

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-744381

Safeguards Technology Development Program 1st Quarter FY 2018 Report

M. K. Prasad

January 10, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Safeguards Technology Development Program
1st Quarter FY 2018 Report
January 2018

WBS # – Project Title: 24.1.3.1 – Neutron Rodeo II

Lab – POC: LLNL – Dan Decman

Principal Investigator: Manoj K. Prasad

Summary Statement of Work: LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.

Major Highlights: Completed modeling of 32 fuel assemblies enclosed in a prototype neutron collar design using 30 Inrad stilbene detector cells (4" diameter x 2" depth). Completed construction of foam frame to house 10 existing Inrad stilbene detector cells and thereby implement one of the three panels in the prototype neutron collar design.

Progress

Task 1 – Modeling

LLNL prototype neutron collar design from the Neutron Rodeo I project of 2016 was modified to incorporate 30 Inrad stilbene detector cells (4" diameter x 2" depth). The 32 fuel assemblies agreed upon to study were modeled and simulated to generate list mode data using LLNL's MCNPX2.7e code. The list mode data was postprocessed using the Hansen-Richter stilbene quench function, an electron equivalent energy PSD threshold of 60 keVee, and corrected for neutron crosstalk between detector cells using LLNL developed modeling tools. The results of this analysis include singles and doubles rates that can be used to generate traditional calibration curves used by the IAEA.

Task 2 – Experiment

A foam frame was constructed, using a water jet cutting, to house 10 existing Inrad stilbene cells at LLNL. This implements one of the three panels of the prototype neutron collar design which will be used for making measurements on available SNM sources using a Struck data acquisition system used at LLNL and then compared with modeling.

Publications:

Issues: