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ABSTRACT

Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive
environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively,
while at the same time maintain good ductility at low temperature. We develop automated
simulation software tools to enable fast large scale screening studies of candidate designs. While
direct evaluation of creep rupture strength and ductility are currently not feasible, properties such
as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used
to assess their relative ductility and creeping strength. We implemented software to automate the
complex calculations to minimize human inputs in the tedious screening studies which involve
model structures generation, settings for first principles calculations, results analysis and
reporting. The software developed in the project and library of computed mechanical properties
of phases found in ferritic steels, many are complex solid solutions estimated for the first time,

will certainly help the development of low cost ferritic steel for AUSC.
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LLEXECUTIVE SUMMARY

This report summarizes our method development, software implementation, infrastructure
improvement and computational studies for the ferritic steels during the three-year period.

e Calculations of all known phases found in ferritic steels of which majorities are solid
solution phases. Many solid solution phases were for the first time systematically studied
using first principles methods;

e Assessment of the zero temperature elastic properties of known 9-12Cr ferritic steels
using Eshelby’s inclusion theory for multiphase multicomponent system. The shear/bulk
modulus ratio are used to indicate the ductility of the ferritic steel;

Additional modules for physical properties calculations are also developed:

e Development of G(p,T) module that automates the solid solution modeling based on
structure template and composition parameters;

e Development of G(p,T) module that automate the physical properties calculations using
special quasirandom structure methods;

To facilitate our software development, we had upgraded our computer cluster to a 36-node
computer cluster (gpt.tsuniv.edu) using Intel Xeon server chips with 4GB RAM per core. We
had involved three undergraduates and two master graduate students in this projects. One
graduate student’s thesis work was to develop a searchable database for crystal structure data

mining.



ILINTRODUCTION

Background

Advanced ultra supercritical boiler (AUSC) targeted at operational temperature up to 760°C
and pressure up to 35MPa has so far disqualified all tested low cost ferritic steels as high
temperature structural material [1-2]. Recent developed 9-12Cr steel such as T/P91 and T/P92
showed excellent short-term creep strength but suffered from sigmoidal creep behavior in long-
term creep test. The cause of such behaviors had been revealed as the precipitation of complex
Z-phase nitrides at the expense of nanoscale MX carbonitrides dispersed in the matrix [3]. MX
carbonitrdes hinder the motion of dislocation and are responsible for the ferritic alloy’s improved
creep strength. The coarsening of M23Ce particles which reside primarily at the grain boundaries
also contribute to the loss of long term creep strength. Abe et al had demonstrated that the carbon
and nitrogen concentrations affect the evolution of MX carbonitrides and boron stabilizes M23Cs
particles [4].

To meet the requirements of AUSC, besides sufficient creeping strength at high temperature
and pressure, new ferritic steels must also have excellent oxidation resistance and sufficient low
temperature ductility. Among ferritic steels studied, steel contains 9-12% Cr shows excellent
oxidation resistance by forming a dense oxide film that prevents the propagation of corrosion.
Tempering at elevated temperature improves low temperature ductility. In the past few decades,
tremendous efforts had devoted to control microstructure evolution at high temperature by
modifying precipitation structure and composition. The key issues in searching for ferrite steel
for AUSC are thus to understand the relation of structure and mechanical properties and control

the precipitation microstructure and composition.



As the matrix phase of the 9-12Cr ferritic steel, the composition effects on its mechanical
properties have been extended studied by many research teams. Leslie et al summarized the
effect of alloying elements on the mechanical properties of BCC phase [5]. Cr shows an
exceptional behavior that the strengthen effect increase with decreased temperature up to room
temperature and drop sharply to softening at about 150K. Al has the most significant
embrittlement effect on the BCC solid solution by promoting phase transition to intermetallic
phase and grain boundary segregation. Simple models were used by the author to rationale the
observed composition effect on mechanical properties. However our understanding of the
mechanisms for the observed is unsatisfactory as these models succeed in some cases while fail
in other cases.

In this project, we focus on develop large scale screening approaches based on physical
properties of phases found in 9-12Cr ferritic steel. The goal of this project is two-fold: (1) to
extend a solid solution modeling module to handle larger number of elements, to implement fast
algorithms such as special quasirandom structure (SQS) method [6] for physical properties
calculation of solid solution, to develop modules to calculate additional properties need to assess
ductility; (2) to calculate the elastic properties of the solid solutions for given composition
sampling. The results are used to construct the database for likelihood analysis which can be
used to identify composition of new ferritic steel that are likely to succeed in quest for high

temperature application in AUSC.

G(P,T) Package for Thermodynamic and Mechanical Properties Calculations
Our in-house developed G(P,T) package [7] has been successfully applied to calculate
thermodynamic properties and mechanical properties of various ceramics and metals [8]. With

support from NETL, we have extended our in-house Gibbs free energy package G(P,T) based on



first principles density functional theory for assessment thermodynamic and mechanical
properties of solid solution and automation of large scale screening calculations. The G(P,T)
package which is capable of computing physical properties of crystals such as elastic tensor,
phonon structure, Helmoltz and Gibbs free energy and many other thermodynamic properties
such as entropy, heat capacity, isothermal bulk modulus, thermal expansion coefficient, and
Grineisen parameters, etc. G(P,T) use the Vienna ab initio package (VASP) [9] for electronic
structure, force and ground state energy calculations. The G(P,T) package has been designed to
run efficiently on parallel computing architecture and has already been deployed on
supercomputers of NERSC and ORNL. In its current implementation, G(P,T) package has shown
to be scalable to at least thousands of processors in our recent phonon calculation of a 220-atom
Al>03 grain boundary model.
Solid Solution Modeling

Solid solution modeling using first principles method can be very challenging. The current
state-of-the-art method can only scale up to about 1000 transitional metal atoms. In practice, we
often limited the periodic structure unitcell to be less than 200 atoms, which can take a few hours
for a self-consistent calculation on a small cluster. For large scale screening where large number
of such calculations are needed, we will have to limit our models to be less than 200 atoms per
unitcell. While other methods such as coherent potential method are frequently cited in the
literature, we limit our discussion to methods based on VASP since we need to compare over
many phases which has been calculated and validated using VASP. Cluster expansion method is
a rigorous approach to compute solid solution properties. However, it is computationally
extremely expensive, especially for multi-lattice multi-component system. We have implemented

in G(p,T) the unitcell expand method. To reduce computation time, the special quasirandom



structure (SQS) method, which assume structure complies to high temperature limit of cluster
expansion, can be used to estimate solid solution properties. Instead of calculate a large series of
models to construct the cluster expansion, only a few structure models are needed for SQS.
There models have cluster distribution functions matches those of the high temperature limit
within a cutoff range. We used the mcsqs program included in the ATAT package to generate
SQS models.
Unitcell Expansion Method

For multicomponent multisublattice solid solution, we had implemented a coarse grained
cluster expansion method, the unitcell expansion method (UEM), in the G(p,T) package. In

traditional cluster expansion method, the energy was expressed in terms of atomic clusters. In

practices, a maximum complete cluster set y is used as cut off in the energy expression,

