10

SAND2018- 0186R

Multi-threaded Sparse Matrix-Matrix Multiplication for
Many-Core and GPU Architectures

Mehmet Deveci, Christian Trott, Sivasankaran Rajamanickam
{mndevec,crtrott,srajama}@sandia.gov
Sandia National Laboratories, Albuquerque, NM

January 9, 2018

Abstract

Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains
such as scientific computing and graph analysis. Several algorithms have been studied in the
past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-
matrix multiplication with a focus on performance portability across different high performance
computing architectures. The performance of these algorithms depend on the data structures
used in them. We compare different types of accumulators in these algorithms and demon-
strate the performance difference between these data structures. Furthermore, we develop a
meta-algorithm, KKSPGEMM, to choose the right algorithm and data structure based on the
characteristics of the problem. We show performance comparisons on three architectures and
demonstrate the need for the community to develop two phase sparse matrix-matrix multipli-

cation implementations for efficient reuse of the data structures involved.

1 Introduction

Modern supercomputer architectures are following various different paths, e.g., Intel’s XeonPhi pro-
cessors, NVIDIA’s Graphic Processing Units (GPUs) or the Emu systems [I4]. Such an environment
increases the importance of designing flexible algorithms for performance-critical kernels and im-
plementations that can run well on various platforms. We develop multi-threaded algorithms for
sparse matrix-matrix multiply (SPGEMM) kernels in this work. SPGEMM is a fundamental kernel that
is used in various applications such as graph analytics [28] and scientific computing, especially in
the setup phase of multigrid solvers [2I]. The kernel has been studied extensively in the contexts
of sequential [I7], shared memory parallel [26] 18] and apu [10] 22} 16, [§] implementations. There
are optimized kernels available on different architectures [I8], 22, [8 27] [25] providing us with good
comparison points. In this work, we provide portable algorithms for the SPGEMM kernel and their
implementations using Kokkos [15] programming model with minimal changes for the architectures’

very different characteristics. For example, traditional CPUs have powerful cores with large caches,

15

20

35

while XeonPhi processors have many lightweight cores, and GPUs provide extensive hierarchical
parallelism with very simple computational units. The algorithms in this paper aim to minimize
revisiting algorithmic design for these different architectures. The code divergence in the implemen-
tation and how different levels of algorithmic parallelism are mapped to computational units. is
limited to access strategies of different data structures and how different levels of parallelism in the
algorithm are mapped to computational units.

An earlier version of this paper [I3] focuses on SPGEMM from the perspective of performance-
portability. It addressed the issue of performance-portability for SPGEMM with an algorithm called
KKMEM. It demonstrated better performance on GPUs and the current generation of XeonPhi proces-
sors, Knights Landing (KNLs), w.r.t. state-of-art libraries. Our contributions in [I3] is summarized

below.

e We design two thread-scalable data structures (multilevel hashmap accumulators and a mem-
ory pool) to achieve scalability on various platforms, and a graph compression technique to

speedup the symbolic factorization of SPGEMM.

e We design hierarchical, thread-scalable SPGEMM algorithms and implement them using the
Kokkos programming model. Our implementation is available at
https://github.com/kokkos/kokkos-kernels and also in the Trilinos framework
(https://github.com/trilinos/Trilinos).

e We also present results for the practical case of matrix structure reuse, and demonstrate its

importance for application performance.

This paper extends [13] with several new algorithm design choices and additional data structures.

Its contributions are summarized below.

e We present results for the selection of kernel parameters e.g., partitioning scheme and data
structures with trade-offs for memory access vs. computational overhead cost, and provide

heuristics to choose the best parameters depending on the problem characteristics.

e We extend the evaluation of the performance of our methods on various platforms, including
traditional CPUs, KNLs, and GPUs. We show that our method achieves better performance than
native methods on IBM Power8 cpUs, and KNLs. It outperforms two other native methods on

GPUs, and achieves similar performance to a third highly-optimized implementation.

The rest of the paper is organized as follows: Section [2 covers the background for SPGEMM. Our
SPGEMM algorithm and related data structures are described in Section [3] Finally, the performance

comparisons that demonstrate the efficiency of our approach is given in Section

50

55

60

65

70

75

2 Background

Given matrices A of size m x n and B of size n X kK SPGEMM finds the m x k matrix C' s. t.
C = A x B. Multigrid solvers use triple products in their setup phase, which are of the form
Acoarse = R X Afine x P (R = PT if Ay, is symmetric), to coarsen the matrices. SPGEMM is also

widely used for various graph analytic problems [28].

Algorithm 1 SPGEMM for C = A x B. C(i,:) (C(:,i)) refer to i*" row (column) of C.

Require: Matrices A, B

1: for i <~ 0 tom—1do

2: for j € A(i,:) do

3: //accumulate partial row results
4:

Most parallel SPGEMM methods follow Gustavson’s algorithm [1I7] (Algorithm [1)). This algorithm

iterates over rows of A (line(l)) to compute all entries in the corresponding row of C'. Each iteration
of the second loop (line [2)) accumulates the intermediate values of multiple columns within the row
using an accumulator. The number of multiplications needed to perform this matrix multiplication
is called f,, (there are f,, additions too) for the rest of the paper.
Design Choices: There are three design choices that can be made in Algorithm (a) the par-
titioning needed for the iterations, (b) how to determine the size of C' as it is not known ahead of
time, and (c) the different data structures for the accumulators. The key differences in past work
are related to these three choices in addition to the parallel programming model.

First design choice is how to distribute the computation over execution units. A 1D partitioning
method [I] partitions C' along a single dimension, and each row is computed by a single execu-
tion unit. On the other hand, 2D [26] 6] and 3D [4] methods assign each nonzero of C or each
multiplication to a single execution unit, respectively. Hypergraph partitioning methods have also
been used to improve the data locality in 1D [2, B] and 3D [5] methods. 1D row-wise is the most
popular choice for scientific computing applications. Using partitioning schemes for SPGEMM that
differ from the application’s scheme requires reordering and maintaining a copy of one or both of
the input matrices. For GPUs, hierarchical algorithms are also employed, where rows are assigned
to a first level of parallelism (blocks or warps), and the calculations within the rows are done using
a second level of parallelism [10} 27, 22] [§]. In this work, we use such a hierarchical partitioning of
the computation, where the first level will do 1D partitioning and the second level will exploit further
thread/vector parallelism.

The second design choice is how to determine the size of C'. Finding the structure of C' is usually
as expensive as finding C. There exists some work to estimate its structure [7]. However, it does
not provide a robust upper bound and it is not significantly cheaper than calculating the exact size
in practice. As a result, both one-phase and two-phase methods are commonly used. One-phase

methods rely either on finding an upper bound for the size of C' [20] or doing dynamic reallocations

80

85

90

95

100

105

110

when needed. The former could result in over-allocation and the latter is not feasible for GPUSs.
Two-phase methods first compute the structure of C' (symbolic phase), before computing its values
in the second phase (numeric phase). They allow reusing the structure C for different multiplies
with the same structure of A and B [25] [I0]. This is an important use case in scientific computing,
where matrix structures stay constant while matrix values change frequently [13]. The two-phase
method also provides significant advantages in graph analytics. Most of them work only on the
symbolic structure, skipping the numeric phase [28]. In this work, we use a two-phase approach, and
speed the symbolic phase up using matriz compression.

The third design choice is the data structure to use for the accumulators. Some algorithms use a

dense data structure of size k. The intermediate results for a row are stored in an array of size k in
its “dense” format. These dense thread-private arrays may not be scalable for massive amounts of
threads and large k values. Therefore, sparse accumulators such as heaps or hashmaps are preferred.
In this work, we use both multi-level hashmaps as sparse accumulators and dense accumulators to
achieve scalability in SPGEMM.
Related Work: There are a number of distributed-memory algorithms for spGEMM [6] 2], 5] [[1].
Most of the multithreaded sSPGEMM studies [26], [[27] 16} 18] follow Gustavson’s algorithm, and
differ in the data structure used for row accumulation. Some use dense accumulators [26], others a
heap with an assumption of sorted columns in B rows [4], or sorted row merges [27] [16].

