SANDIA REPORT
SAND2017-12578

Unlimited Release

Printed October 2017

Stochastic Characterization of
Communication Network Latency for
Wide Area Grid Control Applications

Dan Selorm Kwami Ameme
Ross Guttromson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www .ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2017-12578
Unlimited Release
Printed October 2017

Stochastic Characterization of
Communication Network Latency for
Wide Area Grid Control Applications

Dan Selorm Kwami Ameme, and Ross Guttromson
Electric Power Systems Research
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS1033

Abstract

This report characterizes communications network latency under various network
topologies and qualities of service (QoS). The characterizations are probabilistic in
nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback
control systems used in grid applications. The work involves the use of Raspberry Pi
computers as a proxy for a controlled resource, and an ns-3 network simulator on a
Linux server to create an experimental platform (testbed) that can be used to model
wide-area grid control network communications in smart grid. Modbus protocol is
used for information transport, and Routing Information Protocol is used for dynamic
route selection within the simulated network.

ACKNOWLEDGMENTS

We will like to acknowledge the following people for their support during this project.

Adam Summers, has been of immense help in building this testbed. He assisted with making the
server ready for use, providing IP addressing and network connectivity and testing the electrical
connection between the Raspberry Pi computers to confirm that the voltage pulses were being
sent and received over the wires.

Jay Johnson, provided insight and source code for wide area network control of Photovoltaic
Inverter which served as the basis for building this platform. He also provided valuable
information on real world processing time of control devices which provided the motivation for
us to use Raspberry Pi computers for the fast control we intended to simulate.

Professor Satyajayant Misra, has provided critical guidance in the development of this
experimental platform. His strong research experience and feedback helped to steer the project in
the right direction. His contribution and ideas were invaluable inputs in the development of this
testbed.

Birk Jones, helped in this project by providing very useful insight regarding previous work he
has done in the area of smart grid communication. By tapping into his rich research experience,
we were able to build a testbed that is fit for its purpose.

CONTENTS

Lo INEEOAUCTION ...ttt et et et e st et esat e et e s et e et e e saneenbeenne 7
B o 1) £ 1o | B (1o 1510) s USSP 9
3. Platform ArChItECTUTEeiiiiii et e et e e e e et e e etae e eaaeeesneeesnneeens 10
4. Raspberry Pi CONTIGUIATIONcccuveeeiiieiiieeeiieesieeeeteeetteeeteeesteeessseeeseseeensaeeesseeesseesnsneessseeens 14
5. installation and configuration 0f NS-3........ooooiiiiii e 15
6. Experimental Setup and ObDJECHIVESuviieiiiieiiieciie ettt e 17

6.1 Experiment #1- Fixed Network Topology, Random Link Latenciescc.ccu..... 19

6.2 Experiment #2 - Random Network Topology with Random Link Delays................... 21
7. Summary and fUTURE WOTKccooioiiiiii et 23
8. COMCIUSION ...ttt ettt et e b e et e bt e et e bt e eab e e b e e sabeenbeeeaeeenbeeeaee 24
RETEIEIICES ...ttt ettt et ettt e st e e esaeeeneeas 25
F N 00157 116 R SRRPSPSR 27
DIESTIIDULION ..ttt et b e et e bt et e s at e et esbeeeabeesabeenbeesaeeeneeas 46

FIGURES
Figure 1. Platform architecture for our experimental SEt-Up..........cccecuveerciieerieeeniieeiiee e 10
Figure 2. Raspberry Pi board GPIO PIns.cc.eoeviiiiiiiiiiiiecieeeeeee et 12
Figure 3. Raspberry Pi wiring diagram showing input/output and grounds connection. 14
Figure 4. Fixed network topology used in ns-3 simulator for Experiment #1..........c..cccccevienen. 18
Figure 5. Time series progression of a control message’s round-trip latency.ccccceeveeviennen. 19
Figure 6. CDF and PDF plots of measured round-trip latencies for Experiment #1. 20
Figure 7. CDF and PDF plots of measured round-trip latencies for Experiment #2. 21
Figure 8. Latency distribution comparison between Experiments 1 and 2.c..cceeeeuunnn... 22
TABLES

Table 1 Summary of experimental assumptions and reASONING...........cceeeeveeeevveescveeesireesseeenineens 17

DOE
SNL
CONET
DETL
DoS
ns-3
X-Net
GPIO
RIP
QoS
Python
API

NOMENCLATURE

Department of Energy

Sandia National Laboratories

Control and Optimization of Networked Energy Technologies
Distributed Energy Technologies Laboratory
Denial of Service

Discrete Event Network Simulator

External Network

General Purpose Input Output

Routing Information Protocol

Quality of Service

General Purpose Programming Language
Application Programming Interface

1. INTRODUCTION

Wide-area grid control management plays a crucial role in grid modernization effort. In order to
meet energy and other ancillary demands in smart grids, energy consumers and producers need
to be able to establish reliable feedback control systems, which requires effective and secure
network communication. With the establishment of two-way communication, electric power can
be more efficiently managed to enable the demands of consumers to be met during both peak and
off-peak periods. The achievement of this grid modernization implies the use of IP based
communications systems for feedback controls. The primary purpose of this project is to
characterize stochastic system latency, which requires research into current communication
networks and the development of useful testbeds that can be used to model proposed future
wide-area grid control applications.

This project is focused on developing capability that will enable characterization of
communication network latencies for wide area control applications in smart grids. To achieve
this objective, there is the need to develop a system for modeling and experimentation. This need
led us to undertake this project in which we accomplished two main tasks. Firstly, we built a
simulation platform for modeling network communications. Secondly, we conducted
experiments using the experimental platform to stochastically characterize network latency under
various network conditions. This work provided an opportunity to cost-effectively conduct
network communications and control research in smart grids. By making the source code openly
available (refer to Appendix), other researchers can further pursue and enhance this work.

Using physical devices (Raspberry Pi computers) as the hardware under control, together with a
ns-3 network simulator, the extent to which experimentation can be performed is greatly
enhanced. Also, the results obtained will be much more representative of what to expect in
practical deployment. Communication networks can be affected by various factors such as
network congestion, link failures and changes to network architectures. Our platform enables
research to be conducted using a probabilistic approach to understand what network latency
could be under various conditions. By stochastically characterizing these latencies, control
systems can be designed for stability across the spectrum of network quality of service (QoS).

The information provided in this document outlines the work done in developing capability for
research into smart grid communications. This document also presents experimental results of
network latency estimation for wide-area grid controls. It provides a basis for further work in
relation to modeling wide-area grid control network communications.

The rest of the document is presented as follows. In Section 2, we describe physical locations
involved in this project. In Section 3, we describe the architecture of the simulation platform.
Section 4 describes the configurations done on the Raspberry Pi computers. In Section 5, the
installation and configuration of the ns-3 network simulator is discussed. In Section 6, we discuss
the experiments performed and their results. Summary and future work is discussed in Section 7.
We conclude the report in Section 8.

2. PHYSICAL LOCATIONS

This platform is located and research was accomplished in the Control and Optimization of
Networked Energy Technologies (CONET) laboratory located in building 6585 at Sandia
National Laboratories (Sandia). The CONET lab is used by Electric Power Systems Research
group at SNL to study evolving technologies such as smart grid.

All the devices used in this project are connected to Sandia’s research network known as X-Net.
During the initial phase of the project, we controlled 3kVA SMA Sunny Boy photovoltaic
inverter located in Distributed Energy Technologies Laboratory (DETL) from the CONET
laboratory over X-Net. We did not continue the project with this device due to the device’s
intentionally slow processing time.