E@) = V,®,0) 1)
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where 6 =(o,,0,,:-,0) is the configuration vector, a is a cluster in y, oi is the site

occupation variable at ith lattice site, Va is the effective cluster interaction coefficient, and
®«(a) is the cluster function of cluster a. The above approach has been extensive used to study

binary alloys. However, if the lattice is complex and many non-equivalent lattice sites existed in
the structure, the traditional cluster expansion method can be computationally expensive if not
prohibitive. In the case of boron carbide, where carbon atoms could reside randomly on the
stable conjugated icosahedra, the maximum cluster can be exceedingly large as huge maximum
cluster set with clusters up to 12 atoms may be needed. the energy of the disordered crystal in

terms of primitive unitcell,

E(n) =2 V,®,@) 2
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where C is the maximum complete cluster set of unitcells, 3 is a cluster in C,

ij=(r,,7,,---,7,) is the configuration vector, rizr(al(”,ag),--~,0',§:)) is ith unitcell

configuration variable, Vg is the effective unitcell cluster interaction coefficient, and ®p(&) Iis

the unitcell cluster function of cluster (3. Energy expansion in terms of unitcells trades the

complexity in lattice for increased component types. For one unique site simple lattice such as
BCC/FCC, UEM reduces to traditional cluster expansion method. For complexity lattice,
particularly large unitcells, UEM has significant advantages. First, it is possible to reduce the

number of unique unitcell types, n- . For a given concentration, we can carry out an extensive in

unitcell or small supercell calculations to identify the lowest configurations that will be used in
the UEM calculations. Second, if the unitcell is large enough, it is possible only small clusters up

to near-neighbor clusters or at most triplets will be needed in the energy expression, thus the total

number of effective cluster interaction coefficients (ECI) N remains manageable (~n->-3).

B,
Third, it is quite simple to introduce lattice defects, surface structures in this approach. If only
considering the nearest neighbor interaction, the UEM becomes a Potts model. Potts models is a
generalized Ising model in which a finite set of symbols, here we referred as unique unitcell

types, is used to defined to the lattice site occupations,

H, ==Y 3;6(z;7;)- D> hr, (3)
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where Jjj is the near-neighbour interaction, h; is the self-interaction energy coefficient of ith
lattice site.

The UEM approach requires significant amount computational resource and is not suitable
for large scale screening. Instead, we implemented the special quasirandom structure method

(SQS), developed by Zunger et al, which requires only few supercell calculations to evaluate



properties of solid solution. In the SQS method, physical properties can be expressed ensemble
average of configurations,

<P>= Xk m Dxm < ITkm> Pk,m (4)
where Dkm are the number of figures per site, pkm are the interaction parameters of figures (k,m)
and ITTxm are the correlation function. Unlike cluster expansion method, the central idea of SQS
is to estimate < Ilxm>r uSing statistical sampling method over a few specially design N-atom
periodic structure S whose distinct correlation funtions Ik m(S) best match < Ik m>r.
Temperature-Pressure Dependent Elastic Constants

The G(p,T) package also has the ability to computationally assess the high temperature
mechanical properties. Considering a periodic cell under temperature T, a small external strain &jj
is applied to the cell. With the G(P,T) package, we can calculate the Helmholtz free energy F(T,
&ij) of the perturbed cell. Ignoring high order terms, the Helmholtz free energy F(T, &ij) of the cell
can be expanded around the unstrained reference cell 0 as,

F(T, eiy)= F(T, 0)-6ij(T, 0)eij*+%Ciju(T,0) &ij ex )
where gij(T, 0) and Ciju(T,0) are the temperature dependent stress tensor and elastic tensor of the
reference cell, respectively. Helmholtz free energy F(T,s) has 7 independent variables: the
second order strain tensor has up to 6 independent components and temperature. Sampling of
F(T,&) in the 7-dimension space to calculate temperature elastic tensor of any reference cell
would be computationally too costly. However, if we consider only reference cell under
hydrostatic press P, we can significantly reduce the sampling to only 2 dimensions as the cell
shape and size is uniquely determined by temperature T and hydrostatic pressure P. However, the
cell shape and size are unknown for given T and P. Our approach is to sample around the zero

temperature reference cell O under pressure P which is obtained from total energy relaxation.



Assuming at temperature T, the thermal stress leads to a strain &', equations (5) can then be
rewritten as

F(T, &)= F(T, 0+ &lj)-0ij(T, 0+ &) eij- &5 )+ ¥2Cijua(T,0+ &l &i - eij)(ew- eha) ~ (6)

Let &ij =eij- tij , 0'=0+ &'j , and (T, O+ &%)=P-6ij where &j; is the Kronecker delta, we have,

F(T, & )= F(T, 0)- P-djj (eij- €5 )+ %Cijw(T, 0')( &ij - €'iy) (e~ €%) )
where Ciju(T, 0°) is the elastic tensor at temperature T and pressure P. The thermal stress induced
strain can be estimated from equation (2), &=  Siw(T,0)( ou(T, 0)-P-du). A simple linear
regression model can be used to find the elastic tensor based on equation (6) and (7). Other

properties such as thermal expansion tensor can also be calculated in similar way.

II1. Methodology Development

A.1 G(P,T) module for automated structure modeler
We completed the implementation of a G(p,T) module to automate the proposed calculations.

A set of scripts for input file preparation have been developed:

(1) getnimscif: a script to retrieve crystal structure data in CIF format from the NIMS
database (http://crystdb.nims.go.jp/index_en.html)

(2) gulp2xml: convert simple GULP structure input file to xml prototype structure file.
Example is shown in Appendix 1.

(3) xml2gulp: generate GULP input based the xml template. For example
» ~>xml2gulp —i czts.xml —s “Cu Fe Cr Se; .5.500;0.5.50;,50.50;,000 17

The above command will substitute the Cu, Zn, Sn, S with (Cuos Feos),
(Feos, Cros), (Cros Cuos) and Se.

(4) xml2int: generate internal input format used by G(p,T) package.

(5) xmI2mcsgs: generate input file for mcsqgs program which is part of the ATAT package.
We are working on our own program to improve the convergence of the special quasi-
random structure generation tool.



Steel has a very complex multiscale structure including many solid solution phases. To
automate the calculation of these solid solution systems, we use the strategy that separates the
lattice and basis from site occupation. Any atomic structure can be described by,

S—> {R;0i} 8)
where S represents the structure, R is the location of ith atomic site, and O; is the occupation
index at the ith atomic site. For crystal and solid solution,
{Ri} = {Lin}={ Li}®{r} i— {0, k} 9)
where all lattice sites can be generated by all translation of operators {Lj} acting on the lattice
basis {rc}. The index i is uniquely mapped to the pair {j,k}. The set of occupation index {Oi},
however, cannot be directly generated from {Lj} acting on the corresponding occupation basis
{0i} except perfect crystal with occupation periodicity. Introducing collapse operator C, inverse
toL,
{<ni>} = {Gi Rgw} (10)
where qk = <rg;> is a replica vector of rx with index j, i.e. <ry, r, ry, r1, r1, ri...>. Similarly,
{<ox;>} ={C; Ogx} (11)
where pk = <ok > is a replica vector of ok with index j, i.e. <01,1, 01,2, 01,3, 01,4, 015 ...>. At each
position with index j, the occupation index can be different at each component in case of solid
solution. Under translational operation, i.e., shifting the j index of the replica vector component,
the replica vector for atomic position is invariant; the replica vector for occupation index is not.
Of course, the total energy of the system is invariant under translational operation.
Let us take the P91 steel as an example. The follow structure facts, as shown in table 1, can

be retrieved from various databased and literatures.



Tabel 1. Mole fraction of atoms in steel P91 and its phases at T=300K and P=1atm

Steel Al C Cr Fe Mn Mo N Nb Ni Si \%
P91 0.003 | 0.005 | 0.088 | 0.882 | 0.004 | 0.005 | 0.002 | 0.0004 | 0.001 | 0.007 | 0.002
A2-1 0.003 0.001 | 0.990 0.007

A2-2 0.946 0.054

Cc14 0.545 0.333 0.122

z 0.338 | 0.038 0.247 0.377
NbNi3 0.250 0.750

AIN 0.500 0.500

M23C6 0.207 | 0.685 | 0.005 0.103

Clearly, there are only two crystal phases, NbNis and AIN in P91 and the rest are solid
solution phases. To generate structure model from the above table directly can be a great
challenge, as the occupations of lattice basis cannot be directly obtain from those overall
information, For example, for Z-phase, there could be many possible distributions on its 6 lattice
basis that satisfy the mole fraction restrict from the table, N atoms can either occupy all 6 lattice
basis at 24.7% probability or only 2 lattice basis at 86.1% probability.

