS error values for the model are not substantially high. The
determined abundance values are also quite reasonable. The determined model temperature
shows much more error than when the full processing chain is used. The calculations defined in
rows 2 and 3 of Table 1 act as priming steps for the last run of the algorithm (row 4) to help with
determining correct material temperatures.
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Figure 7. Effects of omitting calculations specified in rows 2 and 3 of Table 1.

7.4 Examining Effects of Object Temperature Relative to Atmospheric Temperature

One could imagine scenarios where the object temperature is either above or below the ground
atmosphere temperature. An experiment was conducted where the limestone target temperature
and rubber roof background temperature were increased from 8 and 13C respectively to 35 and
40C, in increments of 3C. The purpose of the experiment was to monitor the behavior of the
algorithm as object temperature changed relative to a static atmospheric profile. This experiment
used zero-noise data with target fractional abundance of .6. The plots in Figure 8 show that an
object having low temperature (8C) relative to the atmospheric temperature could have high
RMS error. In the low temperature case the determined abundance is significantly less than it
should be, and the determined temperature has high error. The behavior at higher temperatures
resembles results observed in previous experiments.
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Figure 8. The lowest temperatures here show higher error rates and larger deviations in determined
fractional abundance compared to results shown in Figure 5.

13



7.5 Atmospheric Profile Retrieval

As described in Section 3, the algorithms used here attempt to find optimal temperature and
humidity profiles. Using the zero-noise data with target fractional abundance of .6 the
temperature and humidity are estimated. The results in Figure 9A show little agreement between
the determined temperature/dewpoint profile with that of the middle-summer latitude. The test is
repeated using a narrow boundary in the Nelder-Meade optimization at the aircraft altitude —
simulating a temperature/humidity sensor onboard the aircraft. Results from this test in Figure
9B show more agreement to the middle-summer latitude atmosphere, however there is still some
error. A future test using just 3 altitudes in the atmospheric optimization might show improved

results. The author uses 4 altitudes to guard against atmospheres with strong boundary layer
conditions.
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Figure 9. A) As can be seen there is a significant amount of error in this retrieval. The dewpoint estimate has
errors of over 10°C. Examining the dewpoint closely there is an undershoot at low altitudes and overshoot at
higher altitudes, therefore the overall effect here is likely similar to approximations of the true atmosphere.
This is an example of the algorithm getting trapped in a local minima. B) There is a slight improvement made
by placing a temperature/humidity sensor onboard the aircraft.

7.6 Examination of Outputs for True and False Positive Detections

Material detection steps often produce false alarm rates greater than 107.'-2* The reason for
false alarming can be related to the statistical whitening process used in many detection
algorithms. Reprocessing the data in radiance space using algorithms such as the one described
in this paper will allow users to produce statistics and parameters that can be used to further
suppress false alarms. This section illustrates how multiple parameters can be used together to
improve detection statistics.

4 sets of spectra were created for this experiment:
1) 20 spectra, w/abundances of 70% limestone materials (mean temp 25, std 1), 30% rubber

roofing materials (temp 30C).
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2) 20 spectra, w/abundances of 40% limestones materials (mean temp 25, std 1), 60%
rubber roofing materials (temp 30C).

3) 20 spectra, w/abundances of 70% non-limestone materials (mean temp 25, std 1), 30%
rubber roofing materials (temp 30C).

4) 20 spectra, w/abundances of 40% non-limestone materials (mean temp 25, std 1), 60%
rubber roofing materials (temp 30C).

The non-limestone materials were comprised of 20 random materials that were selected from the
ASTER library. The only non-limestone material that shared common spectral features to the
limestone was jhu.becknic.manmade.concrete.paving.solid.0425uuu.spectrum. Using these 80
spectra, separate low and high noise datasets were created using .5 and 1.5uF Gaussian noise
producing a total of 160 spectra.

The full processing chain was used to gather fit results. For many of the non-limestone materials
the RMS Error was very high. The most interesting results occur when the algorithm processes a
false alarm that produces a low RMS Error. In this case a threshold on the RMS Error alone will
not be enough to suppress all the false positives.

