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I. Background

Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER,
the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by
energetic fusion products (a-particles). Due to the strong coupling of EP with burning thermal plasmas,
plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating
from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced
by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable
progress in developing comprehensive EP simulation codes and understanding basic EP physics has been
made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of
Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as
a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation
have rapidly advanced through close collaborations between simulation, theory, and experiment.
Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to
effectively utilize current petascale computers and emerging exascale computers.

Il. Accomplishments

We review here key physics progress in the GSEP projects regarding verification and validation of
gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport
models. Advances in high performance computing through collaborations with computational scientists that
enable these large scale electromagnetic simulations are also highlighted. These results have been widely
disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many
invited presentations at prominent fusion conferences such as the biennial International Atomic Energy
Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society,
Division of Plasma Physics (APS-DPP).

1. Verification and validation of gyrokinetic simulation of EP instabilities

RSAE Validation— A verification and validation study was carried out for a sequence of reversed
shear Alfven eigenmode (RSAE) instability time slices of DIII-D discharge (#142111) in which many such
frequency up-sweeping modes were observed. The mode frequency increases in time as the minimum (Cmin)
in the safety factor profile decreases. Calculations of the frequency and mode structure evolution from two
gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The three models
reproduce the frequency upsweep event within +10% of each other, and the average of the code predictions
is within £8% of the measurements (Fig. 1); growth rates are predicted that are consistent with the observed
spectral line widths.
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Fig. 1. Variation of real frequency and growth rate among simulation
models, and in DIII-D shot # 142111. PR
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TAE radial localization— GTC linear simulation of DIII-D
experiment finds a radial localization of toroidal Alfven eigenmode
(TAE) due to the non-perturbative EP contribution. The EP-driven
TAE has a radial mode width much smaller than that predicted by
MHD theory. The TAE radial position peaks at and moves with the
location of the strongest EP pressure gradients (Fig. 2). Experimental
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dependence of the TAE frequency on toroidal mode number, in
excellent agreement with experimental measurements.

Fig. 2. (a) Contour plot of electron temperature perturbation !
(6Te) on a poloidal plane from GTC simulation of TAE. (b) -
Comparison dTe structure from simulation (left) and from DIlII- :
D experiment (right).

Effects of non-axisymmetric equilibrium-- 3D effects
are now ubiquitous to all toroidal magnetic confinement devices.
We have adapted GTC to 3D VMEC equilibria and successfully applied to LHD, W7-X, and NSTX-RWM.
Code comparisons were made with the MEGA hybrid MHD model of Y. Todo at NIFS. Both linear and,
more recently, nonlinear simulations have been carried out.

2. Nonlinear dynamics of EP instability

Nonlinear oscillations of BAE amplitude and frequency-- Increased EP transport by Alfven
eigenmodes has been correlated with a fast frequency oscillation (chirping) with a sub-millisecond period
that has been observed in many experiments. A nonlinear oscillation of frequency and amplitude with phase
shift of about 90° has been found by GTC simulations of beta-induced Alfven eigenmodes (BAE) without
sources and sinks in toroidal plasmas. The fast and repetitive frequency chirping (Fig. 3) is induced by the
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Fig. 3. Time evolution of (a) BAE amplitude |edy/Ti| (red) and 14p
dominant frequency « (black), and (b) frequency power spectrum in gt
GTC simulation. The y-axis on the left is w/wo. The unit of the power ©.8
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Nonlinear interactions of BAE and BAAE— The BAE and beta-induced Alfven-acoustic
eigenmode (BAAE) are low frequency modes that have strong interactions with both thermal and energetic
particles. GTC simulation finds that BAAE can be excited by realistic EP density gradient, and that BAE
and BAAE can coexist with similar linear growth rates. At the nonlinear stage, BAE modes saturate first,
while BAAE modes continue to grow until nonlinear modes with a beat wave (sum of BAE and BAAE
frequency) are excited. In the long time simulation, amplitudes of BAE, BAAE, and beat waves oscillate,
indicating nonlinear transfers of mode energy.



3. Simulation code development

We have developed a multi-physics GTC code to carry out large scale EP physics simulation.
Thanks to interdisciplinary and multi-institutional collaborations, GTC has incorporated in a single
production version many important physical processes, i.e., microturbulence, mesoscale EP instabilities,
macroscopic MHD modes, RF waves, and collisional (neoclassical) transport.