It is possible to directly calculate the site occupation in the solid solution using cluster
expansion approach but the computational cost can be prohibiting. Since the aim of this project
is to screen large number of possible concentration, it is necessary to develop a much fast

approach to estimate properties of the solid solution.

Examples

1. Sample xml template file, generated from czts.gin

<?xml version="1.0" encoding="1S0-8859-1"?>

<struct_prototype>
<i name="prototype_name">CZTS</i>
<i name="prototype_comment">Cu-Zn-Sn-S compound for PV</i>
<i name="prototype_SBS">CZTS</i>



<symmetry>
<i name="space_group">121</i>
<i name="space_group_pearson">tl16</i>
<i hame="space_group_point_group">D2d</i>
<i name="space_group_hm">|-42M</i>
<i name="origin">1</i>
</symmetry>
<cell>
<v name="cell_free_parameters"> 5.435 10.843 </v>

<v name="cell_parameters"> 5.435 5.435 10.843 90 90 90 </v>

<varray name="uc_vectors">
<v name="uc_a"> 5.4350000 0.0000000
<v name="uc_b"> 0.0000000 5.4350000
<v name="uc_c"> 0.0000000 0.0000000
</varray>
<varray name="pc_vectors">
<v name="pc_a">  -0.5000000 0.5000000
<v name="pc_b"> 0.5000000  -0.5000000
<v name="pc_c"> 0.5000000 0.5000000
</varray>
</cell>
<composition>
<i name="number_of_elements"> 4 </i>
<v name="elements"> Cu Zn Sn S </v>
<i name="number_of_composition_vectors"> 4 </i>
<varray hame="composition_vectors">
<rid="1">1 0 0 0</r>
<rid="2">01 0 0</r>
<rid="3">00 1 0</r>
<rid="4">00 0 1</r>
</varray>
</composition>
<lattice_basis>
<i name="number_of_wyckoff_sites"> 4 </i>
<i name="number_of sites_uc"> 16 </i>
<set name="site_list_uc">

0.0000000 </v>
0.0000000 </v>
10.8430000 </v>

0.5000000 </v>
0.5000000 </v>
-0.5000000 </v>

<rid="1"idirr="1" wyckoff="d" multi="4" idaw="1" > 0.000000
<r id="2" idirr="1" wyckoff="d" multi="4" idaw="2" > 0.500000
<r id="3" idirr="1" wyckoff="d" multi="4" idaw="3" > 0.500000
<r id="4" idirr="1" wyckoff="d" multi="4" idaw="4" > 0.000000
<r id="5" idirr="2" wyckoff="a" multi="2" idaw="1" > 0.000000
<r id="6" idirr="2" wyckoff="a" multi="2" idaw="2" > 0.500000
<r id="7" idirr="3" wyckoff="b" multi="2" idaw="1" > 0.000000
<r id="8" idirr="3" wyckoff="b" multi="2" idaw="2" > 0.500000

<r id="9" idirr="4" wyckoff="i" multi="8" idaw="1" >

<r id="10" idirr="4" wyckoff="i" multi="8" idaw="2" > 0.744900
<rid="11" idirr="4" wyckoff="i" multi="8" idaw="3" > 0.255100
<r id="12" idirr="4" wyckoff="i" multi="8" idaw="4" > 0.755100
<rid="13" idirr="4" wyckoff="i" multi="8" idaw="5" > 0.744900
<rid="14" idirr="4" wyckoff="i" multi="8" idaw="6" > 0.244900
<r id="15" idirr="4" wyckoff="i" multi="8" idaw="7" > 0.255100
<rid="16" idirr="4" wyckoff="i" multi="8" idaw="8" > 0.755100

</set>
<i name="number_of_sites_pc"> 8 </i>
<set name="site_list_pc">

0.500000
0.000000
0.000000
0.500000
0.000000
0.500000
0.000000
0.500000

0.744900
0.255100
0.755100
0.255100
0.755100
0.744900
0.244900

0.250000 </r>
0.750000 </r>
0.250000 </r>
0.750000 </r>
0.000000 </r>
0.500000 </r>
0.500000 </r>
0.000000 </r>

0.244900 0.244900 0.129800 </r>

0.629800 </r>
0.629800 </r>
0.129800 </r>
0.370200 </r>
0.870200 </r>
0.370200 </r>
0.870200 </r>

<rid="1" idirr="1" wyckoff="d" multi="4" idaw="1" > 0.750000 0.250000 0.500000 </r>



<rid="2" idirr="1" wyckoff="d" multi="4" idaw="2" > 0.250000 0.750000 0.500000 </r>
<r id="3" idirr="2" wyckoff="a" multi="2" idaw="1" > 0.000000 0.000000 0.000000 </r>
<r id="4" idirr="3" wyckoff="b" multi="2" idaw="1" > 0.500000 0.500000 0.000000 </r>
<r id="5" idirr="4" wyckoff="i" multi="8" idaw="1" > 0.374700 0.374700 0.489800 </r>
<r id="6" idirr="4" wyckoff="i" multi="8" idaw="2" > 0.884900 0.884900 0.510200 </r>
<r id="7" idirr="4" wyckoff="i" multi="8" idaw="3" > 0.625300 0.115100 0.000000 </r>
<r id="8" idirr="4" wyckoff="i" multi="8" idaw="4" > 0.115100 0.625300 0.000000 </r>
</set>
<set name="site_occupancy_list">
<iidirr="1"> 1 </i>
<iidirr="2"> 2 </i>
<iidirr="3"> 3 </i>
<iidirr="4"> 4 </i>
</set>
</lattice_basis>
</struct_prototype>

The GULP input file:

single verb full nosymm

title

prototype_name  CZTS
prototype_comment Cu-Zn-Sn-S compound for PV
prototype_SBS CZTS
spacegroup_pearson tl16

end title

cell

5.4355.43510.843 90 90 90

frac

Cul core 0 1/2 1/4 #4d
Znl core 00 O #2a

Snl core 00 1/2 #2b

S1 core 0.24490.24490.1298 #38i
space

121

dump czts-uc.gin

A.2 G(P,T) module implementing the special quasirandom structures method

The goal of this task is to implement the special quasirandom structures method to speed up
the calculation of properties of solid solution at the price of acceptable loss of accuracy. The
module is responsible to invoke structure modeler implemented in A.1 to produce the set the
special structures and setup VASP calculations to obtain properties of the set. The results of

these calculations can then to obtain solid solution properties through ensemble average.



A set of scripts have been developed to automate the generation of the special quasirandom
structure using structure prototype and chemical composition. The composition determined from
experiment requires huge number of atoms to match exactly which is not possible with first
principles methods. To limit the size of model, we limited the minimal concentration of elements
to be greater than 0.2% and the concentration has to be rounded to ensure integer number of

atoms in the SQS model.

(1) mesgszint: the script runs a Monte Carlo simulation to generate SQS structure and
convert the output to internal format of the G(p,T) package

(2) mcsgs2aims: the script convert the output from SQS calculation to input files for FHI-
Aims program, a numeric LCAO based method we purchased.

Eshelby Inclusion Theory for Homogenization of Multiphase Composite Materials

Mechanical properties of ferritic steels depend on their multiscale structure. Direct simulation
of the complex multiscale structure from atomistic steel is computational prohibitive. Eshelby
inclusion theory (J. D. Eshelby, Elastic Inclusions and Inhomogeneities, in Progress in Solid
Mechanics,2" ed. IN. Sneddon and R. Hill, North-Holland, Amsterdam, 1961. pp. 89-140.)
provides a homogenization scheme to estimate ferritic steel elastic properties from elastic
properties of each phases found in the steel and volume composition and grain size distribution.
Since all precipitation phases form smaller particles comparing to the matrix BCC iron phase, it
is reasonable to assume all inclusion, or precipitating, particles are in ellipsoidal shape.

Based on the Eshelby’s elliptical inclusion theory, we implemented an iteration scheme to
compute the homogenized elastic properties of ferritic steels based on volume partition and
elastic properties of all phases involved. The Effective Self Consistent Scheme (ESCS) for
homogenization is described as,

C'=(H+CwY)? (12)



where C” is the homogenized elastic tensor, Cw is the elastic tensor of the matrix phase, and H is

the compliance increment which is to be obtained through the following implicit relation,
H =sum (Hi® (I - Qpi,i H)* (13)

where Qpj; are the eigenstiffness of the ith inclusion phase, Hii¢ is the dilute limit estimation of

the ith inclusion phase, which both can be estimated based on Eshelby’s theory,
Hii’ = ci { (Cii*-Cm)t + Cm(I-S1iM) 3 (14)
Qoii= C°(I-S1i) (15)

where S;;M is the Eshelby tensor for the ith inclusion phase in matrix phase, ci is the volume
fraction of the ith inclusion phase, and Cy; is the ith inclusion phase elastic tensor, S, is the

Eshelby tensor for the ith inclusion phase in unknown effective medium.

The above scheme was programmed in python script named homogenize. In our
implementation, H is initialized to zero. C* is then calculated to the estimation of S;;", which is
then used to estimate a new H. The process repeated until the difference in H is less than certain

convergence criteria.

IV. Results and Discussions
We use the following accuracy setting for all VASP calculations: (1) planewave energy
cutoff is 400eV; (2) energy convergence is 108eV/cell and force convergence is 10%eV/A; (3)

use reciprocal mesh for charge density representation.



Application to 9-12Cr Ferritic Steels

B.1 Properties of known 9-12Cr ferritic steel

Our goal is to search for low cost ferritic steel that can be used in next generation AUSC
boiler. AUSC boiler requires material properties that are not met satisfactorily by available
ferritic steels. Properties such as high temperature creeping strength, oxidation resistance, and
low temperature ductility are critical to the success of AUSC boiler. Accurate direct assessment
of these properties of a given ferritic steel composition using first principles based method is
currently infeasible since steels have a complex structure whose properties are greatly affected
not just by the atomic structure of phases presented but also the microstructure of grains and
precipitations whose formation is driven by both thermodynamics and material processing.
Instead, we aim here to screen ferritic steel alloys that will meet the material properties
requirements, in this project, low temperature ductility, that can be reasonable estimated using
first principles methods without much experimental inputs.

Ductility of alloy can be assessed using Poisson’s ratio or more sophisticated, the Rice-
Thompson parameter. For steel, calculating these parameters is a non-trivial task. In the case of
AXM steel, it has 11 phases presented. Among the 11 phases, 9 are solid solution phases. To
make the calculations computationally feasible, we used the special quasi-random structure
methods to model the solid solutions. To estimate the overall mechanical properties of steels
from the properties of phases presented, we used the method based on Eshelby’s inclusion theory
for homogenization in which the effect of microstructure can be estimated based on phase
volume composition assuming certain microstructure morphology.

Figure 1 illustrates the screening process. Alloy compositions and phase compositions are the

input of the screening process. First phases properties are calculated using first principles method.



Next homogenization method is used to calculate overall properties. The result is used to help

searching for compositions that have desired properties

Steel composition =» Phase composition =» Phase properties =» Steel properties

Figure 1. Feedback loop of the screening process.

Composition and Phases of known 9-12Cr Ferritic Steels

There are 12 known 9-12Cr ferritic steels included in present study: P91, P92, E911, AXM,
HCM12, P122, T122, NF12, FN5, TB12, VM12, and X20. The dominant phase (>80%) is the
body centered cubic (BBC) iron phase of A2 (Strukturbericht symbol). These BCC-AZ2 iron solid
solution phases have less than 4% other dopants. Limited by computational power, only elements
with over 0.2% are included in the solid solution models. Exactly matching the experimentally
determined composition is not possible with a model of less than 200 atoms. Instead, a linear
interpolation scheme to estimate its properties is used by computing models with compositions
slightly off the experimental determined values as permitted by model size. For example,
Feo.964Si0.036 IS t0 be estimated from FegeSis and Feg7Sis solid solution models.

Table 2 lists all matrix phase computed. Assuming power law holds for doping concentration
dependent elastic modulus (At ~ ¢*?).

Table 2. computed elastic properties of Iron matrix phase (unit: GPa)

Steel Composition K G E \%

P91 [Fe0.9898Si0.0066A10.0028X] 228 82 219 0.340
E911 [Fe0.9969Si0.0020X] 210 95 247 0.304
P92 [Fe0.9944Si0.0038A10.0006X] 219 89 234 0.322
AXM [Fe0.9964Si0.0013A10.0012X] 218 76 205 0.343
X20 [Fe0.9938Si0.0044X] 212 101 262 0.295

VM12 [Fe0.9704C00.0174Si0.0111X] 248 73 200 0.366



HCM12  [Fe0.9977Si0.0017X] 210 94 244 0.306

NF12 [Fe0.9650C00.0282Si0.0060X] 208 85 245 0.320
P112 [Fe0.9986X] 204 81 215 0.325
FN5 [Fe0.9677C00.0303Si0.0012X] 208 85 224 0.320
T112 [Fe0.9929Si0.0059X] 214 104 269 0.290
TB12 [Fe0.9990X] 204 81 215 0.325

Summarized in Table 3 are the precipitation phases in 9-12Cr ferritic steels. There are total
14 lattice prototypes found in the 12 known ferritic steels we studied. Most of the well- known 9-
12Cr ferritic steels contain over seven elements and over six precipitate phases of different
volume fractions. The microstructure of ferritic steels contains the nanometer scale and
micrometer scale precipitating particles presented inside the matrix phase, grain boundaries, and
multi-grain pocket areas.

The volume fractions of precipitate phases in each steel phase studied here are presented in
figure 2. In the figure, y-axis represent for the cumulative volume fraction and x-axis steel phase
type. Height of the shade (color) in the figure shows the proportional volume fraction of the
precipitate phase in the steel phase.

Most of the precipitate phases consist of many elements in it in different ratio. In actual
structure, there could be some elements in very small concentration. To model the structures
containing very small concentration of elements, the model structure need to be very large
(thousands of atoms) and this is not possible in ab initio simulation yet. Similar to the practice
used for matrix phase, we only include the elements with relatively larger concentration in the
structure models. And, an interpolation scheme is used to estimate the properties of the

precipitation phases.



Table 3. Precipitating phases in known 9-12Cr ferritic steels. PT and SG are abbreviations for
structure prototype and space group, respectively.

Steel Phases
Precipitate PT SG P91 P92 E911 AXM HCM P122 | Ti22 NF12 FN5 TB12 VM1 X20
Phase 12 2

BCC_A2 w 229 X X X X X X X X X X
M23Cé6 Mn23Thé6 225 X X X X X X X X X X X
LAVES MgZn2 194 X X X X X X X X X X X
Z_PHASE NaCl 225 X X X X X X X X X X X
NBNI3 AI3Ti 139 X X X X X X
ALN NiAs 194 X X X X X X
SIGMA CrFe 136 X X X
FCC_A1 Cu 225 X X X X X X X X X X
HCP_A3 Mg 194 X X
M2B_TETR Fe2B 140 X
MU_PHASE W6Fe7 166
Me6C W3Fe3C 227
CR2B_ORT Mg2Cu 70 X X X X
PI Mo3Al2C 70 X
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Figure 3. Volume fraction of precipitate phases in steel phases. Height of the color band
represent volume fraction of precipitate phase (color band) in steel phase.

Computational Methods
We used special quasirandom structure method to generate initial structures for each

precipitate phase containing fractional atomic positions. The models obtained from the mcsqs



were then fully relaxed (allowing to change both volume, cell shape and atomic positions
sufficiently well) using Vienna ab-initio simulation package (VASP). VASP is a density
functional theory based method. It is very accurate and efficient for geometry optimization,
stress and force related calculations. As we have many large models we used gamma only
calculation with PAW_PBE exchange correlation functional. Sufficiently relaxed models were
then used for elastic properties calculations. For elastic properties calculations, we used the
elastic module implemented in the G(p,T) package. In this approach, we applied a set of small
strains at a step size of 0.01 in each independent strain element and the ions in the structure were
relaxed keeping the volume and shape of the structure fixed. After sufficient relaxation ions,
stress tensor was calculated. From the set of strain and stress data, elastic stiffness constants were
calculated according to the tonsorial form of Hook’s law. From the calculated elastic tensor, we
estimated the polycrystal bulk properties using Voight-Reuss-Hill (VRH) approximation.
Results and Discussions

The calculated elastic constants Ci; (GPa) of steel precipitate phases are presented in table 3.
The bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio are calculated from
elastic constants using the VRH approximation. We noticed that, even though the composition
varied significantly for some solid solution precipitation phases including the M23Cs, Laves
phase, and Z-phase, their elastic constants appear to be very stable and not vary accordingly. For
example, the Cj; of precipitate phases M23Ce and Laves phases are large and similar in all steel
phases. Note that all models used in present study contain no vacancy and interstitial defects.
Elastic constants of most solid phases in present study are estimated for the first time and we

have little experimental data to compare with.



Table 4. Summary of computed elastic constants and mechanical properties of phases found in
the 9-12Cr ferritic steels. K, G, E and n represent bulk modulus, shear modulus, E Young’s

modulus and Poisson’s ratio, respectively. All the data in table are in GPa.

AXM
Phase Cu Ca3 Cus Coes Ci2 Cu3 K G E n
BCC_A2-1 376. 432. 42 72. 232.1 135. 238. 67 184. 0.371
BCC_A2-2 396. 396. 125. 125. 215.0 215. 275. 110. 291. 0.324
FCC_Al-1 311. 343. 146. 147. 205.4 165. 224, 106. 275. 0.296
FCC_A1-3 180. 180. 82. 82 120.8 120. 138. 54. 145. 0.325
ALN 377. 356. 113. 125. 128.8 98. 195. 122. 304. 0.241
M23C6 459. 459. 111. 111. 216.1 216. 297. 115. 306. 0.328
Z_PHASE 278. 250. 44 7 182.7 172. 189. 29. 83. 0.427
NBNI3 290. 305. 113. 111. 178.2 152. 205. 90. 237. 0.307
M2B_TETR 439. 504. 141. 135. 199.5 190. 282. 137. 353. 0.291
MU_PHASE 433. 405. 93. 93. 245.0 219. 292. 94 256. 0.354
M6C 441. 441. 114. 114. 202.6 202. 282. 116. 307. 0.318
E911
Phase Cu Css Cu Ces Cu Cis K G E n
BCC_A2-1 283.5 283.5 153.2 153.2 2447 2447 221.3 70.2 190.5 0.357
BCC_A2-2 357.2 357.2 344 344 161.5 161.5 219.4 50.3 140.3 0.393
FCC_A1-1 292.2 292.2 143.2 143.2 186.3 186.3 219.1 96.1 251.6 0.309
HCP_A3-2 296.3 273.9 63.9 82.6 178.6 190.0 219.3 60.4 166.1 0.374
ALN 377.4 356.1 1135 125.6 128.8 98.9 195.7 1225 304.0 0.241
M23C6 447.4 447.4 115.6 115.6 220.3 220.3 296.0 114.8 304.9 0.328
LAVES_1 439.7 441.4 91.5 124.7 189.9 173.2 265.8 112.2 295.1 0.315
LAVES_2 441.7 429.6 50.4 106.4 233.3 200.4 285.1 80.7 221.2 0.371
Z_PHASE-1 318.2 281.5 68.4 72.3 150.1 175.0 2125 68.1 184.6 0.355
Z_PHASE-2 318.0 419.8 79.9 16.6 142.9 168.6 2125 60.3 165.2 0.370
SIGMA 400.9 400.9 57.3 57.3 197.7 197.7 265.0 72.2 198.6 0.375
FN5
Phase Cu Cas Cu Ces Cu Cus K G E n
BCC_A2-1 347.1 347.1 128.9 128.9 219.5 219.5 261.2 97.2 259.5 0.335
BCC_A2-2 353.3 353.3 38.2 38.2 184.2 184.2 238.1 52.0 145.4 0.398
FCC_A1l-1 312.7 312.7 142.5 142.5 181.8 181.8 2244 104.3 270.9 0.299
M23C6-1 440.0 440.0 124.6 124.6 223.1 223.1 295.4 117.9 312.2 0.324
M23C6-2 432.3 432.3 134.1 134.1 217.5 2175 289.1 122.7 3224 0.314
LAVES 4415 395.6 79.6 106.8 228.2 205.7 283.4 94.8 255.8 0.350
NBNI3 290.2 305.9 113.3 111.4 178.2 152.7 205.6 90.9 237.7 0.307




HCM12

Phase Cu Css Cua Ces Cu Cis K G E n
BCC_A2-1 190.3 190.3 139.5 139.5 292.4 292.4 122.3 362.1 546.7 -0.245
BCC_A2-2 354.9 354.9 329 329 163.2 163.2 2129 46.0 128.8 0.399
FCC_A1-2 260.6 260.6 81.7 81.7 140.6 140.6 180.4 719 190.4 0.324
M23C6 445.4 445.4 134.0 134.0 217.9 217.9 293.7 1255 329.5 0.313
LAVES 446.2 442.7 102.6 127.8 189.8 170.5 266.2 119.2 311.2 0.305
Z_PHASE 329.4 326.2 64.9 56.5 169.1 177.3 225.7 67.5 184.1 0.364
NBNI3 290.2 305.9 113.3 111.4 178.2 152.7 205.6 90.9 237.7 0.307

NF12

Phase Cu Css Cu Ces Cu Cis K G E n
BCC_A2-1 280.0 280.0 134.7 134.7 236.1 236.1 226.3 66.8 182.4 0.366
BCC_A2-3 355.5 355.5 35.0 35.0 161.3 161.3 218.7 50.3 140.2 0.393
M23C6 441.3 441.3 115.7 115.7 2235 2235 296.1 112.9 300.5 0.331
LAVES 440.1 400.3 79.3 103.2 234.4 208.4 286.2 93.4 252.7 0.353
Z_PHASE-1 329.5 320.5 77.8 82.7 161.8 179.3 224.4 77.6 208.7 0.345
Z_PHASE-2 300.5 418.3 76.8 16.7 160.1 168.5 212.4 56.8 156.3 0.377
NBNI3 290.2 305.9 113.3 1114 178.2 152.7 205.6 90.9 237.7 0.307

