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Executive Summary

The goal was to develop a biomass conversion process that optimizes fractionation and
conversion to maximize Carbon efficiency and Hydrogen consumption to obtain drop-in fuels.
Selective fractionation of raw biomass was obtained via multi-stage thermal fractionation to produce
different streams that are enriched in a particular chemical family (acids, furanics or phenolics).
These streams were later catalytically upgraded in both liquid and vapor phase to perform C-C bond
formation and hydrodeoxygenation. Among various upgrading strategies investigated we have
identified an effective path in which cyclopentanone is a crucial intermediate that can be derived from
furfural and other furanics obtained in high concentrations from this thermal staged process.
Cyclopentanone is a very versatile molecule, which can couple with itself to product high quality jet-
fuel, or couple with phenoalic or furanics to create long chain molecules. These (mono-oxygenated)
compounds in the correct molecular weight fuel range can be hydrotreated to direct drop-in fuels.
Interestingly, we have found that the conversion of furfural to cyclopentanone is not affected by the
presence of acetic acid, and, more interestingly, it is enhanced by the presence of water. These are
very significant findings, since water and acetic acid are always present in all streams from the
primary conversion stage. These results have allowed to complete detailed life-cycle assessment
and techno-economic analysis that have been back-fed to the experimentalists to refine the catalyst
selection and process operations with the objective of maximizing C efficiency at minimum H
utilization. These combined investigations have opened the possibility of an economically and
technologically effective process that could result in commercial fuels produced from renewable
sources at a cost that might be competitive with fossil fuels.
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Goals and Actual Accomplishments

Goals

The current technologies for bio-oil upgrading, such as in-situ catalytic pyrolysis or ex-situ
hydrotreating of pre-formed bio-oil suffer from low C-retention in the fuel range and high H
consumption. A fundamental problem with these technologies is that the complex bio-oil presents
different problems that cannot be solved with a single solution. Therefore, the goal of our project
was to maximize C-retention in the fuel range at minimum H utilization via an effective fractionation
strategy combined with catalytic upgrading. Specifically, selective fractionation of biomass pyrolysis
products will be approached by two methods, thermal fractionation of raw biomass via
torrefaction/pyrolysis, and supercritical solvent extraction of full bio-oil and thermal fractionation cuts.
These fractionation strategies will be combined with catalyst design, synthesis, characterization, and
testing for C-C bond formation and hydrodeoxygenation upgrading reactions, in the liquid or vapor
phase. The experimental results allowed life-cycle and techno-economic analyses that were back
fed to the experimentalists to refine the selection of catalyst and process operations with the ultimate

objective of maximizing C efficiency at minimum H utilization.

Actual Accomplishment

Staged torrefaction/pyrolysis of lignocellulosic biomass

Lignocellulosic biomass is composed of three main constituents, hemicellulose, cellulose and
lignin. The decomposition of these components at high temperature (pyrolysis) will produce bio-all,
which a complicated mixture with hundreds of compounds, which in general belong to three main
chemical families, acids, furanics or phenolics. The upgrading of these three chemical families

altogether in one step is complicated and resulted in low yield of valuable liquid fuel products.

Therefore, to decrease stream complexity, selective fractionation of raw biomass was
obtained via multi-stage thermal fractionation to produce different streams that are enriched in a
particular chemical family (acids, furanics or phenolics). Figure 1 shows a diagram of this multi-stage
torrefaction process, which products different streams. Each stream will have a different upgrading

strategy to maximize the final liquid fuel yield.
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Figure 1. Process scheme for multi-stage torrefaction of biomass

By changing the pyrolysis condition of each stage such as time and temperature, we can
manipulate the composition of the resulting stream, these results will be further presented in the
activity summary. Furthermore, interestingly, we have also found that the use of activated carbon
adsorptive trapping is very effective in enhancing the fractionation efficiency. As shown in Figure 2,
the pyroprobe effluent of state 1 passing through activated carbon bed shows large reduction in
levoglucosan and methoxyphenols, which are compounds that may deactivate catalyst in
subsequent upgrading steps of stage 1.
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Figure 2. Comparison of trapping the vapor with activated carbon at different temperatures vs. blank (no trap)

Vapor phase upgrading
Different strategies were investigated to incorporate two of the most abundant species from

thermal stage streams: Acetic acid and furfural.
A. Acylation reactions over HZSM-5

Based on the previous study of ketonization of acetic acid over HZSM-5, the reaction
mechanism was found to involve (1) the formation of acylium ion from acetic acid followed by (2) the
C-C coupling between the acylium ion with another acetic acid molecules (as depicted in Figure 3).
The rate of step (2) C-C coupling was found to be the rate limiting step with high energy barrier.
Therefore, the ketonization of acetic acid requires a high energy barrier, and the maximum yield of
this chemistry is only 75% as it will produce CO: as a side product.