Current GTC physics capability needed for ISEP framework—

(1) Three kinetic models: Gyrokinetic (for thermal and fast ions) or drift kinetic (for thermal or fast
electrons), fully-kinetic particles, and fluid-kinetic hybrid electron model (for thermal electrons). Particle
species can use either full-f simulation or of formulation with linearized Fokker- Planck coII|S|on operators

conserving particle, momentum, and energy. 13
(2) Three fluid models: Reduced resistive MHD, massless and finite-
mass electron fluid model. .

(3) Global toroidal geometry: GTC interfaces with MHD
equilibrium solvers EFIT, VMEC, and M3D-C1 for both tokamaks and
stellarators. In core simulations, a field-aligned mesh using magnetic
coordinates in the real space provides maximal numerical efficiency without
any geometry approximation. A recent upgrade enables global simulations
coupling the core and SOL across the separatrix by using cylindrical
coordinates with field-aligned particle-grid interpolation. GTC interfaces
with TRANSP and ONETWO for experimental profiles with equilibrium
current, radial electric field, plasma rotations, and sources. 1
Fig. 4. GTC computational grids on a poloidal plane coupling core and -y
SOL, and fully kinetic and guiding center calculations of two EP orbits in
DIlI-D shot #158103. ; ; .

(4) Three field solvers: the gyrokinetic Poisson equation for the ! "SR(m) - £
electrostatic potential is discretized in real space using the finite difference
or finite element method for either the integral form or the Pade approximation. The resulting sparse matrix
is solved by either PETSc or hypre package. The parallel magnetic perturbation is solved using
perpendicular force balance, and the Ampere’s law is solved for the parallel vector potential.

(5) Synthetic diagnostics: GTC interfaces with the Synthetic Diagnostics Platform (SDP), which
currently has reflectometry, electron cyclotron emission, and beam emission spectroscopy.
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Current GTC computational capability--

Thanks to closed collaborations with computational scientists, GTC carried out the first fusion
production simulations at tera-scale in 2001 and at peta-scale in 2008, and to fully utilize the heterogeneous
architectures using NVIDIA GPU (graphic processing unit) accelerators in 2011, and using Intel MIC (many
integrated core) co-processors on in 2013. GTC is one of the two fusion codes selected by the Center for
Accelerated Application Readiness (CAAR), a DOE Office of Advanced Scientific Computing Research
(ASCR) program to prepare prominent codes across all DOE supported research portfolio for the emerging
exascale computers such as the next generation computer Summit at ORNL.

Multiple levels of parallelism: GTC uses MPI domain decomposition, particle decomposition, and
OpenMP shared memory partitioning to scale up to millions of cores and take advantage of the memory
hierarchy of current generation parallel computers.



GPU optimization: The computationally expensive particle subroutines are fully ported and
optimized on GPU for all particle species using OpenACC. GTC shows near-ideal weak scaling
performance up to the full Titan (the fastest computer in US) at ORNL using physics simulation parameters.
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MIC optimization: GTC using OpenMP 4.0 for Intel many integrated cores (MIC) has an excellent
weak scalability [WangE16]. More optimizations are discussed in Sec. 5 on Computational Partnership.
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-- International Sherwood Fusion Theory Conference, Denver, USA (Invited talk by Xiao Yong);

-- 51% Annual Meeting of the APS Division of Plasma Physics, Atlanta, USA (Invited talk by
Wenlu Zhang);

-- SciDAC Workshop on Plasma Turbulence and Energetic Particles, Irvine, USA.

-- 7" International Conference on Computational Physics, Beijing, China;

-- 23" US Transport Task Force Workshop, Annapolis, USA (delivered by Ihor Holod);

-- 3" annual SciDAC GSEP energetic particle workshop, San Diego, USA,;
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-- International Workshop on Plasma Science and Applications, Xiamen, China;

-- 4" International Workshop on Fusion Theory and Simulation, Beijing, China;

-- International Sherwood Fusion Theory Conference, Seattle, USA (Invited talks by Wenjun Deng
& Wenlu Zhang).