P122

Phase Cu Cas Cu Ceo Cr Cus K G E n
BCC_A2-2 349.8 349.8 38.1 38.1 168.7 168.7 224.7 52.2 145.2 0.392
FCC_A1l-1 288.9 288.9 144.4 144.4 195.8 195.8 222.7 91.8 2422 0.319
ALN 377.4 356.1 1135 125.6 128.8 98.9 195.7 122.5 304.0 0.241
M23C6 447.6 447.6 115.7 115.7 220.5 220.5 296.2 114.8 305.0 0.328
LAVES 445.1 426.9 65.8 104.6 235.6 203.0 288.1 88.8 241.6 0.360
Z_PHASE-1 318.4 3333 82.1 78.1 178.9 166.0 221.2 78.6 210.9 0.341
Z_PHASE-2 301.5 418.0 81.0 24.2 145.2 170.7 215.1 64.4 175.7 0.364
NBNI3 290.2 305.9 113.3 111.4 178.2 152.7 205.6 90.9 237.7 0.307

P91

Phase Cu Css Cua Ces Cu Cis K G E n
BCC_A2-1 284.9 284.9 124.8 124.8 232.0 232.0 2315 66.4 181.7 0.369
BCC_A2-2 360.2 360.2 34.8 34.8 162.7 162.7 216.5 48.7 135.9 0.395
ALN 377.4 356.1 1135 125.6 128.8 98.9 195.7 1225 304.0 0.241
M23C6 4475 4475 115.6 115.6 220.5 220.5 296.1 114.7 304.9 0.328
LAVES 430.5 421.4 96.6 123.2 181.6 164.8 256.0 113.7 297.0 0.307
Z_PHASE 324.6 299.6 71.9 69.2 162.5 172.7 218.2 71.8 194.1 0.352
NBNI3 290.2 305.9 113.3 1114 178.2 152.7 205.6 90.9 237.7 0.307




P92

Phase Cu Css Cua Ces Cu Cis K G E n
ALN 377.4 356.1 1135 125.6 128.8 98.9 195.7 122.5 304.0 0.241
NBNI3 290.2 305.9 113.3 111.4 178.2 152.7 205.6 90.9 237.7 0.307
M2B_TETR 439.8 504.1 141.7 135.6 199.5 190.1 282.1 137.0 353.6 0.291

T122

Phase Cu Ca3 Cus Coes Ci2 Cu3 K G E n
BCC_A2-1 269.7 269.7 145.4 145.4 249.8 249.8 190.3 56.9 155.2 0.364
BCC_A2-2 388.2 388.2 59.9 59.9 151.0 151.0 228.3 76.4 206.1 0.349
FCC_A1-2 296.8 296.8 145.5 145.5 189.5 189.5 222.7 97.6 255.5 0.309
ALN 377.4 356.1 113.5 125.6 128.8 98.9 195.7 122.5 304.0 0.241
M23C6 447.8 447.8 115.8 115.8 220.9 220.9 296.6 114.8 305.1 0.329
LAVES 444.7 393.4 79.5 106.9 231.1 206.1 284.5 94.8 255.9 0.350
Z_PHASE-1 332.6 301.9 77.8 71.1 169.8 176.4 222.4 74.2 200.3 0.350
Z_PHASE-2 318.6 417.0 76.9 8.8 145.4 167.2 193.7 50.6 139.6 0.380
NBNI3 290.2 305.9 113.3 111.4 178.2 152.7 205.6 90.9 237.7 0.307

X20

Phase Cu Cas Cu Ceo Cr Cis K G E n
BCC_A2-1 191.6 191.6 139.5 139.5 293.5 293.5 122.9 364.6 550.0 -0.246
BCC_A2-3 372.8 372.8 48.2 48.2 178.7 178.7 242.4 63.8 175.9 0.379
FCC_Al-1 295.5 295.5 145.1 145.1 193.9 193.9 224.6 95.3 250.5 0.314
M23C6 438.4 438.4 132.6 132.6 219.7 219.7 292.6 122.7 323.0 0.316
LAVES 427.9 420.1 97.7 122.2 181.0 164.8 255.1 113.6 296.8 0.306
Z_PHASE 311.9 301.7 71.8 53.3 167.9 173.6 215.0 65.4 178.1 0.362

TB12

Phase Cu Css Cua Ces Cu Cis K G E n
BCC_A2-2 305.3 305.3 445 445 189.8 189.8 227.6 49.1 137.4 0.399
HCP_A3-2 297.0 283.9 745 58.5 170.9 182.0 2155 62.9 172.0 0.367
ALN 377.4 356.1 1135 125.6 128.8 98.9 195.7 122.5 304.0 0.241
M23C6 442.8 442.8 113.8 113.8 222.4 222.4 295.8 112.3 299.1 0.332
LAVES 4345 434.2 73.8 105.9 226.5 196.1 282.0 94.2 254.4 0.350
Z_PHASE-1 338.0 300.0 53.4 41.2 157.4 180.7 222.7 56.4 156.1 0.383
Z_PHASE-2 283.8 419.1 78.7 329 150.2 166.7 211.3 66.5 180.5 0.358
SIGMA 400.0 364.6 57.4 88.7 183.2 209.5 263.0 75.9 207.6 0.368
Pl 281.9 270.7 82.3 77.6 171.6 163.9 203.4 69.6 187.5 0.346

VM12




Phase Cu Css Cua Ces Cuw Cis K G E n

BCC_A2-1 194.1 194.1 119.9 119.9 294.0 294.0 119.5 361.0 539.7 -0.253
BCC_A2-3 353.4 353.4 28.6 28.6 162.9 162.9 196.0 39.5 111.0 0.406
FCC_Al-1 307.1 307.1 144.5 144.5 181.2 181.2 221.9 103.5 268.8 0.298
M23C6 442.4 442.4 126.2 126.2 224.7 224.7 297.2 119.0 314.9 0.323
LAVES 441.0 402.0 78.6 103.2 235.0 209.8 287.4 93.1 252.0 0.354
Z_PHASE-1 352.5 279.3 83.6 61.0 163.3 188.4 228.4 73.4 198.9 0.355
Z_PHASE-2 310.9 413.8 79.7 26.5 150.5 168.0 217.8 65.9 179.5 0.363
Pl 286.5 277.8 475 375 173.6 183.5 213.7 44.6 125.1 0.402

We checked elastic stability of all the phases presented in table 3 using method implemented
in G(p,T). Only 3 phases which marked red on the table resulted in unstable. It is should be noted
here that the calculated data are for the ground state and those unstable one could be stable in
higher temperature and pressure and also in confinement. Further the phases which are stable
based on elastic stability could be unstable in higher temperature and pressure conditions.

Among the BCC_A precipitate phases, BCC_A-1 has significantly smaller linear elastic
constants (C11) than that with BCC_A-2 and BCC_A-3 except in AXM steel. In AXM steel, C11
is about the same in both BCC_A-1 and BCC_A-2 precipitate phases. Interestingly, shear elastic
constants Cas is significantly larger in BCC_A-1 phases than in the BCC_A-1 and BCC_A-2
except in AXM steel which has much larger C4s in BCC_A-2 than in BCC_A-1. In general,
BCC_A-1 enhances shear elastic stiffness whereas BCC_A-2 and BCC_A-3 enhance linear
elastic stiffness in the steel. AXM steel has two FCC_A1 phases, FCC_A1-1 and FCC_A1-3,
elastic constants of FCC_A1-1 are significantly larger than that of FCC_A1-3. Other steel
phases have only one FCC_AL precipitate phase and have about the similar Cj; except HCM12
steel. Further detailed discuss about AXM steel are presented in later sections.