Most of the SPGEMM algorithms for GPUs are hierarchical. CUSP [8] uses a hierarchical algorithm

where each multiplication is computed by a single thread and later accumulated with a sort operation.
AmgX [10] follows a hierarchical Gustavson algorithm. Each row is calculated by a single warp, and
multiplications within a row are done by different threads of the warp. It uses 2-level cuckoo-hash
accumulators, and does not make any assumption on the order of the column indices. On the other
hand, the row merge algorithm [I6] and its implementation in ViennaCL [27] uses merge sorts for
accumulations of the sorted rows. bhSPARSE [22] also exploits this assumption on GpUs. It chooses
different accumulators based on the size of the row. A recent work Nsparse [24] also employs a
hierarchical method and uses linear probing for accumulations. It places rows into bins based on
the required number of multiplications and the output row size, and launches different concurrent
kernels for each bin. Different from most of the SPGEMM work, McCourt et. al [23] computes a
distance-2 graph coloring on the structure of C' in order to reduce SPGEMM to SPMM.
Kokkos: Kokkos [15] is a C++ library providing an abstract data and task parallel programming
model, which enables performance portability for various architectures. It provides a single program-
ming interface but allows different optimizations for backends such as OpenMP and CUDA. Using
Kokkos enables us to run the same code on the CPUs, KNLs and GPUs just compiled differently.

The kokkos-parallel hierarchy consists of teams, threads and vector lanes. A team in Kokkos
handles a workset assigned to a group of threads sharing resources. On GPUs, it is mapped to a
thread block, which has access to a software managed L1 cache. A team on CPUs (or KNLs) is a

collection of threads sharing some common resources. Depending on the granularity of the work

115

120

125

130

135

140

units, a team is commonly chosen as the group of hyperthreads that share an L2/L1 cache or even
just a single hyperthread. In this work, we use a team size of one (a single hyperthread) on CpUs.
On GPUSs, a typical team size is between 4 and 64. There is no one-to-one mapping from teams to
the number of execution units. That is, the number of teams, even on CPUs, can be much higher
than the number of execution units. It is therefore useful to think of teams as a logical concept,
with a one-to-one mapping to work items. A kokkos-thread within a team maps to a warp or warp
fraction (half, quarter, etc.) on GPUs and to a single thread on cPUs. A kokkos-thread uses multiple
vector lanes, which map to cuda-threads within a warp in GPUs and the vectorization units on CPUs.
The length of the vector lanes, vector length, is a runtime parameter on GPUs and can be at most
the length of a warp, while on CPUs it is fixed depending on the architecture. We use the terms
teams, threads (for kokkos-threads) and vector lanes in the rest of the paper.

The portability provided by Kokkos comes with some overhead. For example, heavily used template
meta-programming causes some compilers to fail to perform certain optimizations. Portable data
structures have also small overheads. While Kokkos allows us to write portable kernels, complex
ones as SPGEMM can benefit from some code divergence for better performance. For example, our

implementations favor atomic operations on GPUs, and reductions on CPUS.

3 Algorithms

Algorithm 2 Overall structure of SPGEMM Methods.

Require: Input matrices A, Bs.t. C =Ax B

: allocate Croypointers

B. <+ compress matrix(B)

Crow pointers <~ CORE_SPGEMM (‘symbolic’, A, B.) //symbolic phase
allocate C’colurnnsa Cvalues

C + CORE_SPGEMM (‘numeric’, A, B, Croy pointers) //numeric phase

The overall structure of our SPGEMM methods is given in Algorithm [2] It consists of a two-phase
approach, in which the first (symbolic) phase computes the number of nonzeros in each row (line
3) of C, and the second (numeric) phase (line 5) computes C. Both phases use the CORE_.SPGEMM
kernel with small changes. The main difference of the two phases is that the symbolic phase does not
use the matrix values, and thus performs no floating point operations. We aim to improve memory

and runtime of the symbolic phase by compressing B.

3.1 Core sPGEMM Kernel

The core SPGEMM kernel used by the symbolic and the numeric phase uses a hierarchical, row-wise
algorithm with two thread-scalable data structures: a memory pool and an accumulator. A team
of threads, which depending on the architecture may be a single thread or many, is assigned a set of

rows over which it loops. For each row i of A within the assigned rows, we traverse the nonzeroes

145

150

155

Team-2

Thread-2 Thread-3

B E

Figure 1: Thread hierarchy used in Figure 2] and Figure [3] Two teams have two threads with two
vector lanes each.

v4

A(i, j) of A(i,:) (Line 4). Column/Value pairs of the corresponding row of B(j,:) are multiplied and
inserted (either as a new value or accumulated to an existing one) into a small-sized level-1 (£;)
accumulator. £ is located in fast memory and allocated using team resources (e.g., shared memory
on GprUs). If £4 runs out of space, the partial results are inserted into a level-2 (£2) accumulator

located in global memory.

Algorithm 3 CORE_SPGEMM Kernel for C' = A x B. Based on the phase (symbolic/numeric), B is
either a compressed or standard matrix. Either Croy pointers Or C' is filled.

Require: Phase, Matrices A, B, C.
1: allocate the first level accumulator £
2: TeamRows < GETTEAMROWS(thread_team)
3: for i € TeamRows do

4: forje A(i,:) do

5: for col,val € B(j,:) do

6: tmpval + val x A(i, §))

7: if FuLL =£;.INSERT(col, tmpval) then

8: if L5 is not allocated then

9: allocate the second level accumulator Lo

10: L. INSERT(col, tmpval)

11: if PHASE IS SYMBOLIC then Chroy pointers () < total £1/Ls Acc sizes
12: else if PHASE 1S NUMERIC then C(i,:) < values from £;/L£s Acc

13: reset L1, release L if allocated.

First, we focus on partitioning the computation using hierarchical parallelism. The first level
parallelism is trivially achieved by assigning disjoint sets of rows of C' to teams (Line 2). Further
parallelization can be achieved on the three loops highlighted with red, blue and green (Lines 3, 4
and 5). Each of these loops can either be executed sequentially by the whole processing unit (team),

or be executed in parallel by partitioning over threads of the teams.

3.1.1 spGEMM Partitioning Schemes

Figure 2] and [3] give examples of different partitioning schemes. Figure [T] shows our Kokkos-thread
hierarchy used in this example.

Thread-Sequential: As shown in Figure this partitioning scheme assigns a group of rows to
different teams, e.g. team-1 gets the first two rows. Each thread within the team works on a different

row (Line-3 of Algorithm |3 is executed in parallel by threads). Threads traverse the nonzeroes

160

165

170

A X B C

(a) Thread-Sequential: Thread-1 is assigned to a single row of A. It sequentially traverses the
corresponding rows of B, one and six. It exploits vector parallelism for rows of B.

A X C

(b) Team-Sequential: Team-1 is assigned to a single row of A. It sequentially traverses the correspond-
ing rows of B, one and six. It exploits both thread and vector parallelism for rows of B.

Figure 2: Partitioning schemes for SPGEMM using Kokkos-thread hierarchy. Nonzeroes and zeroes
are shown in red and white, respectively. Other colors represent the mapping of the data to execution
units given in Figure [T}

(A(%,4)) of their assigned row A(i,:), and the corresponding rows B(j,:) sequentially (Line-4). The
nonzeroes of B(j,:) are traversed, multiplied and inserted into accumulators using vector parallelism
(Line-5). A single thread computes the result for a single row of C' using vectorlanes. Our previous
work, KKMEM [I3], and AmgX follow this partitioning scheme. Team resources (e.g., shared memory
used for £; accumulators in GPUs) are disjointly shared by the threads. This might cause more
frequent use of L2 accumulators (located in slower memory space) for larger rows. The partitioning
scheme, on the other hand, allows atomic-free accumulations. All computational units work on a
single row of B at a time, which guarantees unique value insertions to the accumulators.

Team-Sequential: In Figure team-1 and team-2 are assigned the first and second row, re-
spectively. Different from Thread-Sequential, a whole team works on a single row of A (Line-3
sequential). Then, the whole team also sequentially traverses the nonzeroes (A(%, j)) of A(4,:) (Line-

4). Finally, the nonzeroes in row B(j,:) are traversed, multiplied and inserted into accumulators

A X B = C

(a) Thread-Parallel: Team-1 is assigned to a single row of A. Thread-1 and Thread-2 work on first
and sixth rows of B in parallel. They further exploit vector parallelism for rows of B.