The choice of X-Net allows for the capability to physically relocate the Raspberry Pi computers
to another building inside Sandia that has X-Net subnet access so that experiments can be
conducted over an actual wide area network as well. It is a practical choice of networks, as the
extension of this work will progress to networks and wide-area grid control activities outside of
SNL using the X-Net system.

3. PLATFORM ARCHITECTURE

The experimental platform has been created with the purpose of generalizing communications
network and controls performance as it is used in wide-area grid control applications. The
integration of any other controllable device, hereinafter referred to as smart grid device, can be
done with minimal configuration changes to this platform. The platform consists of a server,
Modbus [9] master acting as a device controller, Modbus slave, ns-3 simulator [1] and two
Raspberry Pi [3] computers. The architecture of the experimental platform is shown in Figure 1
below.

Server

Smart Grid device

——

Controller Application GP1023 (D/1) GPIl0O24 (D/O)

101841 f--—----------

»

GPI024 (D/O) GPI023 (D/l)

X-Net Local Area Network

Figure 1. Platform architecture for our experimental set-up.

Modbus is an application layer protocol designed to allow for communication between a master
and slave end-points. The Modbus master, which generates the control signal being sent to the
Raspberry P1i, is software residing on the sole server being used in this platform. The same server
also hosts the ns-3 simulator. Control commands were sent from the Modbus master, routed
through ns-3 topology and sent out of the server’s physical network interface, via X-Net, to reach
the Raspberry Pi computers, which acted as a proxy for a smart grid device.

The photovoltaic inverter located at DETL took about 2.6 seconds to process control commands
that it received via X-Net. Due to our need to provide a realistic framework with a fast response,
we chose to use the Raspberry Pi computers as a proxy for a smart grid device and utilize their
built-in General-Purpose Input Output (GPIO) pins for sending and receiving voltage pulses.

The ns-3 network simulator has the capability to model simple to very complex communication

networks. It is used in this project as a cost-effective solution to simulate wide area networks.
The network models embedded within ns-3 for this project are connected network topologies

10

representative of real world networks. The topologies have dynamic routing implemented using
the Routing Information Protocol (RIP). RIP is a distance-vector routing protocol which chooses
best paths in a network based on the smallest hop count [9]. In distance-vector routing protocols,
routers periodically inform only their neighbors of network topology changes. This is in contrast
to link-state routing protocols where network topology changes are propagated to all routers in
the network. Routing protocols are configured specifically on network routers to be used for
route selection. Without a routing protocol, routers in a network are not able to determine how to
route packets. Though RIP is not typically used in wide-area networks due to its slow
convergence, it was chosen for this platform because it is the only available open-standard
routing protocol available in the version of ns-3 used.

For wide-area networks under the control of a single administrative domain, Open Shortest Path
First (OSPF) is the routing protocol typically used due to its fast convergence and its ability to
propagate network topology changes immediately. For wide-area networks under the control of
different administrative domains (e.g., the Internet), Border Gateway Protocol (BGP) is the
routing protocol of choice. Neither OSPF nor BGP were natively supported in ns-3 at the time of
this writing, but these protocols could be implemented by using additional software integration.
The slow re-convergence time of RIP would have produced some very large round-trip latencies
if we had simulated link failure scenarios in the experiments, because packets would have been
able to reach their destinations only after a new path is chosen by RIP. We did not simulate link
failures scenarios thus, our choice of using RIP has no effect on the experiments we conducted.

All nodes in the ns-3 simulator are virtual. However, one of the ns-3 nodes is dedicated to
receiving the Modbus commands and sending them on to the Raspberry Pi 1 (see Figure 1) via
X-Net. This dedicated node serves as the interface between the physical network and the
simulated ns-3 network. To achieve the interconnection to the physical network from the
simulated network, tap devices (virtual network devices implemented in software) were created
on the server and linked to a Linux bridge. The dedicated ns-3 node was then linked to the tap
devices on the host server to allow for network packets to be routed between the simulated
network and the physical network and via versa.

Modbus protocol was used to send the control commands between the Raspberry Pi and the
Modbus master. Even though Distributed Network Protocol 3 (DNP3) was also a viable
candidate for the control protocol, our choice of Modbus was based on its simplicity and the
availability of a wide range of its open-source implementations. Thus, a Python based open-
source Modbus library called uModbus [2] that implements both master and slave functionalities
was used to send the control commands. The server hosts the Modbus master software whiles
Raspberry Pi 1 computer acts as slave. The two Raspberry Pi computers are connected via their
GPIO pins to send and receive voltage pulses. Figure 2 shows GPIO pins on a Raspberry Pi
board [3].

The two Raspberry Pi computers shown in Figure 1 represent a single network-connected smart-
grid device. The use two Raspberry Pi computers was necessitated by the need to have a
verification mechanism which shows that the control commands were being sent and received.
Raspberry Pi 1 acts as the controlled device’s communication interface to send and receive
Modbus commands whiles the second acts as the actual smart grid device that is being

11

controlled. When a voltage pulse is received on Raspberry Pi 1 from Raspberry Pi 2, it provides
verification that the command was successfully processed. Only Raspberry Pi 1 is connected to
the X-Net network since it acts as the communication network interface of the smart grid device.
Raspberry Pi 2 is not connected to the IP network but represents the controlled device actuator to
which the control signals are sent to. The actuator (Raspberry Pi 2) replies using a digital output
voltage pulse and the network interface (Raspberry Pi 1) in turn replies to the controller/server
using the IP network. The intent of using Raspberry Pi 2 is not to model the smart grid device
latency, but rather to ensure a successful completion of a communication request.

Figure 2. Raspberry Pi board GPIO pins.

11
it €

E T ol DnoiOhd iml L o/
o o7 ﬁ “Raspberry P72 Model B-VI1
06 Ol PN o——(c) _Raspberry Pi-2014—

Below are the various components used to build the experimental platform:

1.

el

Server (Quantity = 1)
e Ubuntu 16.04 LTS (64-bit)

e Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz x6

e 32GB RAM
e 800GB Hard Disk Drive
Raspberry Pi 3 Model B (Quantity = 2)
e Raspbian 8.0
e ARMV7 Processor rev 4 (v71) x4
¢ 1GBRAM
32GB Hard Disk Drive
NS-3 simulator
Modbus master software
Modbus slave software

12

13

4. RASPBERRY Pl CONFIGURATION

The two Raspberry Pi computers are connected via their GPIO pins as shown in Figure 3. GPIO
pin numbers used in this document use the Raspberry Pi board numbering scheme instead of the
alternative BCM pin numbering scheme. This was done to allow code portability between
different versions of Raspberry Pi since different models of Raspberry Pi computers maintain the
same board numbering scheme. The use of a second Raspberry Pi allowed us to simulate
response time for the smart grid device control communication, but not its action. It also allowed
the verification of a complete communication process. Using a single Raspberry Pi to connect
the digital input and output pins was possible but it would not have been representative of an
actual smart grid device, where the Modbus interface is handled as a software abstraction layer
from the device actuator. Each GPIO pin can be set by the user to be in two states; On (pin
outputs 3.3V) or Off (pin outputs 0V).

0000 © OO
DOD G000DOO

Pi 2 GPIO pins

@s (oo Raspberry Pi 1

_/ Advanced use only!

0000 O OO
9000 0OOO000D 000000

Raspberry Pi A+ / B+ and Raspberry Pi 2 GPIO pins

(Jero @Ground ()ssv @sv (e . | Raspberry Pi2

Figure 3. Raspberry Pi wiring diagram showing input/output and grounds connection.

Raspberry Pi 1 has a Modbus slave library installed on it which includes Application
Programming Interface (API) functions used by the Modbus program. A Modbus slave program
written in Python was setup on this Raspberry Pi to interface with the controller through
Ethernet, and also to interface with the second Raspberry Pi vi the GPIO pins. The slave program
listens on TCP port 502 for control commands from the master. The GP1024 is configured as a
digital output (D/O) while GP1O23 is configured as digital input (D/I). A static host route for the
controller IP address was configured on the Raspberry Pi to direct return traffic back through the
ns-3 model.

Raspberry Pi 2 had a Python program setup on it that sends and receives and sends voltage

signals to and from Raspberry Pi 1 on separate GPIO pins. GP1023 is configured as D/I while
GP1024 was configured as D/O on Raspberry Pi 2.

14

5. INSTALLATION AND CONFIGURATION OF NS-3

The ns-3 network simulator (version 3.26) was downloaded and configured on the host server.
When the simulator was bridged to the X-Net network, a packet length interpretation logic in the
default ns-3 source code caused the ns-3 simulator to crash when packets were sent and received
via the server’s bridged Ethernet adapter.

This crash was caused by an internal software glitch in ns-3. The default ns-3 source code
records the packet’s payload and checks to see if the payload is less than 1500 bytes in order to
classify it as an IEEE 802.3 Ethernet packet. An IEEE 802.3 packet will also have an additional
IEEE 802.2 Logical Link Control header. If it is an IEEE 802.3 packet, the logic then removes
the header and trailer from the packet and checks to see if the resulting packet size is greater or
equal to the payload size recorded. If this check fails, the simulator crashes. ns-3 does this check
on packets received on Ethernet links to be able to distinguish IEEE 802.3 Ethernet protocol
from other link layer protocols so as to apply the appropriate forwarding logic. The ns-3 source
code was therefore modified to allow packets of any size to be exchanged between the external
network and the simulated network. The modification does not affect packet processing in the
ns-3 simulator but is a required workaround for the simulator to work with an actual physical
Ethernet network.

A topology generator written in Python (Appendix A) was installed on the host server. This
program generates a random partial mesh topology which allows for network latency
characterization under different topologies. A partially mesh network allows for some amount of
redundant links to be in the topology but differs from a fully connected network topology. In a
fully connected network topology, each node is redundantly connected to every other node in the
topology which produces (n(n-1))/2 links where n is the number of nodes. Since RIP protocol
uses hop count to choose best paths, partial mesh network topology was chosen to allow a
sizable number of nodes to be traversed in the ns-3 network. This prevents the situation where a
large portion of the network might become un-utilized. A partially connected network also
presents a sparse edge network which is more representative of a real-world network.

First, a 10-node circular connected graph is generated and 5 random nodes were selected and
linked to form extra edges. For each of the two experiments conducted, the same number of
nodes and links were used for the randomly generated topologies. This number is user-
configurable and allows for flexibility in creating various topologies. To allow for the same
topology and latencies to be generated in any future experiments, the program uses seed values
that can be configured by a user. A seed value of 1 was used to generate the topologies used in
the two experiments. The same seed values will produce the same topologies so that the same
experiments can be repeated at later times. A network model was developed in ns-3 that utilizes
randomly generated network topology. One node is always chosen from the ns-3 simulated
network to be used for bridging to the external network; this effectively reduces the active nodes
in the topology by one.

The Modbus master client software is hosted on the server and utilizes the same Modbus library

used on Raspberry Pi 1. This software serves as the Modbus master and sends a series of binary
outputs to the Modbus slave. A single physical output bit is referred to as a coil in Modbus

15

protocol. A binary 1 signifies an “On” operation while a binary 0 signifies and “Off” operation
on the Raspberry Pi computers. A static route for Raspberry Pi 1°s IP address is configured on
the server to direct the control commands through the ns-3 model. This is required since there is
no dynamic routing between the host server and the ns-3 network and ensures that traffic to and
from the Raspberry Pi 1 is symmetrical. The symmetric nature of the routing is required to
ensure that return traffic from the Modbus slave to the master goes through the ns-3 network so
that latency can be more accurately characterized.

16

6. EXPERIMENTAL SETUP AND OBJECTIVES

With the system setup in place, Monte Carlo simulations were conducted to estimate expected
network latency on the wide-area grid control traffic. The experiment models direct load control
[4] in demand response where Raspberry Pi 2 acts as a load that can be controlled by the electric
utility. The utility sends control signals based on power demand and supply needs. The objective
of the experiment is to probabilistically characterize network latency for wide-area grid control
applications under various network assumptions. Based on link latencies in a specific topology,
the experiments are expected to produce a range of round trip latencies from which a mean value
can be estimated. As the testbed is flexible enough to be used to simulate various network
topologies, experiments were conducted under several topologies as outlined in Table 1. The
network topologies can be changed to model different scenarios.

Table 1 Summa

of experimental assumptions and reasoning

new topology with 10
nodes and 15 links for
each Monte Carlo draw. In
each draw, Modbus
commands are sent over a
specific network topology
with link latencies
described as follows:

Mean latency on links set
equal to N(n = 8ms,
c=3ms). Bandwidth for all
links set equal to 100Mbps

based on instabilities in wide-
area networks. Link
bandwidth was chosen to be
sufficiently large to avoid
bandwidth limitations from
interfering with our latency
modeling methodology.

Experiment | Assumptions Reason for Assumption Resulting Round Trip
i Latency
1 Fixed network topology This mean latency was chosen | Average latency =
to produce a round-trip N(n=204ms, ¢ =
Mean latency on links set | latency similar to what is 37ms) over 6 hops.
equal to N(n = 6ms, o = observed on wide-area
2ms). Bandwidth for all networks [6]. Link bandwidth
links set equal to 100Mbps | was chosen to be sufficiently
large to avoid bandwidth
limitations from interfering
with our latency modeling
methodology.
2 Randomly reconstruct a Changing network paths Average latency =

N(u=321ms,c =
86ms) over variable
number of hops. Min
hop count is 5 and max
hop count is 10.

In conducting the experiments, we assumed all links have large enough capacities as described in
Table 1, with their respective latencies being a random variable sampled from a normal
distribution, N(u,o). This characterizes the link latency values of all links as a normal random
variable chosen from the N(u,o) distribution. However, actual wide-area networks are
heterogeneous in nature and link latencies are not necessarily distributed normally around a

17

particular mean and standard deviation. But rather, it is more common to have each link latency
normally distributed around a different mean and standard deviation based on the link type. If
needed, this type of distribution can be modeled with minimal changes to the topology
generation software.

Another assumption used in this work is that no other traffic is traversing the network apart from
the control traffic. However, most wide-area networks are used for transporting various types of
data, which can impact latency based on queueing mechanisms used on routers. To make the
emulation more realistic, additional traffic other than control traffic should be injected into the
simulated network to make the modeling more realistic.

NS-3 Topology

- . e e e e o s ES e e e e s s En e S e s En G e e G s En e S e e ey

Modbus Master Client
10.1.8.41

Server

X-Net

Figure 4. Fixed network topology used in ns-3 simulator for Experiment #1.

The round-trip time for each control message was measured as shown in Figure 5. To measure
the round-trip time, the Modbus master uses the server’s clock to first record the timestamp at
which a control command was sent. When the Modbus master receives a response for the
command, it again records the timestamp. The round-trip time is then measured by subtracting
the command sent timestamp from the response received timestamp. For each control command
sent, the round-trip latency was recorded and used to evaluate the latency distribution for the
network topology used.

The time series progression of a randomly selected single control message is shown in Figure 5.

18

From the time a control command is sent to the time a confirmation of command execution is
received. It is observed that, regardless of the latency within the ns-3 topology, it typically takes
less than 1ms for Raspberry Pi 1 to receive confirmation from Raspberry Pi 2 that a control
command has been successfully processed. Such a processing time provides an opportunity to
simulate fast IP-based network control. The system time for the Raspberry Pi 1 computers as
well as the ns-3 server were synchronized to an external clock located on the same local area
network using Network Time Protocol (NTP). Since NTP is precise to a few tens of milliseconds
[8], the command processing times shown provide a rough estimate only.