LAVES and M23Cs precipitation phases have large elastic constants in all steel phases.

LAVES phases have hexagonal lattice but have small linear elastic anisotropy and significantly



larger shear elastic anisotropy. Z PHASE precipitate phases which are in tetragonal lattice also
have similar elastic constants in all steel phases. They have significantly smaller elastic constants
than that of LAVES but have small linear and shear elastic anisotropy. More detailed results
about LAVES phase are presented in the later sections.

Elastic anisotropy of ferritic steels phases is illustrated in Figure 4. Left figure show actual
C11 and Cas values and also the linear elastic anisotropy in the structure. Line drawn represent for
Cu1 = Cas. The data below the line means Cu1 is larger than Cas while data above the line means
Cass is larger than Cai. Shear elastic constants Cas vs Ces are shown in right figure. Z-phase shows

significantly higher Css while the contrary is hold for LAVES phase.
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Bulk Mechanical Properties
Bulk modulus K and shear modulus data are shown in figure 5 (top). Over all bulk modulus
K is significantly larger than shear modulus G in all precipitate phases except in Cr2B and BCC

prototypes in HCM12 steel.
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Electronic Structure

As mentioned above, the precipitate phases AIN, NbNi3, and Cr2B are simple intermetallic
phases. Figure 6 plots the density of states of these intermetallic phases. AIN phase is an
insulator with a calculated band gap of 3 eV whereas NbNi3 and Cr2B are metals. The vertical
line in figure 6 represents the top of valence band in insulator and semiconductors whereas Fermi

level for metals. The density of states

2.5+ (states/Ev/cell) at Fermi level of NbNi3 is
%'2'0'; 1.62 which is much lower than 23.59 of
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AXM

Results for AXM steels had been calculated for all phases presented in the material. Tabel 4
listed structures of phases calculated.

Calculating elastic constants of solid solution was a challenge task. Special Quasirandom
Structure (SQS) in the form of super cell is a cheap way to properties of solid solution without
resorting to the computationally demanding cluster expansion method. SQS has local structures
within a cutoff range resemble a completely random solid solution at high temperature. For
present studies, we used the mcsgs program within the ATAT package to generate the SQS
structure. Cutoff distance was default at 3.5A. Local structures match up to 4-clusters.

Table 5. Phases presented in the AXM steel (only those elements with concentration >0.1%
listed in the composition column)

Phase Vol fract | Composition Crystal Microstructur
e

BCC- 0.8464 Feo,9968io,oozA|o,ool cl2 Matrix phase
A2#2

BCC- 0.1006 Cro.957Mno.0s3 cl2 Precipitation
A2#1

M>3Ce 0.0203 (Cro,864Mno,lsoFeo,ooe)zscs cF116 Precipitation
u—Phase 0.0112 (Feo_ggzcro,oog)7(Wo,650M00_350)6 hR39 Precipitation
FCC- 0.0100 Nio.s84F€0.370Si0.046 cF4 Precipitation
Al#l

MeC 0.0037 (MOo_gngo,oog) MoFe,C cF112 Precipitation
Z-Phase 0.0051 (Cro.s98F€0.102) VNo 669 tP6 Precipitation
NbNis; 0.0010 NisNb oP8 Precipitation
AIN 0.0012 AIN hP4 Precipitation
FCC- 0.0003 Cuo.999Nio.001 cF4 Precipitation
Al#3

M-B 0.0003 (M00_953CI’0047)QB tl12 Precipitation

For all solid solution phases, only elements with larger than 0.4% concentration were
included in the calculation as we limited our calculations to models with less than 250 atoms.

Exactly matching the experiments determined concentration was not possible with the size



limited. Instead we rounded the concentrations to the nearest integer to ensure every lattice site
was fully occupied. We plan to compute models with concentrations near the experimental
values (ups and downs) and use interpolation scheme to better estimate the elastic constants. For
dilute dopants, we may use the scaling law to estimated the elastic constant ( E occ'/?).

All calculations were carried out using the G(p,T) package which employed VASP as the
first-principles computing engine. For comparison, cutoff energies were all at 400eV. Several
phases including BCC-A2#1 were calculated using spin-polarized setting.

Table 6. Elastic constants results of known phases in AXM steel (GPa).

Phases C11,C22,C33 | C4s,Cs5,C66 | C12,C13,C23 | K G E v G/K

BCC-2#1 376 42 232 239 | 67 185 | 0371 | 0.282
433 73 135

BCC-A2#2 | 330 110 171 224 |97 253 | 0311 | 0433
estimated estimated estimated

AIN 482 -31 168 169 555
780 155 -58

FCC-Al#l | 322 147 179 225 | 106 | 275 |0296 | 0473

M23Cs 459 111 216 297 115 306 0.328 0.388

M2B 440 141 199 282 | 137 | 353 | 0201 | 0486
504 136 190

MsC 442 115 203 282 | 117 | 308 | 0318 | 0413

Lphase 442 92 245 293 | 95 256 | 0354 | 0.323
426 94 225
406 94 217

NbNis 290 113 178 206 91 238 0.307 0.442
305 111 153

Zphase 278 45 180 189 29 83 0.427 0.154
250 8 167

Macroscopic mechanical properties of Steel depend on multiple scale structures. At atomic
scale, structures are largely determined by thermodynamics. First principles can be used to

estimate their properties. At micro scale, structures are largely determined by processing whose



effects on properties can be difficult to evaluate. Homogenization provides means to estimate

properties of multi-phase materials based on atomistic properties and microstructure.
K =228 GPa, G =94GPa, E = 249GPa and v = 0.318

LAVES Phase

LAVES phases play an important role in ferritic steels. In general, they have high strength,
low density and high melting point [1]. Themselves are also promising for superconducting,
magnetic and hydrogen storage materials [2, 3, 4].

Precipitation of LAVES phases is common in steels. They affect physical properties of steels
significantly. There are conflicting assessments of the effect of LAVES phases in steel creep
resistance, some find detrimental [5, 6, 7]to creep strength and others find beneficial to creep
strength [8, 9]. Both could be true as there are wide varieties of LAVES phases in different
lattice symmetry and with 2 or more elements in them as different set of elements in LAVES
phase could result in significantly different physical properties.

So far only binary LAVES phases are studied extensively [10, 11, 12] along with some cases
of ternary LAVES phases [13]. In this study, we presented the LAVES solid solutions covering
binary to 5 elements of the set of Mo, W, Fe, Cr, Si in hexagonal C14 symmetry (MgZn2). Two

elements Mo and W takes the Mg site whereas Fe, Cr, and Si in Zn site.

Heat of Formation

We calculated the total energy of individual elements to check whether the solid solution
phases are energetically favored. The difference in total energy of laves solid solution phase to
the sum of total energies of individual elements (AE) are shown in the ternary plot Fig. 7. There

are 40 phases with positive AE and 85 phases with negative AE. Among the phases with +ve AE,



5 phases have AE less than 0.9 eV. In general AE is positive for larger concentration of either of
Fe, Cr, or Si. It is worth to note in the figure that data for Cr=1.00 for M0=0.00 and Si=1.00 are
not included as those phases have very large positive AE and they were also elastically unstable.
Most of the high concentration Cr phases have large +ve AE and increasing Mo concentration
appears to increase large +ve AE region in higher Cr concentration. The most energetically
favorable phases are around Fe = 0.5, and Si=0.5. As the Mo concentration increases, the most
energetically stable region (more —ve AE blue region) grows and shifts towards smaller
concentration of Fe and larger concentration of Si. This indicates, Mo favors Si where as W

favors Fe energetically.