Thread-2 Thread-2

(b) Thread-Flat-Parallel: Team-1 is assigned to single row of A. The multiplications are flattened as
shown in the bottom, and both thread and vector parallelism are exploited in this single dimension.
Thread-1 and thread-2 work on different portions of the sixth row of B

Figure 3: Partitioning schemes for SPGEMM using Kokkos-thread hierarchy.

using both thread and vector parallelism (Line-5). This approach can use all of a team’s resources
when computing the result of a single row. This allows £; to be larger, and thus reduces the number
of Lo accesses. It also guarantees unique value insertions. However, execution units are likely to be
underutilized when the average row size of B is small. Unless we have a very dense multiplication,
175 our preliminary experiments show that this method does not have advantages over other methods.
As a result, we do not use this method in our comparisons.
Thread-Parallel: Figure gives an example of this scheme. This scheme assigns a whole team
to a single row of A (sequential Line-3). The method parallelizes both of the loops at Line-4 and
Line-5. Threads are assigned to different nonzeroes of (A(4, j)) of row A(i,:), and the corresponding
o row B(j,:). Nonzeroes in B(j,:) are traversed, multipled and inserted into accumulators using vector
parallelism (Line-5). As in Team-Sequential, more team resources are available for £;. The chance

of underutilization is lower than in the previous method, but it can still happen when rows require

185

190

195

200

205

210

215

a very small number of multiplications. In addition, threads may suffer from load imbalance, when
rows of B differ in sizes. This scheme does not guarantee unique insertions to accumulators, as
different rows of B are handled in parallel. This method is used in Nsparse [24] and Kunchum et
al. [19].
Thread-Flat-Parallel: We use a Thread-Flat-Parallel scheme (Figure to overcome the lim-
itations of the previous methods. This has also been explored in [§] and [19]. In this scheme, a
row of A is assigned to a team, but as opposed to the Thread-Parallel scheme, this method flattens
the second and third loop (Line-4 and Line-5). The single loop iterates over the total number of
multiplications required for the row, which is parallelized using both vector and thread parallelism.
Each vector unit calculates the index entries of A and B to work on, and inserts its multiplication
result into the accumulators. This achieves a load-balanced distribution of the multiplications to
execution units. For example, both B(1,:) and B(6,:) are used for the multiplication of A(1,:) in
Figure Vectorlanes are assigned uniformly to the 8 multiplications. In this scheme, a row of B
can be processed by multiple threads, and a single thread can work accross multiple rows. Regardless
of the differing row sizes in B, this method achieves perfect load-balancing at the cost of performing
index calculations for both A and B. The approach also provides larger shared memory for £; than
Thread-Sequential. It may underutilize compute units only when rows require a very small number
of total multiplications. Parallel processing of the rows of B does not guarantee unique insertions
to accumulators.

In this work, we use the Thread-Sequential and the Thread-Flat-Parallel scheme on GPUs. These
schemes behave similarly when teams have a single thread, our choice for cPUs and KNLs. However,
Thread-Flat-Parallel incurs index calculation overhead, which is not amortized when there is not

enough parallelism within a team. Thus, Thread-Sequential is used on CPUs and KNLs.

3.1.2 Accumulators and Memory Pool Data Structures

Our main methods use two-level, sparse hashmap-based accumulators. Accumulators are used to
compute the row size of C in the symbolic phase, and the column indices and their values of C' in
the numeric phase. Once teams/threads are created, they allocate some scratch memory (Line 1) for
their private level-1 (£1) accumulator (not to be confused with the L1 cache). This scratch memory
maps to the GPU shared memory in GPUs and the default memory (i.e., DDR4 or high bandwidth
memory) on KNLs. If the £; accumulator runs out of space, global memory is allocated (Line 9)
in a scalable way using memory pools (explained below) for a row private Lo accumulator. Its size
is chosen to guarantee that it can hold all insertions. Upon the completion of a row computation,
any allocated L5 accumulator is explicitly released. Scratch spaces used by £; accumulators are
automatically released by Kokkos when the threads retire.

We implemented three different types of accumulators. Two of these are sparse hashmap based
accumulators, while the third one is a dense accumulator.

Linked List based HashMap Accumulator (LL): Accumulators are either thread or team

220

225

230

235

240

245

250

255

private based on the partitioning scheme, so they need to be highly scalable in terms of memory.
The hashmap accumulator here extends the hashmap used in [12] for parallel insertions. It consists
of 4 parallel arrays. Figure [Ab]shows an example of a hashmap that has a capacity of 8 hash entries
and 5 (key, value) pairs. The hashmap is implemented as a linked list structure. Ids and Values
store the (key, value) pairs. Begins holds the beginning indices of the linked lists corresponding
to the hash values, and Nexts holds the indices of the next elements within the linked list. For
example, the set of keys that have a hash value of 4 are stored with a linked list. The first index of
this linked list is stored at Begins[4]. We use this index to retrieve the (key, value) pairs (Ids[0],
Values[0]). The linked list is traversed using the Nexts array. An index value —1 corresponds to
the end of the linked list for the hash value. We choose the size of Begins to be a power of 2,
therefore hash values can be calculated using BITWISEAND, instead of slow modulo (%) operation.
Each vector lane calculates the hash values, and traverses the corresponding linked list. If a key
already exists in the hashmap, values are accumulated.The implementation assumes that no values
with the same keys are inserted concurrently. If the key does not exist in the hashmap, vector
lanes reserve the next available slot with an atomic counter, and insert it to the beginning of the
linked list (atomic_compare_and_swap) of the corresponding hash. If it runs out out memory, it
returns “FULL” and the failed insertions are accumulated in £5. Because of its linked list structure,
its performance is not affected by the occupancy of the hashmap. Even when it is full, extra
comparisons are performed only for hash collisions. This provides constant complexity not only for
L1 but also for L5 insertions, which are performed only when £; is full. This method assumes that
concurrent insertions are duplicate-free and avoids atomic operations for accumulations, which holds
for Thread-Sequential and Team-Sequential. When this assumption does not hold (Thread-Parallel
and Thread-Flat-Parallel), a more complex implementation with reduced performance is necessary.
Linear Probing HashMap Accumulator (LP): Linear probing is a common technique that is
used for hashing in the literature. Nsparse applies this method for SPGEMM. Figure [4c| gives the
example of a hashmap using LP. The data structure consists of two parallel arrays (Ids, Values).
Initially each hash entry is set to —1 to indicate that it is empty. Given an (id, value) pair, LP
calculates a hash value and attempts to insert the pair into the hash location. If the slot is taken,
it performs a linear scan starting at the hash location and inserts it to the first available space. For
example, in Figure [4c| hash for 28 is calculated as 4, but as the slot is taken it is inserted to the next
available space. The implementation is straightforward and LP can easily be used with any of the
4 partitioning schemes. However, as the occupancy of the hashmap becomes close to full, the hash
lookups become very expensive. This makes it difficult to use LP in a two-level hashing approach.
Each insertion to L2 would first perform a full scan of £q, resulting in a complexity of O(||£4]]).
Nsparse uses single-level LP, and when rows do not fit into GPUs shared memory, this accumulator
is directly allocated in global memory. In order to overcome this, we introduce a max occupancy
parameter. If the occupancy of L£; is larger than this cut-off, we do not insert any new Ids to £y

and use Lo for failed insertions. We observe significant slowdowns with LP once occupancy is higher

10

260

265

270

275

280

285

290

than 50%, which is used as a max occupancy ratio.

Dense Accumulators: This approach accumulates rows in their dense format, requiring space
O(k) per thread/team. A dense structure allows columns to be accessed simply using their indices.
This removes some overheads such as hash calculation and collisions. Its implementation usually
requires 2 parallel arrays. The first is used for floating point values (initialized with 0s). A second
boolean array acts as a marker array to check if a column index was inserted previously. The column
array of C' is used to hold the indices that are inserted in the dense accumulator (requires an extra
array in the symbolic phase). This is a single-level accumulator, and because of its high memory
requirements dense accumulators are not suitable for GpUs. The approach is used by Patwary et
al. [26] with a column-wise partitioning of B to reduce this memory overhead.

Memory Pool: Algorithm [requires a portable, thread-scalable memory pool to allocate memory
for Lo “sparse” accumulators, in case a row of C cannot fit into the £ accumulator. The memory
pool is allocated and initialized before the kernel call and services requests to allocate and release
memory from thousands of threads/teams. As a result, allocate and release have to be thread
scalable. Its allocate function returns a chunk of memory to a requestor thread and locks it. This
lock is released as soon as the thread releases the chunk back to the pool. The memory pool reserves
NUMCHUNKS memory chunks, where each has a fixed size (CHUNKSIZE). CHUNKSIZE is chosen based
on the “maximum row size in C” (MAXRS) to guarantee enough space for the work in any row of
C. MAXRS is not known before performing the symbolic phase so it uses an upper bound. The
upper bound is the maximum number of multiplies (MAXRF) required by any row. That number
can be computed by summing the size of all rows of B that contribute to a row. The memory pool
has two operational modes: unique and non-unique mapping of chunks to threads (ONE20ONE and
MANY2MANY).

The parameters of the memory pool are architecture specific. NUMCHUNKS is chosen based on
the available concurrency in an architecture. It is an exact match to the number of threads on the
KNLs/CPUs. On GPUs, we over-estimate the concurrency to efficiently acquire memory. We check
the available memory, and reduce NUMCHUNKS if the memory allocation becomes too expensive on
GPUS. CPUS/KNLs use ONE20ONE and GPUs use MANY2MANY. The allocate function of the memory
pool uses thread indices. These indices assist the look-up for a free chunk. The pool directly returns
the chunk with the given thread index when using the ONE20ONE mode. This allows CPU/KNL threads
to reuse local NUMA memory regions. In the MANY2MANY mode, the pool starts a scan from the
given thread-index until an available chunk is found. If the memory pool does not immediately
have a memory chunk available to fulfill a request, the requesting computational unit spins until it

successfully receives an allocation.

3.2 Compression

Compression is applied to B in the symbolic phase. This method, based on packing columns of
B as bits, can reduce the size of B’s graph up to 32x (the number of bits in an integer). The

11

295

300

305

310

315

320

325

330

graph structure of B encodes binary relations - existence of a nonzero in (,5) or not. This can be
represented using single bits. We compress the rows of B such that 32 columns of B are represented
using a single integer following the color compression idea in [I1]. In this scheme, the traditional
column index array in a compressed-row matrix is represented with 2 arrays of smaller size: “column
set” (cs) and “column set index” (cs1). Set bits in ¢S denote existing columns. That is, if the it
bit in ¢S is 1, the row has a nonzero entry at the i** column. cs is used to represent more than 32
columns. Figure [4a] shows an example of the compression of a row with 10 columns. The original
symbolic phase would insert all 10 columns for this row into accumulators. Compression reduces the
row size, and only 2 are inserted into an accumulator with BITWISEOR operation on CS values. It
is more successful if the column indices in each row are packed close to each other.

In Algorithm [3] which computational units scan the rows of A and C only once. However, a
nonzero value in B is read multiple times, and there are flops accesses to B; i.e., B(i,:) is read as
many times as the size of A(:,4). Assuming uniform structure for A with §4 (average degree of A)
nonzeroes in each column, each row of B is accessed d4 times. Thus, f,, becomes O(d04 X nnzg),
where nnzp is the number of nonzeroes in B. If a compression method with linear time complexity
(O(nnzp)), as the one above, reduces the size of B by some ratio CF', the amount of work in the
symbolic can be reduced by O(CF x §4 x nnzp).

Compression reduces the problem size, allows faster row-union operations using BITWISEOR,
and makes the symbolic phase more efficient. The reduction in row lengths of B also reduces
the calculated MAXRF, the upper bound prediction for the required memory of accumulators in
the symbolic phase, further improving the robustness and scalability of the method. However,
compression is not always successful at reducing the matrix size. For matrices in which column
indices are spread, the compression may not reduce the input size, and introduction of the extra
values (CS) may slow the symbolic phase down. For this reason, we run compression in two phases.
We first calculate the row sizes in the compressed matrix, and calculate the overall f,, after the
compression. If f,, is reduced more than 15%, the matrix is compressed and the symbolic phase
is executed using this compressed matrix. Otherwise, we do not perform compression and run the
symbolic phase using the original matrices. We find this compression method to be very effective
in practice; e.g., the f,, reduction is less than 15% only for 7 of 83 test cases used in this paper.

See [28] for the effect of this compression method on solving the triangle counting problem.

3.3 KokkosKernels SPGEMM Methods

Our previous work [I3] proposes the KKMEM algorithm. It uses a Thread-Sequential approach with
LL accumulators. Its auto parameter detection focuses on the selection of vector-length. This size
is fixed for all threads in a parallel kernel. We set it on GPUs by rounding dp (average degree
of B) to the closest power of 2 (bounded by warp size 32). On KNLs and cPUs, Kokkos sets the
length depending on the compiler and underlying architecture specifications. The size of its £y

accumulators depends on the available shared memory on GPUs. The size of the Lo accumulator

12

335

340

345

350

355

eans (a2 1] o [2][2]]

row [E[7 [+ [[w palalafea) Nexts

csi

e Ids .. 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 . . . 31 d e e

oo e o]7] c oo ese s

n nnnnn L. E -62 Values .. Values -1]-1 -11-1
(a) Compression (b) LL (c) LP

Figure 4: Compression and Hashmap examples

(in the global memory) is chosen as MAXRS in the numeric (MAXRF in the symbolic). In contrast to
GPUs, both £; and £5 accumulators are in the same memory space on KNLs/CPUs. Since there are
more resources per thread on the KNLs/CPUs, we make £; big enough to hold MAXRS (or MAXRF).
This is usually small enough to fit into cache on KNLs/CPUS.

KKMEM is designed to be scalable to run on large datasets with large thread counts. It aims to
minimize the memory use (O(MAXRS)) and to localize memory accesses at the cost of increased hash
operations/collisions. In this work, we add KKDENSE that uses dense accumulators (O(k)) and runs
only on CcpUs and KNLs. It does not have the extra cost of hash operations. However, its memory
accesses may not be localized depending on the structure of a problem. When k is small, using
sparse accumulators does not have much advantage over dense accumulators (on KNLS/CPUSs) as a
dense accumulator would also fit into cache. Moreover, some matrix multiplications might result in
MAXRS to be very close to k (e.g. squaring RMAT matrices results in MAXRS to be 95% of k). In such
cases sparse accumulators allocate as much memory as dense accumulators, while still performing
extra hash operations. Sparse accumulators are naturally not expected to perform better than dense
accumulators for these cases.

This work proposes a meta algorithm KKSPGEMM that chooses either of these methods on CPUSs
and KNLs based on the size of k. We observe superior performance of KKDENSE for & < 250,000
on KNL’s DDR memory. As k gets larger KKMEM outperforms KKDENSE. We introduce a cut-off
parameter for k£ based on this observation. The meta-algorithm runs KKDENSE for k£ < 250, 000,
and KKMEM otherwise. As the columns are compressed in the symbolic phase by a factor of 32,
KKSPGEMM may run KKDENSE for the symbolic phase, and KKMEM for the numeric phase. A more
sophisticated selection of this parameter requires consideration of the underlying architecture. If
the architecture has a larger memory bandwidth, it may be more tolerant to larger dense accumula-
tors. For example, using MCDRAM or cache-mode in KNLs provides larger memory bandwidth, and
KKDENSE also achieves better performance than KKMEM for k > 250,000. Yet, in the rest of the
paper we use k = 250,000 as cut-off across different architectures, which captures the best methods
for most cases.

The parameter selection on GPUs is more complicated with additional variables, i.e., shared

13

360

365

370

375

380

385

Table 1: The KokkosKernels variants used in this paper.

CcpPUs & KNLs \ KKMEM [13] \ KKDENSE: Dense Acc. \ KKSPGEMM: KKMEM for k < 250,000, KKDENSE otherwise.
GPUS ‘ KKMEM [13] ‘ KKLP: 2-level LP with Thread-Flat-Parallel ‘ KKSPGEMM: KKMEM for average row flops< 256, KKLP otherwise.

Table 2: The specifications of the architectures used in the experiments. The experiments set
OMP_PROC_BIND=spread and OMP_PLACES=threads.

Cluster - cPU/GPU | Bowman - Intel KNL White (Host) - IBM Power8 White (GPU) - NVIDIA P100-SXM2
Compiler intel 18.0.128 gnu 5.4.0 gnu 5.4.0, nvee 8.0.44

Core specs 68 x 1.40GHz cores, 4 hyperthreads 16 x 3.60 GHz cores, 8 hyperthreads | 1.48GHz

Memory 16 GB MCDRAM 460 GB/s, 96 GB DDR4 102 GB/s | 512 GB DDR4, 2 NUMA 16 GB HBM

memory, warp (vector-length) and block sizes. This work introduces KKLP, which uses the Thread-
Flat-Parallel partitioning with two-level LP accumulators. For problems in which rows require few
(on average < 256) multiplications, our meta algorithm runs KKMEM; otherwise it runs KKLP. Once
the algorithm is chosen, based on the average output row size (ARS), we adjust the shared memory
size (initially 16KB per team) to minimize the use of Lo accumulators. For KKMEM, if ARS does not
fit into £1, we reduce the number of threads within teams (by increasing the vector length up to
32 and reducing threads at the same time) to increase the shared memory per thread, so that most
of the entries can fit into £;. For KKLP, if initial available shared memory for the team (16KB)
provides more space than ARS, we reduce the team size and its shared memory to be able to run
more blocks concurrently on the streaming multiprocessors of GPUs. If ARS requires larger memory
than 16KB, we increase the shared memory at most to 32KB (and block size to 512). As the row
sizes are unknown at the beginning of the symbolic phase, it is more challenging to select these
parameters then. We estimate ARS from f,,, by assuming every nth (8th is used for the experiments)
multiplication will reduce to the same nonzero.