0 0 0
P > I +co+ Ho
OH R;~ OH R; R,
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Figure 3. Reaction scheme for ketonization

Therefore, we have proposed an alternative upgrading strategy that uses acetic acid as the
acylating agent and use other molecules in bio-oil as the substrates. This strategy has a lower the
energy barrier, so that we can operate at lower temperatures, while increasing the total carbon yield

of acetic acid to 100%.

Different molecules in bio-oil can be used as the substrate including furfural derivatives and
phenolic compounds, since furfural and phenolics are abundant in other torrefaction streams.
Furfural was not used as the substrate due to its high activity to polymerization, particularly in the
presence of an acid catalyst such as zeolite. Furfural can be easily converted to furan or methyl
furan, which are more stable molecules. The reaction schemes for acylation of acetic acid with furan,

methyl furan and m-cresol as substrates are shown below.
@]
J_+ Yy —— ()2
H,C OH @)
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CH,
* O
—_—
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OH OH ©
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The activity of these substrates above for C-C coupling with acylium ion are different, with
methyl furan > furan > toluene, as illustrated in Figure 4.
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Figure 4. The rate of acylation of acetic acid with different substrate versus temperature. Gas phase reaction, H-ZSM5, Si/Al=40

B. Upgrading of Furfural over Ru/TiO>

The catalyst Ru/TiO, was found to be very selective to convert furfural to methyl furan, as

shown in Figure 5, methyl furan remained to the main product at increasing space time (W/F).
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Figure 5. Product Distribution for pure furfural 5% Ru/TiO;, 400°C, atmospheric pressure, under H,, Feeding 0.1
mL/h of furfural and 1800 mL/h of H, 8
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However, interestingly, as we co-feed water with furfural, the selectivity was shifted to
cyclopentanone. Water was found to have a positive effect when it reduces the light products
formation while increasing the selectivity to cyclopentanone. Cyclopentanone is a very valuable

building block for fuel as it is stable and could be converted to jet-fuel via aldol condensation.
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Figure 6. Product Distribution for pure furfural and furfural co-fed with water at different molar ratios over 5%
Ru/TiO2, T= 400°C, P= 1 atm, TOS= 30 mins

Liquid phase upgrading
The upgrading strategy for liquid phase is demonstrated in Figure 7. Different chemistries

can be used to convert short chain oxygenates into longer chain molecules that fit into the fuel pool.
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Figure 7. Liquid phase upgrading strategy

A. Acylation of phenolic compounds by acetic acid

Acetic acid was found to be a not very effective acylating agent in liquid phase, but it can undergo

esterification with phenol derivatives (with -OH substituent) to create aromatic esters, which are more

effective acylating agents, as shown in the scheme below.

(o]
OH o)j\ OH O
o Esterification
+
)'LOH A >
R R R
aromatic with -OH aromatic ester C9+ aromatic ketone

acetic acid

Zeolites were found to be active for this chemistry, in which zeolite beta was the most selective

for the final aromatic ketone product, as shown in Table 1.

10
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Table 1. Conversion and selectivity of acylation product. 1g zeolite in 80ml of 1M acetic acid with 8M m-cresol. Temp: 250°C,
time: 1h, Pressure: 500 psia N,

_ Conversion of Selectivity to
Zeolite ] _
acetic acid ketone product
H-ZSM5 (Si/Al=25) 50% 47%
HY (Si/AlI=30) 55% 65%
H-Beta (Si/Al=19) 58% 70%

We have proposed the following strategy. First, we pretreat the 3™ stream with enriched phenolic
compounds to enhance the concentration of -OH functionality. This can be done over zeolite catalyst,
in which the abundant alkoxy functionality -OR can undergo transalkylation to -OH and -R. Then, the
presence of -OH functionality will help esterification with acetic acid to create aromatic esters, which
are efficient acylating agents. The net positive effect of this strategy is to maximize the yield of

molecules in the desirable molecular weight range, compatible with fuels.

B. Liquid phase conversion of furfural to cyclopentanone followed by aldol condensation

O

o] / Piancatelli Aldol
+ Hydrogenanon Condensatlon

Furfural can react via Piancatelli rearrangement to cyclopentanone over Pd-Fe catalyst using

water as the solvent, as shown in Table 2.

Table 2. Catalyst: 2%Pd-Fe/SiO2 (1:1) - Solvent: Water, Temp: 150°C, time: 6h, Pressure: 200-600 psia

Pressure (psia) Conversion Cyclopentanone Selectivity
200 49% 95%
300 79% 93%
600 93% 88%
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C. Hydroxy-alkylation of phenolics and cyclopentanone

The hydroxy-alkylation between phenolics and cyclopentanone can create long chain molecules
that are very can be further hydrodeoxygenated to hydrocarbons that belong to gasoline and diesel

range. The reaction scheme that shows all of the products is illustrated in Figure 8.
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Figure 8. Reaction scheme for hydroxy alkylation between cyclopentanone and m-cresol

The yield of hydroxy alkylation reaction was plotted in Figure 9.
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Figure 9. Conversion/Yield of hydroxy-alkylation of cyclopentanone and m-cresol. Catalyst: Amberlyst 36. Reaction condition:
150°C,12 hrs in Decalin
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reaction was fed over

Pt/Al;Os

hydrodeoxygenation to hydrocarbons. The yield and selectivity were shown in Figure 10.
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Figure 10. Selectivity of the HDO products.

Life cycle analysis

for

Different scenarios were compared with the base case (fast pyrolysis at 500°C followed by

direct hydrodeoxygenation). This comparison is shown in Figure 11, 12 and Table 3.

We can see that all our multistage strategies reduce process H, consumption by ~40%

relative to the base case of fast-pyrolysis & HDO. In Multistage System 3, over 47% of total Carbon

input is stored in the C6+ liquid products. Multistage Fuel-to-Hydrogen Ratio ranges from approx.

6.4 to 8.0, significantly higher than baseline Fast Pyrolysis & HDO value of 1.2. That is, it can be

now concluded that:

¢ Multistage systems could potentially produce high quality, infrastructure-compatible biofuel

capable of achieving over 80% GHG reductions relative to petroleum diesel

¢ Multistage system 3 has the highest environmental performance of the examined design

cases, with promising EROI and GHG emissions profile

e Exogenous fossil-derived H2 constitutes the principle GHG and primary energy burden

across all systems

e Analysis suggests that reduction in overall process complexity could be achieved via

collapsing the first two torrefaction stages into a single reactor

13
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Figure 11. Block flow diagram for general torrefaction-based biofuel production process
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Table 3. Comparison of performance metrics for Multistage Design Cases vs. Fast Pyrolysis & HDO

Process Design Parameters Fast Pyrolysis  Multistage Multistage Multistage
& Performance Metries & HDO System 1 System 2 System 3

Absolute Fuel Yield
ke Fuele,... / hr] 21981 18451 17461 19358
Cé6+ Liquid Carbon Yield
[kg C6+ Fuelgyy,. / hr] 4659 15448 13981 18350
Hydrogen Consumption
kg H, / hr] 3875 2339 2195 2295
C6+ Fuel to Hydrogen Consumption
[ke C6+ Fuel,.. /ke H,] 1.2 6.6 6.4 8.0
Cé6+ Carbon Efficiency
[C6+ Fuelpypo, / Biomassgg,o,) X 100] 12.1 40.1 36.3 476
Process Complexity (L) (3.8) (3.5) (3.4)

[# Decomp., Upg. Blocks]

Technoeconomic analysis

Technoeconomic analysis was also done for different multi-stage scenarios, as shown below.
To synthesize alternative upgrading strategies, we have considered various abundance of chemical
functionalities in each fraction. The goal in this TEA investigation was to maximize carbon yield

(primary) and minimize H2 consumption (secondary).

We have identified the two key trade-offs, as shown in Figure 14. (1) Carbon yield
improvement requires more complex processing, leading to higher capital costs and (2) Design of

thermal decomposition conditions must be done in parallel with fraction upgrading system

Fraction Upgrading Fraction Upgrading
Scenario 23 Scenario 34
- Acylation —  Acylation
HOD 1™
=1 Craidation P =™ Owddation [—M HOC
Scenario 25
Acal i Omdason  —
—11¥ Falonization )—b - —
Hoa e
=11 Ouidation Ketonization 4 " Aldel
.l H I_. i Kelonizatan Condsnzation
Scenario 2-T
1 Addol - a O HDO
Ul Acylaticn H Kelorization H; I»onl_. P Acylation idation =i
HDO B
Hyiroo ] Hydiaxy
—'"Dl Acylation H Nkmh; H Oriclation |—> —- Adkylation Crodation

Figure 13. Selected block flow diagram of reactors in a fraction upgrading system.

15



University of Oklahoma School of Chemical, Biological, and Materials Engineering

60 []1" stage
I 2™ Stage
I 5 Stage

50
i IIH Il
0 T T T T T L T | —

T T T T
1-1 1-2 1-3 14 2-1 2.3 25 2-7 3-1 34 37310

C6-C21 Yield (%)
& &

]
=
1

Scenario

Figure 14. C6-C21 yield for different scenarios.

Conclusion

The goal of the project was successfully accomplished. The C yield to valuable fuel products
was significantly improved at lower H consumption, as compared with the base case of fast pyrolysis
followed by hydrodeoxygenation. It is very important to first fractionate biomass into different
streams, then selectively condense them to make longer and more stable molecules and finally
hydrodeoxygenated to remove oxygen and make hydrocarbons. It should be notice that, the project
was aimed for general higher quality fuel. If the goal is to make a specific type of fuel, such as
gasoline, diesel or jet fuel, the actual process can be easily modified with the chemistries and

strategies that we have developed in this project. This is also another great advantage of the study.

16
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Project Activities Summary

The project was implemented by a multidisciplinary research team with combined expertise
in catalysis, separation, life-cycle analysis, and techno-economic assessment. The whole project can
be illustrated as shown in Figure 15 below.
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Figure 15. Project overview

Fast Pyrolysis

—_————

* Fractions A, B, and C represent staged pyrolysis fractions rich in small oxygenates, sugar-derived and lignin-derived
compounds, respectively.

Thermal fractionation of biomass

Fractions A, B, and C were produced at various temperatures and resident time. At moderate
temperatures and times, the most reactive parts in biomass will be destructed to create mostly small
oxygenates. On the contrary, higher temperatures and faster heating rates will produce mostly

phenolic compounds. These activities were completed by University of Oklahoma.

Supercritical Separation

At Idaho National Lab, different fractions were further refined by supercritical fluid extraction
and selective adsorption to divide the primary fractions in purer streams. CO, was used as the

solvent and has shown high separation efficiency for different bio-oil fractions.
Design of novel catalysts

17



University of Oklahoma School of Chemical, Biological, and Materials Engineering

At University of Oklahoma, different families of catalysts were synthesized and characterized for

different feed composition and the upgrading strategies. Different families include:

a) Basic/acidic oxides, consisting of both pure oxides (e.g. TiO2, CeO2) and mixed oxides (Ce-
ZrOy). Oxides that are both reducible (TiO2) and non-reducible (Al2O3) were tested.

b) Acidic zeolites (e.g. protonated forms of Y, ZSM-5, ZSM-22, and Beta)

c) Metals and bimetallic catalysts supported on inert supports (e.g. SiO2, C) (e.g. Ni/SiO,, Pt-
Sn/SiO;, Ni-Fe/SiOy)

d) Metals and bimetallic catalysts supported on basic/acidic oxides (e.g. Ru/TiO;, Ni-Fe/Ce-
ZFOQ)

Catalytic upgrading of different bio-oil fractions in vapor and liquid phases

Different strategies for vapor and liquid phase upgrading has been designed and tested at
the University of Oklahoma, in which the main goal is to first perform different C-C bond formation
chemistries to convert the reactive short chain molecules into longer molecules, followed by

hydrodeoxygenation to remove oxygen and create valuable hydrocarbons that can be used as fuels.

Life cycle analysis (LCA) and technoeconomic analysis (TEA)

Analysis of LCA and TEA were performed for continuous improvement and feedback. LCA

was studied by University of Pittsburgh and TEA was studied by University of Wisconsin.

18
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