Elastic and Mechanical Properties

The calculated elastic constants, mechanical bulk properties and AE are presented are plotted
as the ternary phases for different concentration of Mo. The ternary figures from Fig. 8 to Fig. 11
show how the elastic constants change with Fe, Cr and Si concentration for a given Mo (W)
concentration. Elastic constants of LAVES phases vary widely with different concentration of
comprising elements. The range of minimum to maximum is quite large. Linear elastic constant
C11 (Fig. 8) is larger for larger Fe concentration around Fe=1.00 and smaller for larger
concentration of Si. When Mo concentration increases the region of larger C11 around Fe=1
shrinks and the region of smaller C11 at larger Si concentration swells. Decrease in C11 with
increasing Mo concentration at larger Fe concentration is quite large. Change in C33 (Fig. 9)
with different elemental concentration is similar to that of C11 but in contrast to C11, the region
of larger C33 is quite larger at around Fe=0.7 and rapidly shrinks with increasing Mo

concentration. For M0=0.00, the region of smaller C33 at larger Si concentration is small. For



Mo concentration of 0.25, this region grows and appears independent of further increase in Mo
concentration. Shear elastic constants C44 (Fig. 10) and C66 (Fig. 11) also show similar pattern
as in C11 and C33. The region of larger C44 is around Fe=0.65 and decreases with increasing
Mo concentration whereas the regions of smaller C44 are around larger Cr and Si concentration
and do not show clear trend with increasing Mo. The region of larger C66 is much larger than
that of C44 and extends from Fe = 0.45 up to Fe = 1.00 and decreases with increasing Mo
concentration.

Fig. 12 shows how calculated bulk modulus (K) changes with Fe, Cr, and Si concentration
for a give Mo (W) concentration. In contrast to elastic constants, K is larger for larger Cr
concentration and decreases with increasing Mo concentration. The K is smaller for larger Si
concentration and difference between the largest and the smallest K is quite large. The region of
smaller K is quite small for M0=0.00 and grows with increasing Mo concentration. On the other
hand shear modulus (G) and Young’s modulus (E) (Fig. 13 and Fig. 14) both are larger for larger
Fe concentration and smaller for larger Cr and Si concentration. The region of larger G and E
shrinks with increasing Mo concentration. Poison’s ratio (n) (Fig. 15), which is calculated from
the K and G using the equation as shown above in method section, represents resistant to change
in bond length in relation to resistant to change in bond angle. Poisson’s ratio is larger for larger
Cr and Si concentration and smaller for larger Fe concentration. Smaller n region concentrated
more towards higher Fe concentration extends to smaller Fe concentration for increased Mo. Fig.
16 shows the G/K data which could indicate the relative ductility or brittleness of the structure.
Larger G/K means greater resistant to change in bond angle leading relatively more brittleness of
the structure. On the other hand smaller G/K means easier to change in bond angle resulting in

increased ductility in the structure. As can be seen the Fig. 16, G/K is larger for larger Fe



concentration and smaller for larger Cr concentration. So for a given concentration of Mo (W),
the larger concentration of Fe results in relatively more brittle structure whereas larger
concentration of Cr and Si results in increased ductility in the structure. Change in Mo/W
concentration shows no significant effect in G/K, so is little effect in ductility of the LAVES
structures.

Elastic anisotropy shows directional dependence of strain-stress response in material. While
anisotropic material could potentially useful in some applications, but it could result in problem
in composites because of directional effect of compression and expansion under stress. Elastic
anisotropy of LAVES phases varies with the constituent elements and their concentration. The
linear elastic anisotropy and shear elastic anisotropy factors of LAVES phases are showed in Fig
17 and Fig 18 respectively. We calculated linear and shear elastic anisotropy factors form elastic
compliance tensor as suggested by Desmond Tromans [23]. Anisotropy of LAVES seems not
dependent on the concentration of Mo or W, but depends on Cr, Fe, and Si concentrations.
LAVES phase is more anisotropic for larger concentration of either of Fe, Cr, or Si whereas the
phases with all three elements in close proportions results in more isotropy in both linear and

shear elastic behavior.
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Figure 8. C11 of the Ternary Laves phase Fe-Cr-Si.
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Figure 10. Cas of the Ternary Laves phase Fe-Cr-Si.
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Figure 12. Bulk modulus of the Ternary Laves phase Fe-Cr-Si.
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Figure 13. Shear modulus of the Ternary Laves phase Fe-Cr-Si.
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Summary

We calculated elastic and mechanical properties of LAVES phase solid solution comprising
of 5 elements, Mo,W, Fe, Cr, Si, in hexagonal C14 symmetry. This is the first of this type of
calculations that span form binaries to phases with 5 elements in it. Using elastic stability and
heat of formation criteria, we identified the unstable and stable phases. Calculated elastic and
mechanical properties are found to be significantly dependent on concentration of comprising
elements. In general, elastic stiffness constants are larger for larger Fe concentration and
decreases with increasing Mo concentration. Bulk modulus (K) is larger for larger Cr
concentration whereas both shear modulus G and Young’s modulus (E) are larger for larger Fe
concentration. W enhances elastic and mechanical bulk properties whereas Mo degrades.
Calculated n and G/K ratio indicate increased Cr concentration may result in relatively more
ductility in the LAVES phase structure. Elastic anisotropy of the phase does not depend on

Mo/W whereas the phase is closer to isotropy when Fe, Cr, and Si are comparable proportions.
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B.2 Screening studies for Better Ferritic Steel Design
The overall elastic properties of know 9-12Cr ferritic steels were computed using our
homogenize script. Note that precipitation microstructure details were ignored in current

implementation. Elastic properties are assumed to be independent of particle sizes and shape.

Table 7. Computed elastic properties of ferritic steel composite (unit: GPa)

Steel K E G v

AXM 271.1 272.1 102.1 0.3327
P92 251.4 228.0 84.5 0.3488
T122 253.0 238.2 77.0 0.3592

Direct search for better ferritic steels require additional information, for example, phase
composition for a given element chemical composition. Chang in chemical composition could
also lead to precipitation of new phases and elimination of phases. For solid solution phase, its
chemical composition can also be altered. Moreover, microstructure can also change. However,
assuming no significant change to microstructure, the method developed in present study
provided a method to assess the effect on overall mechanical properties of such a complex multi-

component multi-phase metal from properties of phases found in the system.



CONCLUSIONS

In conclusion, we developed software packages to enable large scale screening of complex
multi-component multi-phase materials under certain constraints. Given phase composition and
structure, volume fraction, our package can efficiently carry out large number of calculations at
first principles quality. We implemented software modules in our G(p,T) package: (1) module
that automates the solid solution modeling based on structure template and composition
parameters; (2) module that automate the physical properties calculations using special
quasirandom structure methods; (3) Homogenize script based on Eshelby inclusion theory.

We calcuated all known phases found in ferritic steels of which majorities are solid solution
phases. Many solid solution phases were for the first time systematically studied using first
principles methods. We assessed the zero temperature elastic properties of known 9-12Cr ferritic
steels using Eshelby’s inclusion theory for multiphase multicomponent system. The shear/bulk

modulus ratio are used to indicate the ductility of the ferritic steel;



V.FACILITIES AND RESOURCES
We have upgraded our cluster to dual Xeon 8-core (24 nodes) and 16-core systems (7 nodes).
Among them, 30 nodes are dedicated to computing, 1 node serves as head node that provides
internet interface and cluster management, and 1 original node is kept for storage service. Each
computing node has 32-128GB memory. All computer nodes use a small 40-60GB solid state
disk for boot and temporary scratches. An 8TB and an 28TB storage array are used to provide

the shared home and scratch cluster file system.
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