The experiments run our old method KKMEM without this parameter selection to highlight the
improvements w.r.t. previous work. Table [I] summarizes the methods used in this paper. Our
implementations cannot launch concurrent kernels using cuda-streams as Nsparse does, as Kokkos

does not support that yet. Instead, we launch a single kernel using the above parameter selection.

4 Experiments

Performance experiments are performed on three different configurations, representing two of the
most commonly HPC leadership class machine hardware designs: Intel XeonPhi and IBM Power
with NVIDIA GPUs. The configurations of the nodes are listed in Table Our methods are
implemented using the Kokkos library (2.5.00), and will be available in KokkosKernels (2.5.10).
Detailed explanation about the raw experiment results and reproducing them can be found at
https://github.com/kokkos/kokkos-kernels/wiki/SpGEMM_Benchmarks. Each run reported in
this paper is the average of 5 executions (preceded with 1 excluded warmup run) with double precision
arithmetic and 32 bit integers. We evaluate 83 matrix multiplications, 24 of which are of the form

R x A x P as found in multigrid, while the rest are of the form A x A using matrices from the UF

14

https://github.com/kokkos/kokkos-kernels/wiki/SpGEMM_Benchmarks

390

395

400

y - ! 4.0
@@ KKSpGEMM < @ ® KKSpGEMM @ ® KKSpGEMM
AA KKMEM 4 35HAA KKMEM AA KKMEM
4t|<¢<q KKDENSE :
! — <d<d KKDENSE <@ KKDENSE
@@ viennaCL / / 3.0r|@-@ viennaClL ol | @@ viennaCL
3 2.5

GFLOPS
~N
\A
A
GFLOPS
~
o

i

e R

— p—
0 0.0 . o.c.// ; ; ;
1 2 4 16 32 64 128 1 2 4 16 32 64 128 1 2 4 16 32 64 128
threads # threads # threads
(a) BigStar AXx P k=15M (b) BigStar R x A k =21.5M (c) europe k = 50.9M
9 T T T T 14 r r 2 5 T T P!
o @@ KKSpGEMM e @@ KKSPGEMM 4 @@ KKSpGEMM ,
AA KKMEM /./ 12 |{AA KKMEM / AA KKMEM .4 \
71| <€¢<€ KKDENSE <t<d KKDENSE <'/ 4} |<¢<€ KKDENSE < 4
@@ viennaCL 10//@-@ viennacL @@ viennaCL %
6 y
w ’. w 3
& 5 o 8 / -4 /
2 A g Y 2
G4 E 6 / 5 /
/

:) < //
<
1] //f/ 2 /./ !

/ y//“/c ’__.’/’/,n/’ﬁ’/ﬁ-/' l/"‘ :
o P 6 32 e 12 1 2 4 16 37 61 12 1 P 16 32 64 128
threads # threads # threads

(d) kronl6 k = 65K (e) coPap.Cite. k = 434K (f) flickr £ = 820K

Figure 5: Strong scaling GFLOPS/sec on Power8 CPUSs.

sparse suite [9]. The problems are listed in Table Experiments are run for both a NoReuse and a
Reuse case. Both the symbolic and the numeric phase are executed for NoReuse. Reuse executes
only the numeric phase, and reuses the previous symbolic computations. Unless specifically stated,

the results refer to the NoReuse case.

4.1 Experiments on Power8 CcpUs

We compare our methods (KKSPGEMM, KKMEM, KKDENSE), against ViennaCL (OpenMP) on Power8
cpUs. Figure [5| gives strong scaling GFLOPS/sec for the four methods on different multiplications
with different characteristics.

The first two multiplications (a and b) are from a multigrid problem. As k gets larger, KKDENSE
suffers from low spatial locality, and it is outperformed by KKMEM. KKDENSE’s memory allocation
for its accumulators fails for some cases. Although, they should fit into memory, we suspect that
allocation of such large chunks is causing these failures. KKDENSE achieves better performance for
matrices with smaller k. Among them, kron not only has the smallest k, but also has a MAXRS that
is 83% of k. The sparse accumulators use a similar amount of memory as KKDENSE, but still acrue

the overhead for hash operations. Our meta method chooses KKDENSE for kron’s numeric and the

15

Table 3: The list of the matrices used in the experiments in this paper. CF and CMRF gives the ratio of the
reduction in overall number of flops and maximum row flops. Last four columns list the achieved GFLOPs/sec by
KKSPGEMM on 4 architectures.

D Multiplication m n k fm MAXRF IIcll MAXRs | CF | CMRF || Power8 | P100
1 amazon0302 262,111 262,111 262,111 6,021,131 25 3 896,236 25 | 0.71 1.00 1.63 1.64
2 belgium_osm 1,441,295 1,441,295 1,441,295 7,017,228 25 3 18 | 0.65 0.80 1.36 1.13
3 mac_econ_fwd500 206,500 206,500 206,500 7,556,897 229 215 | 0.57 0.59 2.22 1.49
4 mc2depi 525,825 525,825 525,825 8,391,680 16 10 | 0.76 0.94 2.55 1.51
5 delaunay nl8 262,144 262,144 262,144 9,907,810 214 154 | 0.47 0.62 3.25 2.18
6 2cubes_sphere 101,492 101,492 101,492 544 180 | 0.48 0.63 5.15 | 5.80
7 ca-HepPh 12,008 12,008 12,008 93,923 3,284,660 3,211 | 0.73 0.03 7.59 1.48
8 rgg n_2_18_s0 262,144 262,144 262,144 716 9,179,295 67 1 0.81 0.70 5.09 | 6.82
9 hugetrace-00000 | 4,588,484 | 4,588,484 | 4,588, -18-1 9 28,308,760 71074 1.00 1.06 | 3.16

10 web-Stanford 281,903 281,903 13,682 20,811,442 3,421 | 1.00 0.64 2.12

11 Stanford 281,903 281,903 281 JO3 491,041 20,811,442 68,455 | 0.86 0.03 0.19

12 amazon-2008 735,323 735,323 735,323 46,082, 867 100 25,366,745 100 | 0.38 0.93 3.65

13 web-Google 916,428 916,428 916,428 60,687,836 4,334 29,710,164 2,256 | 1.00 1.00 1.81

14 webbase-1M 1,000,005 1,000,005 1,000,005 116,179 51,111,996 12,383 1 0.25 0.27 1.19

15 offshore 259,789 259,789 259,789 562 2 182 | 0.61 0.68 7.29

16 conf5_4-8x8-05 49,152 49,152 49,152 74,760,192 1,521 B 222 [0.21 0.26 10.78

17 delaunay n21 2,097,152 2,097,152 | 2,097,152 79,241,506 219 43, 417 524 157 | 0.47 0.65 4.95

18 cop20k_A 121,192 121,192 79,883,385 2,489 18.705.069 495 | 0.39 0.43 10.11

19 cit-Patents | 3,774,768 | 3,774,768 2 68,848,721 3,925 | 0.99 0.99 0.90

20 filter3D 106,437 106,437 20,161,619 550 | 0.54 0.63 8.16

21 Empire RAxP 8.800 2,160,000 280,800 36 | 0.59 0.03 3.02

22 Empire_ RxAP 8,800 2,160,000 91,604,280 280,800 36 | 0.39 0.03 5.12

23 cnr-2000 325,557 5,5 96,065,788 34,174,066 15,723 | 0.18 0.19 2.13

24 soc-Slashdot0811 34, 78,851,659 31,750 | 0.60 0.03

25 amazon0601 403,394 31,313 98,600,816 20,607 | 0.79 0.40

26 rmal(46,835 46,835 46,835 12,765 7,900,917 425 | 0.10 0.10

27 hugebubbles-00000 | 18,318,143 | 18,318,143 | 18,318,143 91,952 9 113,009,849 71074 1.00