Controller NS-3 Raspberry Pi 1 Raspberry Pi 2
(Modbus Master) (Modbus Slave)
l t=0.158s
'; T
e S _ | t=unknown
Qe
“7® t=unknown
1
t=0.043s
| T
l -~
__L - t=0.043s
n
e
g 9 1=0.043s
=
® t=0.042s
P t=0.042s

o -V.-t-= unknown

®t=0s

Figure 5. Time series progression of a control message’s round-trip latency.

6.1 Experiment #1- Fixed Network Topology, Random Link Latencies

This experiment assumed a fixed network topology to help characterize network latency under
fixed topologies. Using the network topology generator, a 10-node partial mesh network was
generated with 15 links. On each link in the topology, samples from a normal distribution (as
described in Table 1) were used to specify the link latency. All links were configured with a very
high bandwidth of 100 Mbps to avoid bandwidth limitations from affecting the modeling
method, which is based on Probability Distribution Functions (PDFs). The topology in Figure 4
was used for Experiment #1. The arrows in Figure 4 show the path taken by the control messages

19

through the simulated ns-3 network. Return traffic from Raspberry Pi 2 flows symmetrically in
the opposite direction of the arrows.

In performing the Monte Carlo analysis on the topology shown in Figure 4, latencies for each
link were generated according to a normal distribution, N(pn = 6ms, ¢ = 2ms), as outlined in
Experiment #1 of Table 1. This creates a probability distribution for the latencies on each link
which, when sampled, produces different possible latency outcomes. The experiment was
repeated using 100 sample sets of latencies and it took about 7hours to complete. For each
sample set, the controller sent 200 control messages to the Raspberry Pi 2 through the simulated
network. This makes a total of 20,000 (100 x 200) control messages for the entire experiment.

Figure 6 shows the latency Cumulative Distribution Function (CDF) and PDF for all the
latencies measured in Experiment #1. From the latency PDFs shown in Figure 6, the mean
round-trip communication latency of 204ms with a standard deviation of 37ms. This gives a
good estimation of latency range within which the smart grid device can be controlled given the
network topology used. This result can be used as input in building a stable control system.
Furthermore, when the monitoring of latency is done in real-time in an operational control
system, the results can be used to detect abnormal network performance, and subsequent control
system performance. Such abnormal performance can result from cyber security attacks in the
network, link congestion issues or sub-optimal performance of the routers in the network.

Gaussian PDF Fit and Normalized Histogram of Experiment 1 Network Latencies
N(2=0.20398 sec, 0=0.036985 sec), n=20,000, 250 bins
T T T T T

25
20 B

=
= 15 —
Qo
®©
o
© 10 -
o

5 —

0!]]

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Latency [sec]
Gaussian CDF Fit and Normalized Data of Experiment 1 Network Latencies
; N(£=0.20398 sec, 0=0.036985 sec), n=20,000
T T T

208
(%)
c
[0
0 06
[}
=
S04
>
S
302r

0 ‘ :

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Latency [sec]

Figure 6. CDF and PDF plots of measured round-trip latencies for Experiment #1.

20

6.2 Experiment #2 - Random Network Topology with Random Link
Delays

This experiment assumed network topology changes for each sampled link latency set to help
characterize network latency under unstable topologies. A randomly generated 10-node partial
mesh network with 15 links was used for each run. On each link in the topology, latency values
were generated according to a normal distribution with chosen mean and standard deviation as
described in Table 1. All links were configured with a bandwidth of 100Mbps to avoid
bandwidth restrictions from affecting our modeling method which is based on latency.

By performing Monte Carlo experiments, different latencies on the links were generated
according to a normal distribution, N(u = 8ms, ¢ = 3ms), as outlined in Experiment #2 of Table
1. This creates a probability distribution for the latencies on each link which produces different
possible latency outcomes. The experiment was repeated for 85 times with the controller sending
200 control messages to the Raspberry Pi 2 for each run through the simulated network. This
represents a total of 17,000 control messages for the entire experiment. It took approximately
7hours for this experiment to complete. The round-trip latency for each control message was
measured. Figure 7 shows the latency CDF and PDF for all the latencies measured in Experiment
#2.

Gaussian PDF Fit and Normalized Histogram of Experiment 2 Network Latencies
N(x=0.32136sec, 0=0.086183 sec), n=17,000, 250 bins
T T T T T

8 T T T T
6 - -
2
3
g4r -
e
o
2 - -
0 1 L Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Latency [sec]
Gaussian CDF Fit and Normalized Data of Experiment 2 Network Latencies
.5 N(x=0.32136sec, 0=0.086183 sec), n=17,000
. T T T T T T T T T
2
2
o 1
o)
(0]
=2
kS
=}
g 0.5
>
O

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Latency [sec]

Figure 7. CDF and PDF plots of measured round-trip latencies for Experiment #2.

21

From the latency PDFs shown in Figure 7, it can be observed that by varying the topologies for
each sample set of latency distribution, the mean round-trip communication latency is 321 ms
with a standard deviation of 86 ms.

A comparison of the latency distributions for the two experiments, depicted in Figure 8, shows a
much larger standard deviation for Experiment #2, where random topologies were reconstructed
for each sampled link latency set.

Comparision of Experiments 1 and 2 Latencies [sec]
T T T T

Experiment1 data
— Fit

Experiment2 data
—— Fit 2

14+ .

L
0.2 0.3 0.4 0.5 0.6 0.7
Latency [sec]

Figure 8. Latency distribution comparison between Experiments 1 and 2.

22

7. SUMMARY AND FUTURE WORK

This project developed capability to support research in network latency characterization in
wide—area network [6] grid control applications. We built a testbed that can be used to model and
probabilistically characterize network latency under various conditions. Latency information is
needed to support the design of IP based feedback control systems over wide-area networks.

We performed two main tasks in this project. The first task was to develop an experimental
platform (testbed). The second task was to use the testbed to conduct stochastic characterization
of network latency through experimentation. The experiments were conducted under various
conditions based on assumptions described in Table 1. By undertaking this project, we aimed to
develop the capability to enable the effective design of IP-based feedback control systems for the
smart grid. Without the ability to properly design a control system quantifying feedback delays,
it will not be possible to predict system stability under the operation of that control system. The
use of a simulator provides a cost-effective way of conducting experiments that model simple as
well as complex network topologies.

As shown in the results of Experiment #2, randomization of network topology links result in a
much larger standard deviation of network latency. This is expected since modifying topologies
will result in routing changes where packets will have to take other paths which might
inadvertently have shorter or longer round-trip latencies.

In future work, the effect of cyber-attack scenarios such as Denial of Service (DoS) could be
incorporated in the simulation, while using more comprehensive network architectures. Also,
simulations could be conducted using Named Data Networking (NDN) [5] architecture based on
Information Centric Networking (ICN). The experimental results could be compared with host-
centric IP architecture. Additionally, link failures and subsequent network convergence scenarios
could be modeled to evaluate their effect on grid traffic. Another future work could entail setting
up time synchronization between all the devices in the testbed to millisecond accuracy so that
control command processing and action times can be determined with more granularity and
accuracy. Due the use of hardware (Raspberry Pi), the testbed is limited to the design of a control
system where the controller is able to control only a single smart grid device. As it is quite
inexpensive to expand the testbed with additional Raspberry Pi computers, it would not take a
large investment to experiment with more smart grid devices so as to be able to characterize
latency under such a condition.

23

8. CONCLUSION

Grid modernization presents new research challenges to determine how various sub-systems of
the electric grid can interact to provide effective and enhanced services. The manner in which
grid sub-systems communicate over the network affects the efficacy of controls systems for the
electric grid. Combining software-based network simulation with hardware devices creates
unique research platform for smart grid communications research, including the stochastic
modeling of network latency. Researchers are able to model network communication systems
and gain valuable information to aid them in the design of control systems; including the ability
to stochastically quantify network latency. Such information is fundamental toward
quantitatively bounding the stability of a closed loop feedback control system connected to an
[P-based network.

24

REFERENCES

[1] Discrete-event network simulator for Internet systems. https://www.nsnam.org

[2] Python implementation of the Modbus protocol. http://umodbus.readthedocs.io/en/latest/

[3] Raspberry Pi: Single-board computer. http://umodbus.readthedocs.io/en/latest/

[4] Demand response. https://energy.gov/oe/activities/technology-development/grid-
modernization-and-smart-grid/demand-response

[5] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. 2016.
ndnSIM 2: An updated NDN simulator for ns-3. Technical Report NDN-0028, Revision 2. NDN.
[6] Carter, Robert L., and Mark E. Crovella. "Server selection using dynamic path
characterization in wide-area networks." In INFOCOM'97. Sixteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Driving the Information Revolution.,
Proceedings IEEE, vol. 3, pp. 1014-1021. IEEE, 1997.

[7] Network Time Protocol Version 4. https://www.ietf.org/rfc/rfc5905.txt

[8] Modbus protocol. http://www.modbus.org/specs.php

[9] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach. Addison
Wesley, 7th edition.

25

26

APPENDIX

A. SERVER SETUP

i) ns-3 Installation and Compilation

1. Open a new terminal window on the Ubuntu server

2. Create a new directory to host ns-3: mkdir ns3 (you can use any name for directory)

3. Switch to the new directory created: cd ns3

4. Download ns-3 source code (version 2.6): wget https://www.nsnam.org/release/ns-allinone-

3.26.tar.bz2

5. Extract the contents of the downloaded file: tar -jxvf ns-allinone-3.26.tar.bz2

6. Switch directory: cd ns-allinone-3.26/ns-3.26

7. Configure the ns-3 source code: ./waf configure --enable-examples --enable-tests --enable-

sudo
This process should show ‘configure’ finished successfully when done. Ignore other
errors. If you don't see this message, it means configuration failed. Analyze the logs to
see which packages may have filed during compilation and install them.

8. Compile ns-3: ./waf
This will take some time to complete. Test if installation is successful by running ./waf --
run hello-simulator. You should see the output "Hello Simulator".

ii) Modify ns-3 for External Network Bridging

1. Open ns-3 source code the file: nano src/csma/model/csma-net-device.cc
2. On line 756 or the line starting with "if (header.GetLengthType () <= 1500)", comment out the
whole True block logic of the "if statement"
3. Copy the line "protocol = header.GetLengthType ();" from the Else block and put it in the
True block.

Save file using Ctrl+O and press enter

Exit file editing using Ctrl+S

Use this same save and exit instruction for all files modified using "nano" editor

iii) Install Bridge Utilities for External Network Connectivity

1. Install Linux bridge utilities: sudo apt-get install bridge-utils

2. Install tunctl: sudo apt-get install uml-utilities

3. Backup the network original configuration: sudo cp /etc/network/interfaces
/etc/network/interfaces.original

4. Create a new file named /etc/network/interfaces.ns3.bridge as below (enol is the network
adaptor name, change to the name of the one you want to use on your server): sudo nano
/etc/network/interfaces.ns3.bridge

5. Enter the following into the file, this create a Linux bridge used to connect the ns-3 network to
the external network:

auto enol

27

iface enol inet manual

auto br-trigger
iface br-trigger inet manual
bridge ports enol

iv) Linux Bridge Setup Scripts

Files names should be spelled correctly otherwise scripts will not work, if you change any file
name ensure the corresponding references to the names changed also.

1. Change directory: cd ns3/ns-allinone-3.26/ns-3.26/src/tap-bridge/examples
2. Using nano or other text editor, create file named "demand-response-setup.sh” with below:

#!/bin/sh

bretl addbr br-outif

tunctl -t tap-outif

tunctl -t tap-inif

ifconfig tap-outif 0.0.0.0 promisc up
ifconfig tap-inif 0.0.0.0 promisc up
bretl addif br-outif tap-outif

bretl addif br-outif tap-inif

ifconfig br-outif up

3. Create file named "demand-response-teardown.sh" with below:

#!/bin/sh

ifconfig br-outif down

bretl delif br-outif tap-outif
bretl delif br-outif tap-inif
bretl delbr br-outif

ifconfig tap-outif down
ifconfig tap-inif down
tunctl -d tap-outif

tunctl -d tap-inif

4. For both files, enable executable permission on them using: sudo chmod 777 <filename>
V) Script to Automatically Bridge ns-3 to External Network
1. Create a directory called “Project-218" in the home directory of the server
2. Switch to this directory. This script consigures static IP of 10.1.8.41 on server. The ns-3 node

bridged to this subnet has IP 10.1.8.42
3. Create file "bridge-to-ns3.sh" with below contents and give it executable permission

28

../ns3/ns-allinone-3.26/ns-3.26/src/tap-bridge/examples/demand-response-setup.sh
cp /etc/network/interfaces.ns3.bridge /etc/network/interfaces

sudo ifconfig enol 0.0.0.0

sudo ifconfig br-outif 10.1.8.41/24

route add -net 0.0.0.0/0 gw 10.1.8.254

route add -host 10.1.8.45 gw 10.1.8.42

vi) Script to Automatically Remove ns-3 Bridge from External Network
1. Create file "unbridge-from-ns3.sh" with below contents and give it executable permission

../ns3/ns-allinone-3.26/ns-3.26/src/tap-bridge/examples/demand-response-teardown.sh
cp /etc/network/interfaces.original /etc/network/interfaces

sudo ifconfig enol down

sudo service network-manager stop

sudo ifconfig enol up

sudo service network-manager start

vii) Install Modbus Library
sudo pip install uModbus
viii) Create Modbus Master Application
1. Create file named "master-modus.py" with below content

#!/usr/bin/env python

import socket

import datetime

import time

from umodbus import conf
from umodbus.client import tcp

Enable values to be signed (default is False).
conf-SIGNED VALUES = True

sock = socket.socket(socket. AF_INET, socket.SOCK STREAM)
sock.connect(('10.1.8.45', 502))

Build on/off load commands

control_cmd =[]
switchon = True

foriinrange(0,200):
if switchon:

29

control_cmd.append(1)

switchon = False

else:
control_cmd.append(0)
switchon = True

outfile = open('/home/conet1502/Project-218/results/timestamps _modbus _master '+
str(time.time()) + ".csv','w’)

outfile.write("timestamp,round_trip_time,control_command,command_status,type\n’)
latsum = 0.0
latcount = 0

forjin range(0,len(control cmd)):

Returns a message or Application Data Unit (ADU) specific for doing

Modbus TCP/IP.

coil_write_msg = tcp.write_multiple coils(slave id=1, starting address=0,
values=control_cmd[j:j+1])

start_time = time.time()

print datetime.datetime.now().strftime("%Y-%m-%d %oH.%M.%S.%f"), ", control _cmd]j],

"

" write'

outfile.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H.%M.%S.%f")) + '+ "+ "+
str(control_cmd[j]) + "'+ " + "write\n’)

Response depends on Modbus function code. This particular returns the
amount of coils written, in this case it is.
coil _write rsp = tcp.send _message(coil _write_msg, sock)