Figure 10A contains the results for the low noise dataset. Here we see a near perfect separation
between target and non-limestone pixels when using the RMS Error. Including the determined
target abundance makes possible a linear separation. The logistic regression line is drawn as a
dashed line here. The two circled non-limestone results belong to pixels containing the concrete.
The concrete has similar spectral features to the limestone but is not a perfect match and is
therefore still separable. At the higher 1.5uF noise level, as shown in Figure 10B, the concrete
pixels are not separable when using just the RMS Error and determined target abundance alone.

Plotting fit parameters in two dimensions shows that true and false positives can be separated
using linear logistic regression. Using additional fit data to extend the logistic regression to
higher dimensions will likely help with separability. An in-depth discussion of logistic regression
has been left out of this paper as there are many resources available?'. General machine learning
principles (class balancing, training/test/validation datasets, etc.) should be followed.
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Figure 10. A) The results from the low noise (.5puF) data has a clear separation between all target and non-
target materials. B) The high noise (1.5uF) data does not have a clear separation between the target and non-
target materials. The circled red data points belong to spectra modeled with concrete. The dashed line is a
logistic regression line that creates a decision surface between the two classes.

8 Conclusion

This paper describes a longwave infrared material identification method using radiometric
models. The foundation of this work is that accurate radiometric models can be created for pixels
of interest using mixtures of local endmembers and library spectra. If a scene pixel contains the
materials found in the model, then the fit between the measurement and model will have a RMS
Error approaching the instrument noise and the fit parameters will be close to their true values. If
the pixel does not contain the materials found in the model, then the fit between the observation
and model will have a high RMS Error and the model parameters might be unrealistic. The
parameters and statistics derived from the model fitting can be used with a decision surface
created by a logistic regression algorithm to reduce false alarms.

The experiments provided in Section 7 demonstrate the behavior of the processing chain under a
variety of conditions. Section 7.1 shows a consistent rise in model error with system noise.
Section 7.2 and 7.3 demonstrate the importance of the atmospheric inference and the
initialization runs of the unmixing algorithm. In Section 7.4 scenarios where the ground is either
hotter or cooler than the surrounding air temperature were examined. The algorithm appears to
work best when ground temperatures are greater than or equal to the air temperature. When
ground temperatures are less than 10C that of the air temperature the performance drops off
significantly. Section 7.5 shows that this pipeline cannot accurately retrieve the atmospheric
temperature/humidity profile. And Section 7.6 shows how multiple fit parameters from the
pipeline can be used to separate true and false positives from the detection step. In one case the
false positive material was a concrete which had strong calcite spectral features. At .5uF noise
level the algorithm was capable of discerning between the calcite and concrete.

This work was performed on a Dell Precision with an Intel i7 processor. No GPUs were utilized.
The algorithm requires about 20 minutes to process a single spectral vector. During the
atmospheric optimization process atmospheres are saved in a database for subsequent use.
Because of the time requirements this algorithm is not practical processing data onboard an
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aircraft. However, because the required amount of data is only 21 pixel vectors the data could be
transmitted back to a computer cluster for parallel processing. There is also likely additional
work that could be done to speed up the search for an optional atmosphere.

Appendix
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<— | Where Mat,,, is the optimal material library (comprised of at
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O3z Final Temperature Check
0343 This is identical to the initial
OW)F&

temperature determination only
now the library has been
reduced to three materials or
Update atm OR stop jmmm and the temperature
increments by .1K.

The model with the lowest RMS error is chosen:

sidewelling %
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most 3 library and/or scene endmembers). x is the non-negative
material abundances that sum to 1. T,,, is the optimal
temperature and is used to initialize the next iteration.

To summarize, the initial model components and temperature
were chosen in the first step. The next steps reduced the number
of model components to 3 basis spectra or less. The final step
refines the temperature estimate and updates temperature and fit

parameters.

Downsample MODTRAN Transmission and
Upwelling using sensor line shape function.
The downwelling is kept in high resolution for
use in the object leaving radiance model.
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