28 hugebubbles-00020 | 21,198,119 | 21,198,119 | 21,198,119 190,713,076 132,690,161 71083 1.00

29 rggn_2_20s0 1,048,576 1,048,576 194,980,566 41,709,507 75 | 0.90 0.74

30 Elasticity_113_RxAP 54,872 54,872 205,253,787 271047 0.43

31 Slasticity_113_RAxP 54,872 4 328,691 54,872 205,253,787 R 27 | 0.65 0.43

32 Stanford _Berkeley 683,446 683,446 683,446 222,116,841 78,130,972 136,877 | 0.17 0.03

33 europe_osm | 50,912,018 | 50,912,018 | 50,912,018 241,277,568 182,570,158 28 | 0.64 0.80

34 cant 4 62,451 62,451 375 | 0.12 0.12

35 Brick_185_RxAP 38,3 ,331,625 238,328 78 | 047 0.71

36 Brick_185_RAxP 238,328 | 6,331,625 238,328 307,568, 462 78 1 0.64 0.78

37 BigStar_4657_RAxP 1, 4-16 620 | 21,687,649 1, 4-16 620 369,829,182 0.79 0.80

38 BigStar_4657_RxAP 4 21,687,649 4 369,829,182 0.63 0.67

39 shipsecl 140,874 140,874 140,874 45 0.15 0.17

40 consph 83, 8. 4 83, 0.15 0.24

41 cagel4 1,505,785 1,505,785 1,505,785 : 0.78 0.74

42 pdb1HYS 36,417 36,417 36,417 555,322,659 0.07 0.04

43 hood 220,542 220,542 220,542 562,028,138 0.13 0.16

44 Laplace 284 RxA | 2,774,624 | 22,906,304 | 22,906,304 0.72 0.73

45 Laplace_284_AxP | 22,906,304 | 22,906,304 2,774,624 0.93 1.00

46 af_shelll 504,855 504,855 504,855 3, 0.11 0.15

47 pwtk 217,918 217,918 217,918 626,05: 32,772,236 0.09 0.10

48 delaunay n24 | 16,777,216 | 16,777,216 | 16,777, 216 633,9 2 347,322,258 218 | 0.47 0.69

49 Laplace_284_RxAP 2,774,624 | 22,906,304 1 742, 86,570,980 49 1 0.83 0.91

50 Laplace_284_RAxP 2,774, 62-1 22 906 304 742,456,340 86,570,980 49 | 0.93 0.97

51 Brick_185_RxA 776,170,999 78,955,509 509 | 0.35 0.35

52 Brick_185_AxP 6,331,625 776,170,999 78,955,509 27 1 0.61 0.83

53 nlpkkt80 1,062,400 1,062,400 790,384,704 154,663,144 152 | 0.38 0.48

54 BigStar_4657_AxP | 21,687,649 | 21,687,649 K 131,484,200 9| 0.78 0.98

55 BigStar_4657_RxA 1,446,620 | 21,687,649 | 21,687,649 131,484,200 91 | 0.40 0.42

56 cu-2005 862,664 862,664 862,664 284,177,131 16,051 | 0.28 0.10

57 NALU_R3_RxAP 552,583 | 17,598,889 552,583 ,28 31,098,707 59 | 0.46 0.68

58 NALU_R3_RAxP 552,583 | 17,598,889 552,583 1,254,217, 019 3, 31,098,707 59 | 0.67 0.77

59 Empire_RxA 8.800 2,160,000 2,160,000 1,286,511,829 155,460 2i 0,400 3,010 | 0.15 0.17

60 Empire_ AxP 2,160,000 2,160,000 8,800 1,286,511,829 999 25,410,400 27 | 0.55 0.28

61 Fault_639 638,802 638,802 638,802 1,298,780,298 15,813 126,633,024 897 | 0.19 0.16

62 | channel-500x100x100-b050 4,802,000 4,802,000 4,802,000 1,52 096 324 436,529,632 93 | 0.52 0.74

63 wh-edu | 9,845,725 | 9,845,725 | 9,845,725 1,559,579,990 281,616 630,077,764 14,427 | 0.21 0.12

64 Elasticity _113_AxP 4,328,691 4,328,691 54,872 1,572,091,911 375 27] 0.61 0.74

65 54,872 4,328,691 4,328,691 1,572,091,911 30,375 1,029 | 0.14 0.14

66 1,382,908 1,382,908 1,382,908 240,257 9,997 | 0.08 0.09

67 1 aO8 065 1,508,065 1 508 065 1,840,916,875 1,225 95 | 0.11 0.16

68 5,154,859 1,885,387,372 1,904 859 | 0.83 0.79

69 1,157,456 2,337,362,192 5,464 0.30 0.36

70 wikipedia-20051105 1,634,989 2,373,873,670 274,992 0.82 0.19

71 1door 952,203 2,408,881,377 4,165 0.12 0.16

72 NALU_R3_RxA 17,598,889 6,777 s 0.28 0.32

73 NALU_R3_AxP | 17,598,889 | 17,598,889 552,583 183 243,321,996 0.67 0.90

74 Serena 1,391,349 1,391,349 1,391,349 11,556 1,236 | 0.18 0.18

75 coPapersDBLP 540,486 540,486 540,486 | 4,091,407,036 737,309 35,874 | 0.17 0.03

76 flickr 820,878 820,878 820,878 8, 024 | 2,907,529 202,990 | 0.57 0.03

7 RMO7R 381,689 381,689 381,689 64 60,375 1,475 1 0.15 0.15

7 Bump_2911_dig 2,911,419 2,911,419 2,911,419 5,745,156,927 9,370 738 | 0.17 0.17

79 kron_g500-logn16 65,536 65,536 65,536 6,768,428,563 | 4,368,565 54,856 | 0.50 0.03

80 coPapersCiteseer 434,102 434,102 434,102 | 6,822,448,658 786,040 12,882 | 0.10 0.03

81 audikw_1 943,695 943,695 943,695 3‘ 5 1,689 | 0.14 0.14

82 dielFilterV3real 1,102,824 1,102,824 1,102,824 1,671 | 0.23 0.26

83 HVI5R | 2,017,169 2,017,169 | 2,017,169 | 42,201,218,799]32 295 | 1,768, 066 720 1,900 | 0.13 0.14

GEOMEAN: | 0.38 0.30

16

405

410

415

420

425

430

435

symbolic phase. It executes KKDENSE only for the symbolic phase of BigStar Ax P, coPapersCiteseer,
and flickr, as the compression reduces their k by 32x. KKDENSE achieves better performance than
KKSPGEMM in 3 instances. These suggest that the simple architecture agnostic heuristic for choosing
the optimal algorithm, is leaving room for improvement. The current heuristic is erring on the side
of reduced memory consumption, which in real applications may be desirable.

Figure [6a] lists the performance profiles of the algorithms on Power8. For a given z, the y value
indicates the number of problem cases, for which a method is less than x times slower than the
best result achieved with any method for each individual problem. The max value of y at x = 1 is
the number of problem cases for which a method achieved the best performance. The x value for
which y = 83 is the largest slowdown a method showed over any problem, compared with the best
observed performance for that problem over all methods. As seen in the figure, for about 50 problems
KKSPGEMM achieves the best performance (or at most 0.5% slower than the best KK variant). The
performance of viennaCL is mostly lower than achieved by KK variants. While our methods do not
make any assumption on whether the input matrices have sorted columns, all test problems have
sorted columns to be able to run the different methods throughout our experiments. For example,
viennaCL requires sorted inputs, and returns sorted output. If the calling application does not store
sorted matrices, pre-processing is required to use viennaCL. Similarly, if the result of SPGEMM must
be sorted, post-processing is required for our methods. For iterative multiplications in multigrid,
the output of a multiplication (AP = A x P) becomes the input of the next one (R x AP). As long
as methods make consistent assumptions for their input and outputs, this pre-/post-processing can

be skipped.

4.2 Experiments on KNLs

The experiments on KNLs compare our methods against two methods provided by the Intel Math
Kernel Library (MKL) using two memory modes. The first uses the high bandwidth memory (MC-
DRAM) of KNLs as a cache (CM), while the second runs in flat memory mode using only DDR.
mkl_sparse_spmm in MKL’s inspector-executor is referred to as MKL-INS, and the mkl dcsrmultcsr
is referred to as MKL7 and MKL8. mkl_dcsrmultcsr requires sorted inputs, without necessarily re-
turning sorted outputs. Output sorting may be skipped for A x A (e.g., graph analytic problems);
however, it becomes an issue for multigrid. The results report both MKL7 (without output sorting)
and MKL8 (with output sorting). MKL’s expected performance is the performance of MKL7 for A x A
and MKLS8 for multigrid multiplications.