#Read received voltage on pin 16

coil _read msg = tcp.read_coils(slave id=1, starting address=0, quantity=1)
coil read rsp = tcp.send_message(coil read msg, sock)

rtt = time.time() - start_time

print datetime.datetime.now().strftime("%Y-%m-%d %H.%M.%S.%f’), rtt, ",
coil read rsp[0],read’

outfile.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H.%M.%S.%f")) + "' + str(rtt)
+ '+ "+ "+ str(coil_read rsp[0]) + "read\n’)

latsum += rtt
latcount +=1

expfile = open(’home/conet1502/Project-218/results/temp _exp.csv''a’)

30

expfile.write(str(latsum/latcount) + "\n')
expfile.close()

outfile.close()
sock.close()

ix) Create Topology Generator Script
1. Create file named "topogen.py"” with below content

import random
import sys
import numpy as np

random.seed(1)

numofnodes = 10

link bw = 100

edgecounter = 1
edgeproperty ="

tapl subnet = "'10.1.8.40'
tap2 subnet = "'10.1.8.44'
edge subnet ='192.168.1.0'
subnet mask = '255.255.255.252'
ip_octets =[]

next_subnet ="
ns3extnodel = 0
ns3extnode2 = ()

skipedge = False
minlatency = 1

maxlatency = 10
maxextraedges = 5

outfile = open('demand-response-topo.txt','w’)
outfile.write(str(numofnodes) + 'x '+ 'x '+ 'x '+ 'x "'+ 'x \n')
print str(numofnodes) + 'x '+ 'x '+ 'x "+ 'x "+ 'x'

graphedges = []
graphedges.append((0,1))
graphedges.append((0,2))

foriin range(2,numofnodes):

if i == (numofnodes - 1):
graphedges.append((1,numofnodes-1))
else:

graphedges.append((i,i+1))

31

#Randomly attach up to 'maxextraedges’ variable set above
extraedgecounter = ()

extraedgecount = numofnodes - 4

for k in range(0,(((extraedgecount*(extraedgecount-1))/2) - (extraedgecount-1))):
if extraedgecounter < maxextraedges:
randnodel = random.randint(3,numofnodes-2)
randnode?2 = random.randint(3,numofnodes-2)
if randnodel == randnode2:

pass

elif randnodel + 1 == randnode?:

pass

elif randnodel - 1 == randnode?:

pass

else:

if randnodel < randnode?:

if not ((randnodel,randnode?2) in graphedges):
graphedges.append((randnodel,randnode?))
extraedgecounter += 1

else:

if not ((randnode2,randnodel) in graphedges):
graphedges.append((randnode?2,randnodel))
extraedgecounter += 1

else:

#Do not connect any extra edges
break

for edge in graphedges:

if edgecounter == 1.

edgeproperty = str(edge[0]) + "'+ str(edge[1]) + "'+ str(0) + "'+ str(link_ bw) + "'+
tapl subnet +''+ subnet mask

ns3extnodel = edge[l]

edgecounter += 1

elif edgecounter ==

edgeproperty = str(edge[0]) + "'+ str(edge[1]) + "'+ str(0) + "'+ str(link_bw) + "'+
tap2 subnet + "'+ subnet mask

ns3extnode? = edge[l]

edgecounter += 1

else:

if (int(edge[0]) == int(ns3extnodel) and int(edge[1]) == int(ns3extnode2)) or (int(edge[0]) ==
int(ns3extnode?2) and int(edge[1]) == int(ns3extnodel)):

#Skip the interconnection between the ns-3 nodes bridged to the LAN (allows remaining
topology to be traversed)

skipedge = True

32

elif int(edge[0]) == 0:

#Skip all other connectons to node ()

skipedge = True

else:

ip_octets = edge subnet.split(".")

if int(ip_octets[3]) <= 252:

#Fourth octet has usable subnet

next_subnet = ip octets[0] + "'+ ip octets[1]+ "'+ ip _octets[2] + "' + str(ip_octets[3])
edgeproperty = str(edge[0]) + "'+ str(edge[l]) + "'+ str(0) + "'+ str(link_bw) + "'+
next _subnet + "'+ subnet mask

edge subnet = ip_octets[0] + "'+ ip octets[1]+ "'+ ip octets[2] + "'+ str(int(ip_octets[3]) +
4)

else:

#Increase third octet IP by 1

if int(ip_octets[2]) < 255:

next_subnet = ip_octets[0] + "'+ ip octets[1]+ "'+ str(int(ip_octets[2]) + 1) + "'+ 0’
edgeproperty = str(edge[0]) + "'+ str(edge[1]) + "'+ str(0) + "'+ str(link_ bw) + "'+
next _subnet + "'+ subnet mask

edge subnet = ip_octets[0] + "'+ ip octets[1]+ "'+ str(int(ip_octets[2]) + 1) + "'+ 4’
else:

#Stop subnet allocation!!! You've run out of private class C address

print "You have run out of private class C address: 192.168.x.x Too many edges in graph'

sys.exit()

if skipedge == True:

skipedge = False

else:

print edgeproperty
outfile.write(edgeproperty + '\n')
outfile.close()

#Generate latency file according to random normal distribution
latdist =[]

numofexp = 100

latfile = open('latencies.txt','w’)

#Generate random uniform edge latencies

for edge in range(0), (numofnodes+maxextraedges)):

mean = 6

stddev = 2

#print mean, stddev
latdist.append(np.random.normal(mean,stddev,numofexp))

#Generate edges for number of experiments to run

foriin range(0,numofexp):

33

forjin range(0,len(latdist)):
latfile.write(str(int(latdist[j][i])))
ifj < len(latdist) - 1:
latfile.write("")

latfile.write("\n')

latfile.close()

X) Create ns-3 Scenario File

1. Switch to ns-3 directory: cd ns3/ns-allinone-3.26/ns-3.26/scratch
2. Create the scenario file named "demand-response-sim.cc" with below contents

// This is network model used as a backbone network for sending control commands.

// It is bridged to the physical network as the packets are source from external computer and
destined to an external device

// Routing is first done through this network model and may be handed off to WAN to
destinations outside the LAN

#Hinclude <iostream>

#include <fstream>

#Hinclude <sstream>

#include "ns3/core-module.h"

#include "ns3/network-module.h"
#include "ns3/csma-module.h”
#include "ns3/tap-bridge-module.h"
#include "ns3/internet-module.h"
#include "ns3/netanim-module.h"
#include "ns3/point-to-point-module.h"”
#include "ns3/point-to-point-net-device.h"
#include "ns3/olsr-helper.h"

#include "ns3/rip-helper.h"

using namespace ns3;
NS LOG COMPONENT DEFINE ("DemandResponseSimulation");

//Declare global variables

NodeContainer nodes,

CsmaHelper csma;

PointToPointHelper p2p;

Ipv4StaticRoutingHelper ipv4RoutingHelper,

int nodecount = 0, tapnodel = 0, tapnode?2 = 0;

std.: :string topologyfile = "/home/conet1502/Project-218/demand-response-topo.txt";

int

34

main (int arge, char *argv[])

{

std. :vector<std::string> edgelatencies;
std: St}"ll’lg StrLatency — HH’.

// Create command line argument (these are the latencies on the links, comma separated)
CommandLine cmd;

cmd.AddValue("strLatency", "Latencies of the various edges", strLatency),;

cmd.Parse (argc, argv),;

//8plit the latencies by the comma separator
std.: :istringstream ss(strLatency);
std.::string token;

while(std.: :getline(ss, token, ")) {
edgelatencies.push_back(token),

/

/

// We are interacting with the outside, real, world. This means we have to
// interact in real-time and therefore means we have to use the real-time
// simulator and take the time to calculate checksums.