2011— Workshop on Fusion Simulation Program, San Diego, USA,;

2012

2013

2014

-- 5th ITER International Summer School, Aix en Provence, France;

-- Chinese Summer School on Plasma Physics, CSSPP11, Dalian, Ching;

-- 7" joint meeting of Chinese physicists worldwide, Kaohsiung, Taiwan;

-- 12" IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, Austin,
USA;

-- 5" JAEA Technical Meeting on Theory of Plasma Instabilities, Austin, USA (Oral presentations
by Ihor Holod & Xiao Yong)

-- 22" International Conference on Numerical Simulation of Plasmas, Long Branch, USA (Invited
talk by Ihor Holod);

-- US Transport Task Force Workshop, San Diego, USA (Oral presentations by Huasen Zhang,
Wenjun Deng, Peter Porazik, Yong Xiao, & Ihor Holod).

-- US-Japan Workshop on Integrated Modeling, San Diego, USA,;

-- Workshop on Energetic Particle Physics, Irvine, USA,;

--US Transport Task Force Workshop, Annapolis, USA,;

-- 2" Asia Pacific Transport Working Group Annual meeting, Chengdu, China;

--Workshop on MHD and Energetic Particles in Laboratory, Space and Astrophysical Plasmas,
Kavli Institute for Astronomy and Astrophysics, Peking University, China;

-- Magnetic Fusion Theory and Simulation Workshop, Hefei, China;

-- 9" Meeting of the ITPA Energetic Particle Topical Group, San Diego, USA,

-- International Sherwood Fusion Theory Conference, Atlanta, USA (Invited talk by Huasen
Zhang);

-- Joint Varenna - Lausanne International Workshop on Theory of Fusion Plasmas, Varenna, Italy
(Invited talk by Ihor Holod, Yong Xiao).

-- 12" Asia Pacific Physics Conference (APPC12), Chiba, Japan;

-- 23" International TOKI Conference (ITC-23) on Large-scale Simulation on Fusion Science, Toki,
Japan;

-- Summary talk, 13" IAEA Technical Meeting on Energetic Particles in Magnetic Confinement
Systems, Beijing, China;

-- DOE Technical Program Review: Large Scale Production Computing and Storage Requirements
for Fusion Energy Sciences, Rockville, USA;

-- U.S. - E.U. Joint Transport Task Force Workshop, Santa Rosa, USA,

-- Fusion Simulation Workshop, Beijing, China;

-- 23" International Conference on Numerical Simulation of Plasmas (23 ICNSP), Beijing, China
(Invited talk by Ihor Holod);

-- International Sherwood Fusion Theory Conference, Santa Fe, USA (Invited talk by Zhixuan
Wang).

-- 2" annual Workshop on Fusion Simulation, Chengdu, China;

-- Plenary talk, Transport Task Force Workshop, San Antonio, USA;

-- 11" Asia Pacific Plasma Theory Conference (APPTC), Jeju, Korea;

-- 4" East-Asian School and Workshop on Laboratory, Space, Astrophysical Plasmas, Harbin,

China;

2015

-- 25" International Conference on Plasma Physics and Controlled Nuclear Fusion Research,
International Atomic Energy Agency, Saint Petersburg, Russia;

-- 56" Annual Meeting of American Physical Society, Division of Plasma Physics, New Orleans,
USA (Invited talk by Zhixuan Wang);

-- Plenary talk, Transport Task Force Workshop, Salem, USA,;
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-- 3@ Annual Workshop on Fusion Simulation, Hefei, China;
-- 57" Annual Meeting of American Physical Society, Division of Plasma Physics, Savanah, USA
(Invited talk by Daniel Fulton);
-- 7" IAEA Technical Meeting on Theory of Plasma Instabilities, Frascati, Italy (Oral presentations
by Ihor Holod)
-- 24" International Conference on Numerical Simulation of Plasmas (24" ICNSP), Colorado, USA
(Invited talk by Jian Bao);
2016 -- Transport Task Force Workshop, Denver, USA;
-- DOE Exascale Requirements Review for Fusion Energy Sciences, DC, USA,;
-- 4" Annual Workshop on Fusion Simulation, Hangzhou, China;
-- 12" Asia Pacific Plasma Theory Conference, Hangzhou, China.
2017 -- Transport Task Force Workshop, Williamsburg, USA (plenary talk by Yaqi Liu);
-- DOE Exascale Requirements Review for Fusion Energy Sciences, DC, USA,;
-- 5™ Annual Workshop on Fusion Simulation, Beijing, China;
-- 8" IAEA Technical Meeting on Theory of Plasma Instabilities, Vienna, Austria;

-- 15" IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems,
Princeton, USA.