Figure |7 shows strong scaling GFLOPS/sec of six methods on three multiplications for CM and
DDR with number of threads. Since we use maximally 64 cores, 128 and 256 threads use 2 or 4
hyperthreads per cores respectively. Memory accesses on DDR are relatively more expensive than
CM; therefore methods using sparse accumulators tend to achieve better scaling and performance.
KKDENSE is usually outperformed by KKMEM on DDR except on coPapersCiteseer. CM provides more
bandwidth which boosts the performance of all methods. When the bandwidth is not saturated,

17

of test instances # of test instances

of test instances

80

70
60 @
1]
f
50 8
w
£
40 %
2 KKMEM
30 ; ‘ e ‘ <+—< KKDENSE
KKSpGEMM gp&fﬁ : : »—x MKL-INS
20 s—4 KKMEM 1 e ‘ ‘ =@ MKL8
10 <+—< KKDENSE 10 : ~—e MKL7 |
*—e viennaCL Erﬁ e—e KKSpGEMM
1.0 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Proximity to the best performing method Proximity to the best performing method
(a) Power8 NoReuse (b) KNL DDR NoReuse
80} 80} g
70k 70k,
60} - ® 60(
o
C
SOLE B o e 850
(%)
£ ;
40L& % 40 g
: : ‘ s +—+ KKMEM
2 i : : H* : rl;:D
. g < MKL-INS pe 87| = MKL-INS
20F - ﬁﬁg e MKLS 20} S Sy B N . MKLS
108 } "':HF‘E — MKL7 i 10} H;FIEEF | MKLY i
| f; e—e KKSpGEMM :dzp LB | . | «—e KKSpGEMM
LM | | | | 1 1 L | I I I 1 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Proximity to the best performing method
(c¢) kNL CM NoReuse

Proximity to the best performing method
(d) kNL CM Reuse

80

70

60

50

40},

wn
(]
1)
C
©
®
= f=
40 Y
KKLP 2 > KKLP
a— KKMEM 1 ;30 a— KKMEM 1
m-@ cuSparse m-@ cuSparse
e—e KKSpGEMM| 20 e—e KKSpGEMM|
»— NSPARSE 10 »— NSPARSE
*—e viennaCL) *—e viennaCL
o C
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Proximity to the best performing method
(e) P100 NoReuse

Proximity to the best performing method
(f) P100 Reuse

Figure 6: Performance profiles on Power8, KNL, and P100 GpUs. Experiments on GPUs include 81
multiplications, as result C' does not fit into menh8ry.

: v 3.0 2.5
:_: EES::'SE « AA KKMEM : AA KKMEM
6 5 5| [KKDENSE <¢<{ KKDENSE
XX MKL-INS a I MKLINS 2,014 MKL-INS
5| |G- MKL7 /. O MKLs @@ mMKLs
@@ KKSpGEMM / 2.0 /@@ MKL7 o8 MKL7
v 4 [v ||@® KKSpGEMM » 1.5/ @@ KKSpGEMM
y g 4
g / S 1.5 S
©3 o &]
/ 1.0
, / 10
« (
< 5
1 1 0.5 * ;%
o ! 0.0 0.0
1 2 4 16 32 64 128 256 1 2 4 16 32 64 128 256 1 2 4 16 32 64 128 256
threads # threads # threads
(a) coPapersCiteseer DDR (b) BigStar A X P DDR (c) BigStar R x A DDR
12 4.0 4.5
AA KKMEM [AA KKMEM [AA KKMEM
10 <¢-<{ KKDENSE 4 3.5{|<¢<q KKDENSE 4.0rl<g<q KKDENSE
XX MKL-INS e <X MKL-INS 3.5.<< MKL-INS
*8 MKL7 « 3.0/ @@ MKLs OO MK
8@ @ KkspGEMM &0 MKL7 3.0 |- MKL7
" / » 27| @-@ KkspGEMM 0 , o [@® KKspGEMM
S ¢ S 20 g~
e = 2
g} [& 2.0
1.5
4 1.5
/
7
P 1.0 7 1o
2 ' :
4 0.5 /4!9 0.5
1 2 a4 6 32 62 18 26 "1 2 a4 6 32 64 12 26 OO 16 32 64
threads # threads # threads
(d) coPapersCiteseer CM (e) BigStar A x P CM (f) BigStar R x A CM

Figure 7: Strong scaling GLOPS/sec on KNLs. Top and bottom figures are for flat DDR and CM,
respectively. MKL8 does not complete in the given allocation time for coPapersCiteseer.

19

440

445

450

455

460

465

470

475

methods have similar performances on DDR and MCDRAM, which is observed up to 32 threads.
CM improves the performance of methods which stress memory accesses more, e.g. KKDENSE. In
general, methods favoring memory accesses over hash computations are more likely to benefit from
CM than those that already have localized memory accesses. KKSPGEMM mostly achieves the best
performance except for coPapersCiteseer. The higher memory bandwidth of CM allows the use of
dense accumulators for larger k. k is still too large to benefit from CM for R x A. MKL methods
achieve better performance on lower thread counts, but they do not scale with hyperthreads. MKL-
INS has the best performance among MKL methods.

It is worthwhile to note that these thread scaling experiments conflate two performance critical
issues: thread-scalability of an algorithm, and the amount of memory bandwidth and load/store
slots available to each thread. The latter issue would still afflict performance if these methods are
used as part of an MPI application, where for example 8 MPI ranks each use 32 threads on KNL.
In such a usecase we would expect the relative performance of the methods to be closer to the 256
thread case than the 32 thread case in our experiments.

Figure [] shows performance profiles for NoReuse for DDR, and both NoReuse and Reuse for
CM. The experiments on DDR demonstrate the strength of a thread-scalable KKMEM algorithm.
It outperforms KKDENSE for larger datasets. Overall, KKSPGEMM obtains the best performance,
taking advantage of KKMEM and KKDENSE for large and small datasets, respectively. KKDENSE
significantly improves its performance on CM w.r.t. DDR. Among mkl methods, MKL-INS achieves
the best performance. However, it is a 1-phase method. It cannot exploit structural reuse, and its

performance drops for the Reuse case.

4.3 Experiments on GPUs

We evaluate the performance of our methods against Nsparse, cuSPARSE and ViennaCL (1.7.1)
on P100 cpus. Figure [6¢| shows the performance profile on P100 GPUs for NoReuse. Among these
methods, KKSPGEMM and cuSPARSE run for all 81 instances. KKMEM, Nsparse and viennaCL fail
for 2, 4 and 9 matrices. cuSPARSE and viennaCL are mostly outperformed by the other methods.
These are followed by our previous method KKMEM, and our LP based method KKLP. KKSPGEMM
takes advantage of KKLP, and significantly improves our previous method KKMEM with a better
parameter setting. As a result, KKSPGEMM and Nsparse are the most competitive methods. Nsparse,
taking advantage of cuda-streams, achieves slightly better performance than KKSPGEMM. Although
the lack of cuda-streams is a limitation for KKSPGEMM, with a better selection of the parameters it
obtains the best performance for 28 test problems.