Y

GlobalValue::Bind ("SimulatorImplementationType", StringValue
("ns3::RealtimeSimulatorlmpl”));
GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));

// Get node count as well as tap-bridge nodes
std::string srcnode, dstnode, latency, bw, subnet, netmask;
int edgecounter = 1, edgenum = ();

std: :ifstream inpfilel (topologyfile, std::ios::in);
if (inpfilel.is_open ()) {
while (inpfilel >> srcnode >> dstnode >> latency >> bw >> subnet >> netmask) {
if (edgecounter == 1) {
nodecount = stoi(srcnode);
edgecounter += 1;

/
else if (edgecounter == 2) {

tapnodel = stoi(dstnode),
edgecounter +=1;

/

else if (edgecounter == 3) {

35

tapnode?2 = stoi(dstnode),
//Reset edge counter, used same variable in next file iteration

edgecounter = 1;
break;

/
/

/
else {

std::cout << "Error::Cannot open topology file!!!" << std::endl;
return 1;

/
inpfilel.close();

//NodeContainer nodes;
nodes.Create (nodecount),

// Enable RIP
NS LOG INFO ("Enabling RIP Routing.");
ns3.:RipHelper ripRouting;

//Exclude bridged interfaces from exchanging RIP updates
ripRouting. Excludelnterface (nodes.Get(tapnodel), 1);
ripRouting. Excludelnterface (nodes.Get(tapnode?2), 1),

Ipv4ListRoutingHelper listRH,
listRH.Add (ipv4RoutingHelper, 0);
listRH.Add (vipRouting, 10);

InternetStackHelper internet;
internet.SetRoutingHelper (listRH);
internet.Install (nodes),

Ipv4AddressHelper addresses,

NetDeviceContainer devicesl;
NetDeviceContainer devices2,

std.: :ifstream inpfile2 (topologyfile, std::ios::in);
if (inpfile2.is_open () {
while (inpfile2 >> srcnode >> dstnode >> latency >> bw >> subnet >> netmask) {
if (edgecounter == 1) {
//Ignore first line, countains number of nodes in graph
edgecounter += 1;

36

else if (edgecounter == 2) {
NodeContainer tappairl;
tappairl.Add (nodes.Get(0));
tappairl.Add (nodes.Get(tapnodel)),

csma.SetChannelAttribute ("DataRate"”, DataRateValue (stoi(bw)*1000000));
csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds
(stoi(edgelatencies[edgenum])))),

devicesl = csma.Install (tappairl);
addresses.SetBase (Ipv4Address (subnet.c_str()), Ipv4Mask(netmask.c_str()));
Ipv4interfaceContainer interfacesl = addresses.Assign (devicesl),
edgecounter += 1;
edgenum +=1;

/
else if (edgecounter == 3) {

NodeContainer tappair?2;

tappair2.Add (nodes.Get(0));
tappair2.Add (nodes.Get(tapnode2)),
csma.SetChannelAttribute ("DataRate"”, DataRateValue (stoi(bw)*1000000));
csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds
(stoi(edgelatencies[edgenum])))),
devices2 = csma.Install (tappair2),;
addresses.SetBase (Ipv4Address (subnet.c_str()), Ipv4Mask(netmask.c_str()));
Ipv4interfaceContainer interfaces2 = addresses.Assign (devices2),
edgecounter += 1;
edgenum +=1;
/

else {

//Connect ns-3 edges only from now

NodeContainer nodepair;
nodepair.Add (nodes.Get(stoi(srcnode)));
nodepair.Add (nodes.Get(stoi(dstnode))),
p2p.SetDeviceAttribute ("DataRate", StringValue (bw + "Mbps"));
p2p.SetChannelAttribute ("Delay", StringValue(edgelatencies[edgenum] + "ms"));
NetDeviceContainer devices = p2p.Install (nodepair),;
addresses.SetBase (Ipv4Address (subnet.c_str()), Ipv4Mask(netmask.c_str()));
Ipv4iInterfaceContainer interfaces = addresses.Assign (devices),

edgenum +=1;

/
/

37

/
inpfile2.close();

//Configure default route on exit node
ripRouting.SetDefaultRouter (nodes.Get(tapnode2), Ipv4Address ("10.1.8.45"), 1),

//Bridge node 0 to the physical NIC of server

TapBridgeHelper tapBridge;

tapBridge.SetAttribute ("Mode", StringValue ("UseBridge")),
tapBridge.SetAttribute ("DeviceName", StringValue ("tap-outif”)),
tapBridge.Install (nodes.Get (0), devicesl.Get (0));

tapBridge.SetAttribute ("DeviceName", StringValue ("tap-inif")),
tapBridge.Install (nodes.Get (0), devices2.Get (0));

//Print out the routing table on all nodes

Ipv4GlobalRoutingHelper globalRouting;

Ptr<OutputStreamWrapper> routingStream = Create<QutputStreamWrapper> ("routing-
tables.routes", std.::ios::out);

globalRouting. PrintRoutingTableAllAt (Seconds(180.0), routingStream),

/

// Run the simulation for one hour to give the user time to play around
/

Simulator::Stop (Seconds (120.)),

Simulator::Run ();

Simulator::Destroy (),

xi) Create Experiment Automation Script
1. Create a file name “automate.py” with contents
import sys
import os
import multiprocessing
import time
latfile = open("/home/conet1502/Project-218/latencies.txt","r")
def start ns3(line):
print 'Starting ns3 with edge latencies’, line

os.system("./waf --run "demand-response-sim --strLatency="+ line + ")

def start_modbus(counter):
print 'Starting modbus master...'

38

os.system('python /home/conetl1502/Project-2 18/master-modbus.py’)
print "\nCompleted experiment', counter, 'Waiting 50sec to start next one...\n'

#Timer waits for ns3 to automatically terminate
time.sleep(120)

def clean_up():
pl.terminate()

pl.join()

! !

if name =='_main_":

global p1

try:

expcount = |

for line in iter(latfile):

pl = multiprocessing.Process(target=start_ns3, args =(line.strip(),))
pl.start()

#Timer waits for ns3 to completely start before sending control signals

time.sleep(20)

start_modbus(expcount)

clean_up()

expcount +=1

finally:

os.system('mv /home/conet1502/Project-218/results/temp _exp.csv /home/conet1502/Project-
218/results/average latencies '+ str(time.time()) + ".csv')

print 'Simulation completed successfully’

B. RASPBERRY PI 1 SETUP

i) Installation of Modbus Library

1. sudo pip install --upgade pip (This is required else the uModbus will not install via pip)
2. sudo pip install uModbus

ii) Create the Modbus Slave Application
1. Create a file name “slave-modbus.py” with contents
#!/usr/bin/env python
import logging
from SocketServer import TCPServer

from collections import defaultdict
from umodbus import conf

39

from umodbus.server.tcp import RequestHandler, get _server
from umodbus.utils import log to_stream

import RPi.GPIO as GPIO

import datetime

import time

import multiprocessing

import sys

import os

#Declare Raspberry Pi GPIO board numbering
GPIO.setmode(GPIO.BOARD)

#Set intial GPIO pin modes
GPIO.setup(18, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(16, GPIO.IN, pull up down = GPIO.PUD_UP)

Add stream handler to logger 'uModbus'.
log to_stream(level=logging. DEBUG)

A very simple data store which maps addresses against their values.
data_store = defaultdict(int)

Enable values to be signed (default is False).
conf-SIGNED VALUES = True

filetimstamp = time.time()
outfile = open('results/timestamps_modbus_slave '+ str(filetimstamp) + ".csv','w’)
outfile.write('timestamp,control_command,type\n’)

TCPServer.allow reuse address = True

app = get_server(TCPServer, ('10.1.8.45', 502), RequestHandler)
print "Slave is ready and waiting for commands..."

@app.route(slave ids=[1, 2], function _codes=[1, 2], addresses=list(range(0, 10)))
def'read data_store(slave_id, function code, address):

" Return value of address. """

return GPIO.input(16) #data_store[address]

@app.route(slave ids=[1, 2], function _codes=[5, 15], addresses=list(range(0, 10)))
defwrite _data_store(slave_id, function_code, address, value):

"t Set value for address. """

print '"Command received from master, value ="', value, datetime.datetime.now()

outfile.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H.%M.%S.%f")) + ' +
str(value) + ',command received from master\n')

40

Send output voltage via Raspberryl GPIO

if value ==
print 'Voltage sent to load, set pin 18 output to', value, datetime.datetime.now()
outfile.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H.%M.%S.%f")) + ' +
str(value) + ',command_sent to rp2\n')
GPIO.output(18, GPIO.HIGH)

else:
print 'Voltage sent to load, set pin 18 output to', value, datetime.datetime.now()
outfile.write(str(datetime.datetime.now().strftime("%Y-%m-%d %6H.%M.%S.%f")) + ' +
str(value) + ',command_sent to rp2\n')
GPIO.output(18, GPIO.LOW)

def check input pin_status(pinvalue):

try.
tmpfile = open('results/z_temp _file.csv','w’)
while True:

if GPIO.input(16) != pinvalue:

print 'Successfully set voltage to', GPIO.input(16), datetime.datetime.now()
tmpfile.write(str(datetime.datetime.now().strftime('%Y-%m-%d %H.%M.%S.%f")) + "' +
str(GPIO.input(16)) + ' response_received from rp2\n’)

pinvalue = GPIO.input(16)

except:

tmpfile.close()

finally:
tmpfile.close()

! !

if name ==' main_ "

global p1

try:
#Start separate process to check when input pin status changes
pl = multiprocessing. Process(target=check input pin_status, args=(GPIO.input(16),))
pl.start()

#Main program process receives master commands
app.serve_forever()

except KeyboardInterrupt:
pass

except:
pass

finally:
pl.terminate()
pl.join()
app.shutdown()

app.server _close()

41

outfile.close()

os.system('more results/z_temp_file.csv >> "+ "results/timestamps_modbus slave '+
str(filetimstamp) + ".csv')
os.system('rm results/z_temp_file.csv')

GPIO.output(18, GPIO.LOW)

GPIO.setup(16, GPIO.IN, pull up down = GPIO.PUD_UP)
GPIO.cleanup()

print 'Program exited by user!!! - Raspberry Pil'

iii) IP Configuration
1. Disable dhcpcd service: systemct! disable dhcped.service

2. Assign static IP to the network interface. Edit the file “/etc/network/interfaces’ with below
content. The ns-3 node bridged to this subnet has IP 10.1.8.46

auto eth(

iface eth(inet static

address 10.1.8.45

netmask 255.255.255.0
gateway 10.1.8.254
dns-nameservers 10.255.255.2

3. Reboot the Raspberry P1 for configuration changes to take effect. NB: re-add static route each
time you reboot, as this configuration is lost after every reboot

4. Configure static route through ns-3 topology: sudo route add -host 10.1.8.41 gw 10.1.8.46

C. RASPBERRY PI 2 SETUP

i) Create Application for the Controlled Device

1. Create a file name “voltage-signals.py”” with below contents. This sends and receives voltage
pulses from Raspberry Pi 1 over the GPIO pins.

import RPi.GPIO as GPIO
import time
import datetime

defvoltage send receive():

GPIO.setmode(GPIO.BOARD)

GPIO.setup(18, GPIO.OUT, initial=GPIO.LOW)
GPIO.setup(16, GPIO.IN, pull up _down = GPIO.PUD_UP)

42

inputpinvalue = GPIO.input(16)

while True:

if GPIO.input(16) != inputpinvalue:

print 'Pin 16 received ', GPIO.input(16), datetime.datetime.now()
GPIO.output(18, GPIO.input(16))

print 'Pin 18 set to', GPIO.input(18), datetime.datetime.now()
inputpinvalue = GPIO.input(16)

if name ==' main__ "
try:

print 'Waiting to receive signals’
voltage send receive()

except KeyboardInterrupt:

pass
except:

pass

finally:

GPIO.output(18, GPIO.LOW)

GPIO.setup(16, GPIO.IN, pull up down = GPIO.PUD_UP)
GPIO.cleanup()

print 'Program exited by user!!! - Raspberry Pi2'

D. EXPERIMENTS, USER CONFIGURATIONS AND MISCELLANEOUS

i) How to Run Experiments

1. Generate the network topology on server by changing directory to “Project-218” and running
the script: python topogen.py

2. Logon to Raspberry Pi 2 and start the application that sends and receive the voltage pulses:
python voltage-signals.py

3. Logon to Raspberry Pi 1 and start the Modbus slave application

sudo python slave-modbus.py

4. On the server, switch to below directory and execute the automation script to run repeated
experiments based on the number specified by the user in the topology generation script

cd /ns3/ns-allinone-3.26/ns-3.26

python automate.py

5. The average latencies for each run of the experiment are saved on the server with a file name
starting with “average latencies " and a system generated timestamp. This file is located in the
directory “Project-218/results”

43

ii) User Configurable Parameters

1. Number of nodes in topology.
In the file “topogen.py’ change the value of the variable named "numofnodes"
2. Number times to repeat experiment with different latencies.
In the file “topogen.py’” change the value of the variable named "numofexp”
3. Mean value for the latency distribution on links.
In file “topogen.py” change the value of the variable named "mean"
4. Standard deviation for latency distribution on links.
In file “topogen.py” change the variable name "stddev"”
5. How long to run each run of ns-3 topology with specific link latencies.
In the ns-3 scenario file “scratch/demand-response-sim.cc” change the decimal
value in the line “Simulator::Stop (Seconds (120.));”

iii) MATLAB Code For PDF and CDF

load latencydata.mat

ndist_lf=fitdist(latency fixed,'Normal')

x_values = 0.05:.001:.5;

vy = pdf(ndist_Ilf,x values);

subplot(2,1,1); plot(x values,y,'LineWidth',2),

hold;

histogram(latency _fixed,50,'Normalization','pdf’);

title(['Gaussian PDF Fit and Normalized Histogram of Network Latencies' char(10) 'N(\mu="'
num2str(ndist_lf-mu) ', \sigma="num2str(ndist_lf.sigma) ")'])

xlabel('Latency [sec]');ylabel('Probability’);

grid on;hold off

subplot(2,1,2), histogram(latency fixed,50,'Normalization','cdf’);

hold;grid on;

subplot(2,1,2); %cdfplot(latency fixed),

y=cdf('Normal'x_values,ndist_lf.mu,ndist lf.sigma);
subplot(2,1,2);plot(x_values,y,'LineWidth',2)

title(['Gaussian CDF Fit and Normalized Data of Network Latencies' char(10) 'N(\mu='
num2str(ndist_lf-mu) ', \sigma="num2str(ndist_lf.sigma) ")'])

xlabel('Latency [sec]');ylabel('Cumulative Density');

hold off

44

45

DISTRIBUTION

1 MS1033 Ross Guttromson Org. Number 08812 (electronic copy)
1 MS1033 Jay Johnson Org. Number 08812 (electronic copy)
1 MS1033 Abe Ellis Org. Number 08812 (electronic copy)
1 MS10xx Ray Byrne Org. Number 08813 (electronic copy)
1 MS0899 Technical Library 9536 (electronic copy)

46

47

@ Sandia National Laboratories