Most of the significant performance differences between Nsparse and KKSPGEMM occur for smaller
multiplications that take between 1 to 10 milliseconds. Nsparse has the best performance on 18 out
of 20 multiplications with the smallest number of total f,,. As the multiplications get larger, the
performance of KKSPGEMM is on average 3 — 4% better than Nsparse (excluding the smallest 20

test problems). KKSPGEMM is also able to perform 4 test multiplications for which Nsparse runs

20

480

485

490

495

500

14
12
1.0

0.83
0.8
0.6 0.5.
0.4
0.2
0.0

3
1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-77 77-81

Speedup w.r.t. Nsparse

Figure 8: Speedup of KKSPGEMM w.r.t. NSparse for matrices that are grouped w.r.t. f,,. These
groups can be found using indices in Table E}

out of memory (kronl6, coPaparciteseer, flickr, coPapersDBLP). The performance comparison of
KKSPGEMM against Nsparse for multiplications sorted based on f,, required is shown in Figure
This figure reports the geometric mean of the KKSPGEMM speedups w.r.t. Nsparse. For the smallest
10 and 20 multiplications, Nsparse is about 47% and 17% faster than KKSPGEMM. KKSPGEMM, on
average, has more consistent and faster runtimes for the larger inputs. KKSPGEMM is designed for
scalability, and it introduces various overheads to achieve this scalability (e.g., compression). When
the inputs are small, the overhead introduced is not amortized, as the multiplication time is very
small even without compression. This makes KKSPGEMM slower on small matrices, but at the same
time it makes KKSPGEMM more robust and scalable allowing it to run much larger problems. On the
other hand, Nsparse returns sorted output rows, which is not the case for KKSPGEMM. The choice
of the better method depends on the application area. If the application requires sorted outputs or
the problem size is small, Nsparse is likely to achieve better performance. For the problems with
large memory requirements, KKSPGEMM is the better choice. Lastly, Figure[6] gives the performance
profile for the Reuse case. Although Nsparse also runs in two-phases, its current user interface does
not allow reuse of the symbolic computations.

The effect of the compression: Compression is critical to reduce the time and the memory
requirements of the symbolic phase. It helps to reduce both the number of hash insertions as
well as the estimated max row size. Table-1 and 2 (supplementary materials) lists the original f,,
and MAXRF. CF and CMRF give the reduction ratios with compression on f,, and MAXRF (e.g.,
0.85 means 15% reduction), respectively. On average, f,,, and MAXRF are reduced by 62% and 70%.
Compression reduces the memory requirements (MAXRF) in most cases up to 97%. It usually reduces
the runtime of the symbolic phase. When the reduction on f,, is low (e.g., CF > 0.85), it might not
amortize compression cost. We skip the second-phase of the compression in such cases; however, we
still introduce overheads for CF calculations. CF is greater than 0.85 for only 7 multiplications, for

which the symbolic phase is run without compressed values.

21

505

510

515

520

525

530

535

5 Conclusion

We described thread-scalable SPGEMM kernels for highly threaded architectures. Using the porta-
bility provided by Kokkos, we describe algorithms that are portable to GPUs and cPUs. The per-
formance of the methods is demonstrated on Power8 CPUs, KNLs, and P100 GPUs, in which our
implementations achieve at least as good performance as the native methods. On CPUs and KNLs,
we show that sparse accumulators are preferrable when memory accesses are the performance bot-
tleneck. As memory systems provide more bandwidth (as in MCDRAM) and k is small, methods
with dense accumulators outperform those with sparse accumulators. Although our methods can-
not exploit some of the architecture specific details of GPUS, e.g., cuda-streams, because of current
Kokkos limitations, with a better way of parameter selection we achieve as good performance as
highly optimized libraries. The experiments also show that our methods using memory pool and
compression techniques are robust and can perform multiplications with high memory demands.
Our experiments also highlight the importance of designing methods for application use cases such
as symbolic “reuse” with significantly better performance than past methods.

Acknowledgements: We thank Karen Devine for helpful discussions, and the test bed program at
Sandia National Laboratories for supplying the hardware used in this paper. Sandia National Labo-
ratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.s

References

[1] The Trilinos project.

[2] Kadir Akbudak and Cevdet Aykanat. Simultaneous input and output matrix partitioning
for outer-product—parallel sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing, 36(5):C568—-C590, 2014.

[3] Kadir Akbudak and Cevdet Aykanat. Exploiting locality in sparse matrix-matrix multiplication
on many-core architectures. IEEE Transactions on Parallel and Distributed Systems, 2017.

[4] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded Schwartz, Sivan
Toledo, and Samuel Williams. Exploiting multiple levels of parallelism in sparse matrix-matrix
multiplication. arXiv preprint arXiv:1510.00844.

[5] Grey Ballard, Alex Druinsky, Nicholas Knight, and Oded Schwartz. Hypergraph partitioning
for sparse matrix-matrix multiplication. arXiv preprint arXiv:1603.05627, 2016.

[6] Aydin Bulu¢ and John R Gilbert. The Combinatorial BLAS: Design, implementation, and
applications. International Journal of High Performance Computing Applications, 2011.

[7] Edith Cohen. Structure prediction and computation of sparse matrix products. Journal of
Combinatorial Optimization, 2(4):307-332, 1998.

22

540

545

550

555

560

565

570

8]

[15]

[16]

Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse matrix-matrix multiplication
for the GPU. ACM Transactions on Mathematical Software (TOMS), 41(4):25, 2015.
Timothy A Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

Julien Demouth. Sparse matrix-matrix multiplication on the gpu. In Proceedings of the GPU
Technology Conference, 2012.

M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam. Parallel graph coloring for many-
core architectures. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 892-901, May 2016.

Mehmet Deveci, Kamer Kaya, and Umit V Catalyurek. Hypergraph sparsification and its
application to partitioning. In Parallel Processing (ICPP), 2013 42nd International Conference
on, pages 200-209. IEEE, 2013.

Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. Performance-portable
sparse matrix-matrix multiplication for many-core architectures. In Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2017 IEEE International, pages 693-702. IEEE,
2017.

Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay Brockman,
Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, Richard Lethin, et al. Highly scalable near
memory processing with migrating threads on the emu system architecture. In Irregular Appli-
cations: Architecture and Algorithms (IA3), Workshop on, pages 2-9. IEEE, 2016.

H Carter Edwards, Christian R Trott, and Daniel Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. J Parallel Distrib Comp,
74(12):3202-3216, 2014.

Felix Gremse, Andreas Hofter, Lars Ole Schwen, Fabian Kiessling, and Uwe Naumann. GPU-
accelerated sparse matrix-matrix multiplication by iterative row merging. SIAM Journal on
Scientific Computing, 37(1):C54-C71, 2015.

Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Transactions on Mathematical Software (TOMS), 4(3):250-269, 1978.
Intel. Intel math kernel library, 2007.

Rakshith Kunchum, Ankur Chaudhry, Aravind Sukumaran-Rajam, Qingpeng Niu, Israt Nisa,
and P Sadayappan. On improving performance of sparse matrix-matrix multiplication on gpus.
In Proceedings of the International Conference on Supercomputing, page 14. ACM, 2017.
Sureyya Emre Kurt, Vineeth Thumma, Changwan Hong, Aravind Sukumaran-Rajam, and
P Sadayappan. Characterization of data movement requirements for sparse matrix computations
on gpus. In High Performance Computing (HiPC), 2017 24th International Conference on.
IEEE, 2017.

Paul Lin, Matthew Bettencourt, Stefan Domino, Travis Fisher, Mark Hoemmen, Jonathan

Hu, Eric Phipps, Andrey Prokopenko, Sivasankaran Rajamanickam, Christopher Siefert, et al.

23

575

580

585

590

595

[28]

Towards extreme-scale simulations for low mach fluids with second-generation trilinos. Parallel
Processing Letters, 24(04):1442005, 2014.

Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-matrix multiplication for
irregular data. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th Interna-
tional, pages 370-381. IEEE, 2014.

Michael McCourt, Barry Smith, and Hong Zhang. Efficient sparse matrix-matrix products using
colorings. SIAM Journal on Matrix Analysis and Applications, 2013.

Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-performance and memory-
saving sparse general matrix-matrix multiplication for nvidia pascal gpu. In Parallel Processing
(ICPP), 2017 46th International Conference on, pages 101-110. IEEE, 2017.

M Naumov, LS Chien, P Vandermersch, and U Kapasi. Cusparse library. In GPU Technology
Conference, 2010.

Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jongsoo Park,
Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, Sergey G Pudov, Vadim O
Pirogov, and Pradeep Dubey. Parallel efficient sparse matrix-matrix multiplication on multicore
platforms. In High Performance Computing, pages 48-57. Springer, 2015.

K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A High Level Linear Algebra Library for
GPUs and Multi-Core CPUs. In Intl. Workshop on GPUs and Scientific Applications, pages
51-56, 2010.

Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond, and Sivasankaran
Rajamanickam. Fast linear algebra-based triangle counting with kokkoskernels. In High Per-
formance Extreme Computing Conference (HPEC), 2017 IEEE, pages 1-7. IEEE, 2017.

24

	Introduction
	Background
	Algorithms
	Core spgemm Kernel
	spgemm Partitioning Schemes
	Accumulators and Memory Pool Data Structures

	Compression
	KokkosKernels SpGEMM Methods

	Experiments
	Experiments on Power8 cpus
	Experiments on knls
	Experiments on GPUs

	Conclusion

